File: text.rst

package info (click to toggle)
pandas 1.5.3%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 56,516 kB
  • sloc: python: 382,477; ansic: 8,695; sh: 119; xml: 102; makefile: 97
file content (801 lines) | stat: -rw-r--r-- 26,263 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
.. _text:

{{ header }}

======================
Working with text data
======================

.. _text.types:

Text data types
---------------

.. versionadded:: 1.0.0

There are two ways to store text data in pandas:

1. ``object`` -dtype NumPy array.
2. :class:`StringDtype` extension type.

We recommend using :class:`StringDtype` to store text data.

Prior to pandas 1.0, ``object`` dtype was the only option. This was unfortunate
for many reasons:

1. You can accidentally store a *mixture* of strings and non-strings in an
   ``object`` dtype array. It's better to have a dedicated dtype.
2. ``object`` dtype breaks dtype-specific operations like :meth:`DataFrame.select_dtypes`.
   There isn't a clear way to select *just* text while excluding non-text
   but still object-dtype columns.
3. When reading code, the contents of an ``object`` dtype array is less clear
   than ``'string'``.

Currently, the performance of ``object`` dtype arrays of strings and
:class:`arrays.StringArray` are about the same. We expect future enhancements
to significantly increase the performance and lower the memory overhead of
:class:`~arrays.StringArray`.

.. warning::

   ``StringArray`` is currently considered experimental. The implementation
   and parts of the API may change without warning.

For backwards-compatibility, ``object`` dtype remains the default type we
infer a list of strings to

.. ipython:: python

   pd.Series(["a", "b", "c"])

To explicitly request ``string`` dtype, specify the ``dtype``

.. ipython:: python

   pd.Series(["a", "b", "c"], dtype="string")
   pd.Series(["a", "b", "c"], dtype=pd.StringDtype())

Or ``astype`` after the ``Series`` or ``DataFrame`` is created

.. ipython:: python

   s = pd.Series(["a", "b", "c"])
   s
   s.astype("string")


.. versionchanged:: 1.1.0

You can also use :class:`StringDtype`/``"string"`` as the dtype on non-string data and
it will be converted to ``string`` dtype:

.. ipython:: python

   s = pd.Series(["a", 2, np.nan], dtype="string")
   s
   type(s[1])

or convert from existing pandas data:

.. ipython:: python

   s1 = pd.Series([1, 2, np.nan], dtype="Int64")
   s1
   s2 = s1.astype("string")
   s2
   type(s2[0])


.. _text.differences:

Behavior differences
^^^^^^^^^^^^^^^^^^^^

These are places where the behavior of ``StringDtype`` objects differ from
``object`` dtype

l. For ``StringDtype``, :ref:`string accessor methods<api.series.str>`
   that return **numeric** output will always return a nullable integer dtype,
   rather than either int or float dtype, depending on the presence of NA values.
   Methods returning **boolean** output will return a nullable boolean dtype.

   .. ipython:: python

      s = pd.Series(["a", None, "b"], dtype="string")
      s
      s.str.count("a")
      s.dropna().str.count("a")

   Both outputs are ``Int64`` dtype. Compare that with object-dtype

   .. ipython:: python

      s2 = pd.Series(["a", None, "b"], dtype="object")
      s2.str.count("a")
      s2.dropna().str.count("a")

   When NA values are present, the output dtype is float64. Similarly for
   methods returning boolean values.

   .. ipython:: python

      s.str.isdigit()
      s.str.match("a")

2. Some string methods, like :meth:`Series.str.decode` are not available
   on ``StringArray`` because ``StringArray`` only holds strings, not
   bytes.
3. In comparison operations, :class:`arrays.StringArray` and ``Series`` backed
   by a ``StringArray`` will return an object with :class:`BooleanDtype`,
   rather than a ``bool`` dtype object. Missing values in a ``StringArray``
   will propagate in comparison operations, rather than always comparing
   unequal like :attr:`numpy.nan`.

Everything else that follows in the rest of this document applies equally to
``string`` and ``object`` dtype.

