1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935
|
.. _reshaping:
{{ header }}
**************************
Reshaping and pivot tables
**************************
.. _reshaping.reshaping:
Reshaping by pivoting DataFrame objects
---------------------------------------
.. image:: ../_static/reshaping_pivot.png
Data is often stored in so-called "stacked" or "record" format:
.. ipython:: python
import pandas._testing as tm
def unpivot(frame):
N, K = frame.shape
data = {
"value": frame.to_numpy().ravel("F"),
"variable": np.asarray(frame.columns).repeat(N),
"date": np.tile(np.asarray(frame.index), K),
}
return pd.DataFrame(data, columns=["date", "variable", "value"])
df = unpivot(tm.makeTimeDataFrame(3))
df
To select out everything for variable ``A`` we could do:
.. ipython:: python
filtered = df[df["variable"] == "A"]
filtered
But suppose we wish to do time series operations with the variables. A better
representation would be where the ``columns`` are the unique variables and an
``index`` of dates identifies individual observations. To reshape the data into
this form, we use the :meth:`DataFrame.pivot` method (also implemented as a
top level function :func:`~pandas.pivot`):
.. ipython:: python
pivoted = df.pivot(index="date", columns="variable", values="value")
pivoted
If the ``values`` argument is omitted, and the input :class:`DataFrame` has more than
one column of values which are not used as column or index inputs to :meth:`~DataFrame.pivot`,
then the resulting "pivoted" :class:`DataFrame` will have :ref:`hierarchical columns
<advanced.hierarchical>` whose topmost level indicates the respective value
column:
.. ipython:: python
df["value2"] = df["value"] * 2
pivoted = df.pivot(index="date", columns="variable")
pivoted
You can then select subsets from the pivoted :class:`DataFrame`:
.. ipython:: python
pivoted["value2"]
Note that this returns a view on the underlying data in the case where the data
are homogeneously-typed.
.. note::
:func:`~pandas.pivot` will error with a ``ValueError: Index contains duplicate
entries, cannot reshape`` if the index/column pair is not unique. In this
case, consider using :func:`~pandas.pivot_table` which is a generalization
of pivot that can handle duplicate values for one index/column pair.
.. _reshaping.stacking:
Reshaping by stacking and unstacking
------------------------------------
.. image:: ../_static/reshaping_stack.png
Closely related to the :meth:`~DataFrame.pivot` method are the related
:meth:`~DataFrame.stack` and :meth:`~DataFrame.unstack` methods available on
:class:`Series` and :class:`DataFrame`. These methods are designed to work together with
:class:`MultiIndex` objects (see the section on :ref:`hierarchical indexing
<advanced.hierarchical>`). Here are essentially what these methods do:
* :meth:`~DataFrame.stack`: "pivot" a level of the (possibly hierarchical) column labels,
returning a :class:`DataFrame` with an index with a new inner-most level of row
labels.
* :meth:`~DataFrame.unstack`: (inverse operation of :meth:`~DataFrame.stack`) "pivot" a level of the
(possibly hierarchical) row index to the column axis, producing a reshaped
:class:`DataFrame` with a new inner-most level of column labels.
.. image:: ../_static/reshaping_unstack.png
The clearest way to explain is by example. Let's take a prior example data set
from the hierarchical indexing section:
.. ipython:: python
tuples = list(
zip(
*[
["bar", "bar", "baz", "baz", "foo", "foo", "qux", "qux"],
["one", "two", "one", "two", "one", "two", "one", "two"],
]
)
)
index = pd.MultiIndex.from_tuples(tuples, names=["first", "second"])
df = pd.DataFrame(np.random.randn(8, 2), index=index, columns=["A", "B"])
df2 = df[:4]
df2
The :meth:`~DataFrame.stack` function "compresses" a level in the :class:`DataFrame` columns to
produce either:
* A :class:`Series`, in the case of a simple column Index.
* A :class:`DataFrame`, in the case of a :class:`MultiIndex` in the columns.