.. _text.string_methods:

String methods
--------------

Series and Index are equipped with a set of string processing methods
that make it easy to operate on each element of the array. Perhaps most
importantly, these methods exclude missing/NA values automatically. These are
accessed via the ``str`` attribute and generally have names matching
the equivalent (scalar) built-in string methods:

.. ipython:: python

   s = pd.Series(
       ["A", "B", "C", "Aaba", "Baca", np.nan, "CABA", "dog", "cat"], dtype="string"
   )
   s.str.lower()
   s.str.upper()
   s.str.len()

.. ipython:: python

   idx = pd.Index([" jack", "jill ", " jesse ", "frank"])
   idx.str.strip()
   idx.str.lstrip()
   idx.str.rstrip()

The string methods on Index are especially useful for cleaning up or
transforming DataFrame columns. For instance, you may have columns with
leading or trailing whitespace:

.. ipython:: python

   df = pd.DataFrame(
       np.random.randn(3, 2), columns=[" Column A ", " Column B "], index=range(3)
   )
   df

Since ``df.columns`` is an Index object, we can use the ``.str`` accessor

.. ipython:: python

   df.columns.str.strip()
   df.columns.str.lower()

These string methods can then be used to clean up the columns as needed.
Here we are removing leading and trailing whitespaces, lower casing all names,
and replacing any remaining whitespaces with underscores:

.. ipython:: python

   df.columns = df.columns.str.strip().str.lower().str.replace(" ", "_")
   df

.. note::

    If you have a ``Series`` where lots of elements are repeated
    (i.e. the number of unique elements in the ``Series`` is a lot smaller than the length of the
    ``Series``), it can be faster to convert the original ``Series`` to one of type
    ``category`` and then use ``.str.<method>`` or ``.dt.<property>`` on that.
    The performance difference comes from the fact that, for ``Series`` of type ``category``, the
    string operations are done on the ``.categories`` and not on each element of the
    ``Series``.

    Please note that a ``Series`` of type ``category`` with string ``.categories`` has
    some limitations in comparison to ``Series`` of type string (e.g. you can't add strings to
    each other: ``s + " " + s`` won't work if ``s`` is a ``Series`` of type ``category``). Also,
    ``.str`` methods which operate on elements of type ``list`` are not available on such a
    ``Series``.

.. _text.warn_types:

.. warning::

    Before v.0.25.0, the ``.str``-accessor did only the most rudimentary type checks. Starting with
    v.0.25.0, the type of the Series is inferred and the allowed types (i.e. strings) are enforced more rigorously.

    Generally speaking, the ``.str`` accessor is intended to work only on strings. With very few
    exceptions, other uses are not supported, and may be disabled at a later point.

.. _text.split:

Splitting and replacing strings
-------------------------------

Methods like ``split`` return a Series of lists:

.. ipython:: python

   s2 = pd.Series(["a_b_c", "c_d_e", np.nan, "f_g_h"], dtype="string")
   s2.str.split("_")

Elements in the split lists can be accessed using ``get`` or ``[]`` notation:

.. ipython:: python

   s2.str.split("_").str.get(1)
   s2.str.split("_").str[1]

It is easy to expand this to return a DataFrame using ``expand``.

.. ipython:: python

   s2.str.split("_", expand=True)

When original ``Series`` has :class:`StringDtype`, the output columns will all
be :class:`StringDtype` as well.

It is also possible to limit the number of splits:

.. ipython:: python

   s2.str.split("_", expand=True, n=1)

``rsplit`` is similar to ``split`` except it works in the reverse direction,
i.e., from the end of the string to the beginning of the string:

.. ipython:: python

   s2.str.rsplit("_", expand=True, n=1)

``replace`` optionally uses `regular expressions
<https://docs.python.org/3/library/re.html>`__:

.. ipython:: python

   s3 = pd.Series(
       ["A", "B", "C", "Aaba", "Baca", "", np.nan, "CABA", "dog", "cat"],
       dtype="string",
   )
   s3
   s3.str.replace("^.a|dog", "XX-XX ", case=False, regex=True)

.. warning::

    Some caution must be taken when dealing with regular expressions! The current behavior
    is to treat single character patterns as literal strings, even when ``regex`` is set
    to ``True``. This behavior is deprecated and will be removed in a future version so
    that the ``regex`` keyword is always respected.

.. versionchanged:: 1.2.0

If you want literal replacement of a string (equivalent to :meth:`str.replace`), you
can set the optional ``regex`` parameter to ``False``, rather than escaping each
character. In this case both ``pat`` and ``repl`` must be strings:

.. ipython:: python

    dollars = pd.Series(["12", "-$10", "$10,000"], dtype="string")

    # These lines are equivalent
    dollars.str.replace(r"-\$", "-", regex=True)
    dollars.str.replace("-$", "-", regex=False)

The ``replace`` method can also take a callable as replacement. It is called
on every ``pat`` using :func:`re.sub`. The callable should expect one
positional argument (a regex object) and return a string.

.. ipython:: python

   # Reverse every lowercase alphabetic word
   pat = r"[a-z]+"

   def repl(m):
       return m.group(0)[::-1]

   pd.Series(["foo 123", "bar baz", np.nan], dtype="string").str.replace(
       pat, repl, regex=True
   )

   # Using regex groups
   pat = r"(?P<one>\w+) (?P<two>\w+) (?P<three>\w+)"

   def repl(m):
       return m.group("two").swapcase()

   pd.Series(["Foo Bar Baz", np.nan], dtype="string").str.replace(
       pat, repl, regex=True
   )

The ``replace`` method also accepts a compiled regular expression object
from :func:`re.compile` as a pattern. All flags should be included in the
compiled regular expression object.

.. ipython:: python

   import re

   regex_pat = re.compile(r"^.a|dog", flags=re.IGNORECASE)
   s3.str.replace(regex_pat, "XX-XX ", regex=True)

Including a ``flags`` argument when calling ``replace`` with a compiled
regular expression object will raise a ``ValueError``.

.. ipython::

    @verbatim
    In [1]: s3.str.replace(regex_pat, 'XX-XX ', flags=re.IGNORECASE)
    ---------------------------------------------------------------------------
    ValueError: case and flags cannot be set when pat is a compiled regex

``removeprefix`` and ``removesuffix`` have the same effect as ``str.removeprefix`` and ``str.removesuffix`` added in Python 3.9
<https://docs.python.org/3/library/stdtypes.html#str.removeprefix>`__:

.. versionadded:: 1.4.0

.. ipython:: python

   s = pd.Series(["str_foo", "str_bar", "no_prefix"])
   s.str.removeprefix("str_")

   s = pd.Series(["foo_str", "bar_str", "no_suffix"])
   s.str.removesuffix("_str")

.. _text.concatenate:

Concatenation
-------------

There are several ways to concatenate a ``Series`` or ``Index``, either with itself or others, all based on :meth:`~Series.str.cat`,
resp. ``Index.str.cat``.

Concatenating a single Series into a string
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

The content of a ``Series`` (or ``Index``) can be concatenated:

.. ipython:: python

    s = pd.Series(["a", "b", "c", "d"], dtype="string")
    s.str.cat(sep=",")

If not specified, the keyword ``sep`` for the separator defaults to the empty string, ``sep=''``:

.. ipython:: python

    s.str.cat()

By default, missing values are ignored. Using ``na_rep``, they can be given a representation:

.. ipython:: python

    t = pd.Series(["a", "b", np.nan, "d"], dtype="string")
    t.str.cat(sep=",")
    t.str.cat(sep=",", na_rep="-")

Concatenating a Series and something list-like into a Series
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

The first argument to :meth:`~Series.str.cat` can be a list-like object, provided that it matches the length of the calling ``Series`` (or ``Index``).

.. ipython:: python

    s.str.cat(["A", "B", "C", "D"])

Missing values on either side will result in missing values in the result as well, *unless* ``na_rep`` is specified:

.. ipython:: python

    s.str.cat(t)
    s.str.cat(t, na_rep="-")

Concatenating a Series and something array-like into a Series
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

The parameter ``others`` can also be two-dimensional. In this case, the number or rows must match the lengths of the calling ``Series`` (or ``Index``).

.. ipython:: python

    d = pd.concat([t, s], axis=1)
    s
    d
    s.str.cat(d, na_rep="-")

Concatenating a Series and an indexed object into a Series, with alignment
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

For concatenation with a ``Series`` or ``DataFrame``, it is possible to align the indexes before concatenation by setting
the ``join``-keyword.