If the columns have a :class:`MultiIndex`, you can choose which level to stack. The
stacked level becomes the new lowest level in a :class:`MultiIndex` on the columns:
.. ipython:: python
stacked = df2.stack()
stacked
With a "stacked" :class:`DataFrame` or :class:`Series` (having a :class:`MultiIndex` as the
``index``), the inverse operation of :meth:`~DataFrame.stack` is :meth:`~DataFrame.unstack`, which by default
unstacks the **last level**:
.. ipython:: python
stacked.unstack()
stacked.unstack(1)
stacked.unstack(0)
.. _reshaping.unstack_by_name:
.. image:: ../_static/reshaping_unstack_1.png
If the indexes have names, you can use the level names instead of specifying
the level numbers:
.. ipython:: python
stacked.unstack("second")
.. image:: ../_static/reshaping_unstack_0.png
Notice that the :meth:`~DataFrame.stack` and :meth:`~DataFrame.unstack` methods implicitly sort the index
levels involved. Hence a call to :meth:`~DataFrame.stack` and then :meth:`~DataFrame.unstack`, or vice versa,
will result in a **sorted** copy of the original :class:`DataFrame` or :class:`Series`:
.. ipython:: python
index = pd.MultiIndex.from_product([[2, 1], ["a", "b"]])
df = pd.DataFrame(np.random.randn(4), index=index, columns=["A"])
df
all(df.unstack().stack() == df.sort_index())
The above code will raise a ``TypeError`` if the call to :meth:`~DataFrame.sort_index` is
removed.
.. _reshaping.stack_multiple:
Multiple levels
~~~~~~~~~~~~~~~
You may also stack or unstack more than one level at a time by passing a list
of levels, in which case the end result is as if each level in the list were
processed individually.
.. ipython:: python
columns = pd.MultiIndex.from_tuples(
[
("A", "cat", "long"),
("B", "cat", "long"),
("A", "dog", "short"),
("B", "dog", "short"),
],
names=["exp", "animal", "hair_length"],
)
df = pd.DataFrame(np.random.randn(4, 4), columns=columns)
df
df.stack(level=["animal", "hair_length"])
The list of levels can contain either level names or level numbers (but
not a mixture of the two).
.. ipython:: python
# df.stack(level=['animal', 'hair_length'])
# from above is equivalent to:
df.stack(level=[1, 2])
Missing data
~~~~~~~~~~~~
These functions are intelligent about handling missing data and do not expect
each subgroup within the hierarchical index to have the same set of labels.
They also can handle the index being unsorted (but you can make it sorted by
calling :meth:`~DataFrame.sort_index`, of course). Here is a more complex example:
.. ipython:: python
columns = pd.MultiIndex.from_tuples(
[
("A", "cat"),
("B", "dog"),
("B", "cat"),
("A", "dog"),
],
names=["exp", "animal"],
)
index = pd.MultiIndex.from_product(
[("bar", "baz", "foo", "qux"), ("one", "two")], names=["first", "second"]
)
df = pd.DataFrame(np.random.randn(8, 4), index=index, columns=columns)
df2 = df.iloc[[0, 1, 2, 4, 5, 7]]
df2
As mentioned above, :meth:`~DataFrame.stack` can be called with a ``level`` argument to select
which level in the columns to stack:
.. ipython:: python
df2.stack("exp")
df2.stack("animal")
Unstacking can result in missing values if subgroups do not have the same
set of labels. By default, missing values will be replaced with the default
fill value for that data type, ``NaN`` for float, ``NaT`` for datetimelike,
etc. For integer types, by default data will converted to float and missing
values will be set to ``NaN``.
.. ipython:: python
df3 = df.iloc[[0, 1, 4, 7], [1, 2]]
df3
df3.unstack()
Alternatively, unstack takes an optional ``fill_value`` argument, for specifying
the value of missing data.