.. ipython:: python
   :okwarning:

   u = pd.Series(["b", "d", "a", "c"], index=[1, 3, 0, 2], dtype="string")
   s
   u
   s.str.cat(u)
   s.str.cat(u, join="left")

.. warning::

    If the ``join`` keyword is not passed, the method :meth:`~Series.str.cat` will currently fall back to the behavior before version 0.23.0 (i.e. no alignment),
    but a ``FutureWarning`` will be raised if any of the involved indexes differ, since this default will change to ``join='left'`` in a future version.

The usual options are available for ``join`` (one of ``'left', 'outer', 'inner', 'right'``).
In particular, alignment also means that the different lengths do not need to coincide anymore.

.. ipython:: python

    v = pd.Series(["z", "a", "b", "d", "e"], index=[-1, 0, 1, 3, 4], dtype="string")
    s
    v
    s.str.cat(v, join="left", na_rep="-")
    s.str.cat(v, join="outer", na_rep="-")

The same alignment can be used when ``others`` is a ``DataFrame``:

.. ipython:: python

    f = d.loc[[3, 2, 1, 0], :]
    s
    f
    s.str.cat(f, join="left", na_rep="-")

Concatenating a Series and many objects into a Series
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Several array-like items (specifically: ``Series``, ``Index``, and 1-dimensional variants of ``np.ndarray``)
can be combined in a list-like container (including iterators, ``dict``-views, etc.).

.. ipython:: python

    s
    u
    s.str.cat([u, u.to_numpy()], join="left")

All elements without an index (e.g. ``np.ndarray``) within the passed list-like must match in length to the calling ``Series`` (or ``Index``),
but ``Series`` and ``Index`` may have arbitrary length (as long as alignment is not disabled with ``join=None``):

.. ipython:: python

    v
    s.str.cat([v, u, u.to_numpy()], join="outer", na_rep="-")

If using ``join='right'`` on a list-like of ``others`` that contains different indexes,
the union of these indexes will be used as the basis for the final concatenation:

.. ipython:: python

    u.loc[[3]]
    v.loc[[-1, 0]]
    s.str.cat([u.loc[[3]], v.loc[[-1, 0]]], join="right", na_rep="-")

Indexing with ``.str``
----------------------

.. _text.indexing:

You can use ``[]`` notation to directly index by position locations. If you index past the end
of the string, the result will be a ``NaN``.


.. ipython:: python

   s = pd.Series(
       ["A", "B", "C", "Aaba", "Baca", np.nan, "CABA", "dog", "cat"], dtype="string"
   )

   s.str[0]
   s.str[1]

Extracting substrings
---------------------

.. _text.extract:

Extract first match in each subject (extract)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.. warning::

   Before version 0.23, argument ``expand`` of the ``extract`` method defaulted to
   ``False``. When ``expand=False``, ``expand`` returns a ``Series``, ``Index``, or
   ``DataFrame``, depending on the subject and regular expression
   pattern. When ``expand=True``, it always returns a ``DataFrame``,
   which is more consistent and less confusing from the perspective of a user.
   ``expand=True`` has been the default since version 0.23.0.

The ``extract`` method accepts a `regular expression
<https://docs.python.org/3/library/re.html>`__ with at least one
capture group.

Extracting a regular expression with more than one group returns a
DataFrame with one column per group.

.. ipython:: python

   pd.Series(
       ["a1", "b2", "c3"],
       dtype="string",
   ).str.extract(r"([ab])(\d)", expand=False)

Elements that do not match return a row filled with ``NaN``. Thus, a
Series of messy strings can be "converted" into a like-indexed Series
or DataFrame of cleaned-up or more useful strings, without
necessitating ``get()`` to access tuples or ``re.match`` objects. The
dtype of the result is always object, even if no match is found and
the result only contains ``NaN``.

Named groups like

.. ipython:: python

   pd.Series(["a1", "b2", "c3"], dtype="string").str.extract(
       r"(?P<letter>[ab])(?P<digit>\d)", expand=False
   )

and optional groups like

.. ipython:: python

   pd.Series(
       ["a1", "b2", "3"],
       dtype="string",
   ).str.extract(r"([ab])?(\d)", expand=False)

can also be used. Note that any capture group names in the regular
expression will be used for column names; otherwise capture group
numbers will be used.