.. ipython:: python
df3.unstack(fill_value=-1e9)
With a MultiIndex
~~~~~~~~~~~~~~~~~
Unstacking when the columns are a :class:`MultiIndex` is also careful about doing
the right thing:
.. ipython:: python
df[:3].unstack(0)
df2.unstack(1)
.. _reshaping.melt:
Reshaping by melt
-----------------
.. image:: ../_static/reshaping_melt.png
The top-level :func:`~pandas.melt` function and the corresponding :meth:`DataFrame.melt`
are useful to massage a :class:`DataFrame` into a format where one or more columns
are *identifier variables*, while all other columns, considered *measured
variables*, are "unpivoted" to the row axis, leaving just two non-identifier
columns, "variable" and "value". The names of those columns can be customized
by supplying the ``var_name`` and ``value_name`` parameters.
For instance,
.. ipython:: python
cheese = pd.DataFrame(
{
"first": ["John", "Mary"],
"last": ["Doe", "Bo"],
"height": [5.5, 6.0],
"weight": [130, 150],
}
)
cheese
cheese.melt(id_vars=["first", "last"])
cheese.melt(id_vars=["first", "last"], var_name="quantity")
When transforming a DataFrame using :func:`~pandas.melt`, the index will be ignored. The original index values can be kept around by setting the ``ignore_index`` parameter to ``False`` (default is ``True``). This will however duplicate them.
.. versionadded:: 1.1.0
.. ipython:: python
index = pd.MultiIndex.from_tuples([("person", "A"), ("person", "B")])
cheese = pd.DataFrame(
{
"first": ["John", "Mary"],
"last": ["Doe", "Bo"],
"height": [5.5, 6.0],
"weight": [130, 150],
},
index=index,
)
cheese
cheese.melt(id_vars=["first", "last"])
cheese.melt(id_vars=["first", "last"], ignore_index=False)
Another way to transform is to use the :func:`~pandas.wide_to_long` panel data
convenience function. It is less flexible than :func:`~pandas.melt`, but more
user-friendly.
.. ipython:: python
dft = pd.DataFrame(
{
"A1970": {0: "a", 1: "b", 2: "c"},
"A1980": {0: "d", 1: "e", 2: "f"},
"B1970": {0: 2.5, 1: 1.2, 2: 0.7},
"B1980": {0: 3.2, 1: 1.3, 2: 0.1},
"X": dict(zip(range(3), np.random.randn(3))),
}
)
dft["id"] = dft.index
dft
pd.wide_to_long(dft, ["A", "B"], i="id", j="year")
.. _reshaping.combine_with_groupby:
Combining with stats and GroupBy
--------------------------------
It should be no shock that combining :meth:`~DataFrame.pivot` / :meth:`~DataFrame.stack` / :meth:`~DataFrame.unstack` with
GroupBy and the basic Series and DataFrame statistical functions can produce
some very expressive and fast data manipulations.
.. ipython:: python
df
df.stack().mean(1).unstack()
# same result, another way
df.groupby(level=1, axis=1).mean()
df.stack().groupby(level=1).mean()
df.mean().unstack(0)
Pivot tables
------------
.. _reshaping.pivot:
While :meth:`~DataFrame.pivot` provides general purpose pivoting with various
data types (strings, numerics, etc.), pandas also provides :func:`~pandas.pivot_table`
for pivoting with aggregation of numeric data.
The function :func:`~pandas.pivot_table` can be used to create spreadsheet-style
pivot tables. See the :ref:`cookbook<cookbook.pivot>` for some advanced
strategies.
It takes a number of arguments:
* ``data``: a DataFrame object.
* ``values``: a column or a list of columns to aggregate.
* ``index``: a column, Grouper, array which has the same length as data, or list of them.
Keys to group by on the pivot table index. If an array is passed, it is being used as the same manner as column values.
* ``columns``: a column, Grouper, array which has the same length as data, or list of them.
Keys to group by on the pivot table column. If an array is passed, it is being used as the same manner as column values.
* ``aggfunc``: function to use for aggregation, defaulting to ``numpy.mean``.
Consider a data set like this:
.. ipython:: python
import datetime
df = pd.DataFrame(
{
"A": ["one", "one", "two", "three"] * 6,
"B": ["A", "B", "C"] * 8,
"C": ["foo", "foo", "foo", "bar", "bar", "bar"] * 4,
"D": np.random.randn(24),
"E": np.random.randn(24),
"F": [datetime.datetime(2013, i, 1) for i in range(1, 13)]
+ [datetime.datetime(2013, i, 15) for i in range(1, 13)],
}
)
df
We can produce pivot tables from this data very easily:
.. ipython:: python
pd.pivot_table(df, values="D", index=["A", "B"], columns=["C"])
pd.pivot_table(df, values="D", index=["B"], columns=["A", "C"], aggfunc=np.sum)
pd.pivot_table(
df, values=["D", "E"],
index=["B"],
columns=["A", "C"],
aggfunc=np.sum,
)
The result object is a :class:`DataFrame` having potentially hierarchical indexes on the
rows and columns. If the ``values`` column name is not given, the pivot table
will include all of the data in an additional level of hierarchy in the columns:
.. ipython:: python
pd.pivot_table(df[["A", "B", "C", "D", "E"]], index=["A", "B"], columns=["C"])
Also, you can use :class:`Grouper` for ``index`` and ``columns`` keywords. For detail of :class:`Grouper`, see :ref:`Grouping with a Grouper specification <groupby.specify>`.
.. ipython:: python
pd.pivot_table(df, values="D", index=pd.Grouper(freq="M", key="F"), columns="C")
You can render a nice output of the table omitting the missing values by
calling :meth:`~DataFrame.to_string` if you wish:
.. ipython:: python
table = pd.pivot_table(df, index=["A", "B"], columns=["C"], values=["D", "E"])
print(table.to_string(na_rep=""))
Note that :meth:`~DataFrame.pivot_table` is also available as an instance method on DataFrame,
i.e. :meth:`DataFrame.pivot_table`.
.. _reshaping.pivot.margins:
Adding margins
~~~~~~~~~~~~~~
If you pass ``margins=True`` to :meth:`~DataFrame.pivot_table`, special ``All`` columns and
rows will be added with partial group aggregates across the categories on the
rows and columns:
.. ipython:: python
table = df.pivot_table(
index=["A", "B"],
columns="C",
values=["D", "E"],
margins=True,
aggfunc=np.std
)
table
Additionally, you can call :meth:`DataFrame.stack` to display a pivoted DataFrame
as having a multi-level index:
.. ipython:: python
table.stack()
.. _reshaping.crosstabulations:
Cross tabulations
-----------------
Use :func:`~pandas.crosstab` to compute a cross-tabulation of two (or more)
factors. By default :func:`~pandas.crosstab` computes a frequency table of the factors
unless an array of values and an aggregation function are passed.
It takes a number of arguments
* ``index``: array-like, values to group by in the rows.
* ``columns``: array-like, values to group by in the columns.
* ``values``: array-like, optional, array of values to aggregate according to
the factors.
* ``aggfunc``: function, optional, If no values array is passed, computes a
frequency table.
* ``rownames``: sequence, default ``None``, must match number of row arrays passed.
* ``colnames``: sequence, default ``None``, if passed, must match number of column
arrays passed.
* ``margins``: boolean, default ``False``, Add row/column margins (subtotals)
* ``normalize``: boolean, {'all', 'index', 'columns'}, or {0,1}, default ``False``.
Normalize by dividing all values by the sum of values.
Any :class:`Series` passed will have their name attributes used unless row or column
names for the cross-tabulation are specified
For example:
.. ipython:: python
foo, bar, dull, shiny, one, two = "foo", "bar", "dull", "shiny", "one", "two"
a = np.array([foo, foo, bar, bar, foo, foo], dtype=object)
b = np.array([one, one, two, one, two, one], dtype=object)
c = np.array([dull, dull, shiny, dull, dull, shiny], dtype=object)
pd.crosstab(a, [b, c], rownames=["a"], colnames=["b", "c"])
If :func:`~pandas.crosstab` receives only two Series, it will provide a frequency table.