Extracting a regular expression with one group returns a ``DataFrame``
with one column if ``expand=True``.

.. ipython:: python

   pd.Series(["a1", "b2", "c3"], dtype="string").str.extract(r"[ab](\d)", expand=True)

It returns a Series if ``expand=False``.

.. ipython:: python

   pd.Series(["a1", "b2", "c3"], dtype="string").str.extract(r"[ab](\d)", expand=False)

Calling on an ``Index`` with a regex with exactly one capture group
returns a ``DataFrame`` with one column if ``expand=True``.

.. ipython:: python

   s = pd.Series(["a1", "b2", "c3"], ["A11", "B22", "C33"], dtype="string")
   s
   s.index.str.extract("(?P<letter>[a-zA-Z])", expand=True)

It returns an ``Index`` if ``expand=False``.

.. ipython:: python

   s.index.str.extract("(?P<letter>[a-zA-Z])", expand=False)

Calling on an ``Index`` with a regex with more than one capture group
returns a ``DataFrame`` if ``expand=True``.

.. ipython:: python

   s.index.str.extract("(?P<letter>[a-zA-Z])([0-9]+)", expand=True)

It raises ``ValueError`` if ``expand=False``.

.. code-block:: python

    >>> s.index.str.extract("(?P<letter>[a-zA-Z])([0-9]+)", expand=False)
    ValueError: only one regex group is supported with Index

The table below summarizes the behavior of ``extract(expand=False)``
(input subject in first column, number of groups in regex in
first row)

+--------+---------+------------+
|        | 1 group | >1 group   |
+--------+---------+------------+
| Index  | Index   | ValueError |
+--------+---------+------------+
| Series | Series  | DataFrame  |
+--------+---------+------------+

Extract all matches in each subject (extractall)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.. _text.extractall:

Unlike ``extract`` (which returns only the first match),

.. ipython:: python

   s = pd.Series(["a1a2", "b1", "c1"], index=["A", "B", "C"], dtype="string")
   s
   two_groups = "(?P<letter>[a-z])(?P<digit>[0-9])"
   s.str.extract(two_groups, expand=True)

the ``extractall`` method returns every match. The result of
``extractall`` is always a ``DataFrame`` with a ``MultiIndex`` on its
rows. The last level of the ``MultiIndex`` is named ``match`` and
indicates the order in the subject.

.. ipython:: python

   s.str.extractall(two_groups)

When each subject string in the Series has exactly one match,

.. ipython:: python

   s = pd.Series(["a3", "b3", "c2"], dtype="string")
   s

then ``extractall(pat).xs(0, level='match')`` gives the same result as
``extract(pat)``.

.. ipython:: python

   extract_result = s.str.extract(two_groups, expand=True)
   extract_result
   extractall_result = s.str.extractall(two_groups)
   extractall_result
   extractall_result.xs(0, level="match")

``Index`` also supports ``.str.extractall``. It returns a ``DataFrame`` which has the
same result as a ``Series.str.extractall`` with a default index (starts from 0).

.. ipython:: python

   pd.Index(["a1a2", "b1", "c1"]).str.extractall(two_groups)

   pd.Series(["a1a2", "b1", "c1"], dtype="string").str.extractall(two_groups)


Testing for strings that match or contain a pattern
---------------------------------------------------

You can check whether elements contain a pattern:

.. ipython:: python

   pattern = r"[0-9][a-z]"
   pd.Series(
       ["1", "2", "3a", "3b", "03c", "4dx"],
       dtype="string",
   ).str.contains(pattern)

Or whether elements match a pattern:

.. ipython:: python

   pd.Series(
       ["1", "2", "3a", "3b", "03c", "4dx"],
       dtype="string",
   ).str.match(pattern)

.. versionadded:: 1.1.0

.. ipython:: python

   pd.Series(
       ["1", "2", "3a", "3b", "03c", "4dx"],
       dtype="string",
   ).str.fullmatch(pattern)

.. note::

    The distinction between ``match``, ``fullmatch``, and ``contains`` is strictness:
    ``fullmatch`` tests whether the entire string matches the regular expression;
    ``match`` tests whether there is a match of the regular expression that begins
    at the first character of the string; and ``contains`` tests whether there is
    a match of the regular expression at any position within the string.