.. ipython:: python
df = pd.DataFrame(
{"A": [1, 2, 2, 2, 2], "B": [3, 3, 4, 4, 4], "C": [1, 1, np.nan, 1, 1]}
)
df
pd.crosstab(df["A"], df["B"])
:func:`~pandas.crosstab` can also be implemented
to :class:`Categorical` data.
.. ipython:: python
foo = pd.Categorical(["a", "b"], categories=["a", "b", "c"])
bar = pd.Categorical(["d", "e"], categories=["d", "e", "f"])
pd.crosstab(foo, bar)
If you want to include **all** of data categories even if the actual data does
not contain any instances of a particular category, you should set ``dropna=False``.
For example:
.. ipython:: python
pd.crosstab(foo, bar, dropna=False)
Normalization
~~~~~~~~~~~~~
Frequency tables can also be normalized to show percentages rather than counts
using the ``normalize`` argument:
.. ipython:: python
pd.crosstab(df["A"], df["B"], normalize=True)
``normalize`` can also normalize values within each row or within each column:
.. ipython:: python
pd.crosstab(df["A"], df["B"], normalize="columns")
:func:`~pandas.crosstab` can also be passed a third :class:`Series` and an aggregation function
(``aggfunc``) that will be applied to the values of the third :class:`Series` within
each group defined by the first two :class:`Series`:
.. ipython:: python
pd.crosstab(df["A"], df["B"], values=df["C"], aggfunc=np.sum)
Adding margins
~~~~~~~~~~~~~~
Finally, one can also add margins or normalize this output.
.. ipython:: python
pd.crosstab(
df["A"], df["B"], values=df["C"], aggfunc=np.sum, normalize=True, margins=True
)
.. _reshaping.tile:
.. _reshaping.tile.cut:
Tiling
------
The :func:`~pandas.cut` function computes groupings for the values of the input
array and is often used to transform continuous variables to discrete or
categorical variables:
.. ipython:: python
ages = np.array([10, 15, 13, 12, 23, 25, 28, 59, 60])
pd.cut(ages, bins=3)
If the ``bins`` keyword is an integer, then equal-width bins are formed.
Alternatively we can specify custom bin-edges:
.. ipython:: python
c = pd.cut(ages, bins=[0, 18, 35, 70])
c
If the ``bins`` keyword is an :class:`IntervalIndex`, then these will be
used to bin the passed data.::
pd.cut([25, 20, 50], bins=c.categories)
.. _reshaping.dummies:
Computing indicator / dummy variables
-------------------------------------
To convert a categorical variable into a "dummy" or "indicator" :class:`DataFrame`,
for example a column in a :class:`DataFrame` (a :class:`Series`) which has ``k`` distinct
values, can derive a :class:`DataFrame` containing ``k`` columns of 1s and 0s using
:func:`~pandas.get_dummies`:
.. ipython:: python
df = pd.DataFrame({"key": list("bbacab"), "data1": range(6)})
pd.get_dummies(df["key"])
Sometimes it's useful to prefix the column names, for example when merging the result
with the original :class:`DataFrame`:
.. ipython:: python
dummies = pd.get_dummies(df["key"], prefix="key")
dummies
df[["data1"]].join(dummies)
This function is often used along with discretization functions like :func:`~pandas.cut`:
.. ipython:: python
values = np.random.randn(10)
values
bins = [0, 0.2, 0.4, 0.6, 0.8, 1]
pd.get_dummies(pd.cut(values, bins))
See also :func:`Series.str.get_dummies <pandas.Series.str.get_dummies>`.
:func:`get_dummies` also accepts a :class:`DataFrame`. By default all categorical
variables (categorical in the statistical sense, those with ``object`` or
``categorical`` dtype) are encoded as dummy variables.
.. ipython:: python
df = pd.DataFrame({"A": ["a", "b", "a"], "B": ["c", "c", "b"], "C": [1, 2, 3]})
pd.get_dummies(df)
All non-object columns are included untouched in the output. You can control
the columns that are encoded with the ``columns`` keyword.
.. ipython:: python
pd.get_dummies(df, columns=["A"])
Notice that the ``B`` column is still included in the output, it just hasn't
been encoded. You can drop ``B`` before calling ``get_dummies`` if you don't
want to include it in the output.
As with the :class:`Series` version, you can pass values for the ``prefix`` and
``prefix_sep``. By default the column name is used as the prefix, and ``_`` as
the prefix separator. You can specify ``prefix`` and ``prefix_sep`` in 3 ways:
* string: Use the same value for ``prefix`` or ``prefix_sep`` for each column
to be encoded.
* list: Must be the same length as the number of columns being encoded.
* dict: Mapping column name to prefix.
.. ipython:: python
simple = pd.get_dummies(df, prefix="new_prefix")
simple
from_list = pd.get_dummies(df, prefix=["from_A", "from_B"])
from_list
from_dict = pd.get_dummies(df, prefix={"B": "from_B", "A": "from_A"})
from_dict
Sometimes it will be useful to only keep k-1 levels of a categorical
variable to avoid collinearity when feeding the result to statistical models.
You can switch to this mode by turn on ``drop_first``.
.. ipython:: python
s = pd.Series(list("abcaa"))
pd.get_dummies(s)
pd.get_dummies(s, drop_first=True)
When a column contains only one level, it will be omitted in the result.
.. ipython:: python
df = pd.DataFrame({"A": list("aaaaa"), "B": list("ababc")})
pd.get_dummies(df)
pd.get_dummies(df, drop_first=True)
By default new columns will have ``np.uint8`` dtype.
To choose another dtype, use the ``dtype`` argument:
.. ipython:: python
df = pd.DataFrame({"A": list("abc"), "B": [1.1, 2.2, 3.3]})
pd.get_dummies(df, dtype=bool).dtypes
.. versionadded:: 1.5.0
To convert a "dummy" or "indicator" ``DataFrame``, into a categorical ``DataFrame``,
for example ``k`` columns of a ``DataFrame`` containing 1s and 0s can derive a
``DataFrame`` which has ``k`` distinct values using
:func:`~pandas.from_dummies`:
.. ipython:: python
df = pd.DataFrame({"prefix_a": [0, 1, 0], "prefix_b": [1, 0, 1]})
df
pd.from_dummies(df, sep="_")
Dummy coded data only requires ``k - 1`` categories to be included, in this case
the ``k`` th category is the default category, implied by not being assigned any of
the other ``k - 1`` categories, can be passed via ``default_category``.
.. ipython:: python
df = pd.DataFrame({"prefix_a": [0, 1, 0]})
df
pd.from_dummies(df, sep="_", default_category="b")
.. _reshaping.factorize:
Factorizing values
------------------
To encode 1-d values as an enumerated type use :func:`~pandas.factorize`:
.. ipython:: python
x = pd.Series(["A", "A", np.nan, "B", 3.14, np.inf])
x
labels, uniques = pd.factorize(x)
labels
uniques
Note that :func:`~pandas.factorize` is similar to ``numpy.unique``, but differs in its
handling of NaN:
.. note::
The following ``numpy.unique`` will fail under Python 3 with a ``TypeError``
because of an ordering bug. See also
`here <https://github.com/numpy/numpy/issues/641>`__.
.. ipython:: python
:okexcept:
ser = pd.Series(['A', 'A', np.nan, 'B', 3.14, np.inf])
pd.factorize(ser, sort=True)
np.unique(ser, return_inverse=True)[::-1]
.. note::
If you just want to handle one column as a categorical variable (like R's factor),
you can use ``df["cat_col"] = pd.Categorical(df["col"])`` or
``df["cat_col"] = df["col"].astype("category")``. For full docs on :class:`~pandas.Categorical`,
see the :ref:`Categorical introduction <categorical>` and the
:ref:`API documentation <api.arrays.categorical>`.
Examples
--------
In this section, we will review frequently asked questions and examples. The
column names and relevant column values are named to correspond with how this
DataFrame will be pivoted in the answers below.
.. ipython:: python
np.random.seed([3, 1415])
n = 20
cols = np.array(["key", "row", "item", "col"])
df = cols + pd.DataFrame(
(np.random.randint(5, size=(n, 4)) // [2, 1, 2, 1]).astype(str)
)
df.columns = cols
df = df.join(pd.DataFrame(np.random.rand(n, 2).round(2)).add_prefix("val"))
df
Pivoting with single aggregations
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Suppose we wanted to pivot ``df`` such that the ``col`` values are columns,
``row`` values are the index, and the mean of ``val0`` are the values? In
particular, the resulting DataFrame should look like:
.. code-block:: text
col col0 col1 col2 col3 col4
row
row0 0.77 0.605 NaN 0.860 0.65
row2 0.13 NaN 0.395 0.500 0.25
row3 NaN 0.310 NaN 0.545 NaN
row4 NaN 0.100 0.395 0.760 0.24
This solution uses :func:`~pandas.pivot_table`. Also note that
``aggfunc='mean'`` is the default. It is included here to be explicit.
.. ipython:: python
df.pivot_table(values="val0", index="row", columns="col", aggfunc="mean")
Note that we can also replace the missing values by using the ``fill_value``
parameter.
.. ipython:: python
df.pivot_table(
values="val0",
index="row",
columns="col",
aggfunc="mean",
fill_value=0,
)
Also note that we can pass in other aggregation functions as well. For example,
we can also pass in ``sum``.
.. ipython:: python
df.pivot_table(
values="val0",
index="row",
columns="col",
aggfunc="sum",
fill_value=0,
)
Another aggregation we can do is calculate the frequency in which the columns
and rows occur together a.k.a. "cross tabulation". To do this, we can pass
``size`` to the ``aggfunc`` parameter.
.. ipython:: python
df.pivot_table(index="row", columns="col", fill_value=0, aggfunc="size")
Pivoting with multiple aggregations
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
We can also perform multiple aggregations. For example, to perform both a
``sum`` and ``mean``, we can pass in a list to the ``aggfunc`` argument.
.. ipython:: python
df.pivot_table(
values="val0",
index="row",
columns="col",
aggfunc=["mean", "sum"],
)
Note to aggregate over multiple value columns, we can pass in a list to the
``values`` parameter.
.. ipython:: python
df.pivot_table(
values=["val0", "val1"],
index="row",
columns="col",
aggfunc=["mean"],
)
Note to subdivide over multiple columns we can pass in a list to the
``columns`` parameter.
.. ipython:: python
df.pivot_table(
values=["val0"],
index="row",
columns=["item", "col"],
aggfunc=["mean"],
)
.. _reshaping.explode:
Exploding a list-like column
----------------------------
.. versionadded:: 0.25.0
Sometimes the values in a column are list-like.
.. ipython:: python
keys = ["panda1", "panda2", "panda3"]
values = [["eats", "shoots"], ["shoots", "leaves"], ["eats", "leaves"]]
df = pd.DataFrame({"keys": keys, "values": values})
df
We can 'explode' the ``values`` column, transforming each list-like to a separate row, by using :meth:`~Series.explode`. This will replicate the index values from the original row:
.. ipython:: python
df["values"].explode()
You can also explode the column in the :class:`DataFrame`.
.. ipython:: python
df.explode("values")
:meth:`Series.explode` will replace empty lists with ``np.nan`` and preserve scalar entries. The dtype of the resulting :class:`Series` is always ``object``.
.. ipython:: python
s = pd.Series([[1, 2, 3], "foo", [], ["a", "b"]])
s
s.explode()
Here is a typical usecase. You have comma separated strings in a column and want to expand this.
.. ipython:: python
df = pd.DataFrame([{"var1": "a,b,c", "var2": 1}, {"var1": "d,e,f", "var2": 2}])
df
Creating a long form DataFrame is now straightforward using explode and chained operations
.. ipython:: python
df.assign(var1=df.var1.str.split(",")).explode("var1")
|