    The corresponding functions in the ``re`` package for these three match modes are
    `re.fullmatch <https://docs.python.org/3/library/re.html#re.fullmatch>`_,
    `re.match <https://docs.python.org/3/library/re.html#re.match>`_, and
    `re.search <https://docs.python.org/3/library/re.html#re.search>`_,
    respectively.

Methods like ``match``, ``fullmatch``, ``contains``, ``startswith``, and
``endswith`` take an extra ``na`` argument so missing values can be considered
True or False:

.. ipython:: python

   s4 = pd.Series(
       ["A", "B", "C", "Aaba", "Baca", np.nan, "CABA", "dog", "cat"], dtype="string"
   )
   s4.str.contains("A", na=False)

.. _text.indicator:

Creating indicator variables
----------------------------

You can extract dummy variables from string columns.
For example if they are separated by a ``'|'``:

.. ipython:: python

    s = pd.Series(["a", "a|b", np.nan, "a|c"], dtype="string")
    s.str.get_dummies(sep="|")

String ``Index`` also supports ``get_dummies`` which returns a ``MultiIndex``.

.. ipython:: python

    idx = pd.Index(["a", "a|b", np.nan, "a|c"])
    idx.str.get_dummies(sep="|")

See also :func:`~pandas.get_dummies`.

Method summary
--------------

.. _text.summary:

.. csv-table::
    :header: "Method", "Description"
    :widths: 20, 80
    :delim: ;

    :meth:`~Series.str.cat`;Concatenate strings
    :meth:`~Series.str.split`;Split strings on delimiter
    :meth:`~Series.str.rsplit`;Split strings on delimiter working from the end of the string
    :meth:`~Series.str.get`;Index into each element (retrieve i-th element)
    :meth:`~Series.str.join`;Join strings in each element of the Series with passed separator
    :meth:`~Series.str.get_dummies`;Split strings on the delimiter returning DataFrame of dummy variables
    :meth:`~Series.str.contains`;Return boolean array if each string contains pattern/regex
    :meth:`~Series.str.replace`;Replace occurrences of pattern/regex/string with some other string or the return value of a callable given the occurrence
    :meth:`~Series.str.removeprefix`;Remove prefix from string, i.e. only remove if string starts with prefix.
    :meth:`~Series.str.removesuffix`;Remove suffix from string, i.e. only remove if string ends with suffix.
    :meth:`~Series.str.repeat`;Duplicate values (``s.str.repeat(3)`` equivalent to ``x * 3``)
    :meth:`~Series.str.pad`;"Add whitespace to left, right, or both sides of strings"
    :meth:`~Series.str.center`;Equivalent to ``str.center``
    :meth:`~Series.str.ljust`;Equivalent to ``str.ljust``
    :meth:`~Series.str.rjust`;Equivalent to ``str.rjust``
    :meth:`~Series.str.zfill`;Equivalent to ``str.zfill``
    :meth:`~Series.str.wrap`;Split long strings into lines with length less than a given width
    :meth:`~Series.str.slice`;Slice each string in the Series
    :meth:`~Series.str.slice_replace`;Replace slice in each string with passed value
    :meth:`~Series.str.count`;Count occurrences of pattern
    :meth:`~Series.str.startswith`;Equivalent to ``str.startswith(pat)`` for each element
    :meth:`~Series.str.endswith`;Equivalent to ``str.endswith(pat)`` for each element
    :meth:`~Series.str.findall`;Compute list of all occurrences of pattern/regex for each string
    :meth:`~Series.str.match`;"Call ``re.match`` on each element, returning matched groups as list"
    :meth:`~Series.str.extract`;"Call ``re.search`` on each element, returning DataFrame with one row for each element and one column for each regex capture group"
    :meth:`~Series.str.extractall`;"Call ``re.findall`` on each element, returning DataFrame with one row for each match and one column for each regex capture group"
    :meth:`~Series.str.len`;Compute string lengths
    :meth:`~Series.str.strip`;Equivalent to ``str.strip``
    :meth:`~Series.str.rstrip`;Equivalent to ``str.rstrip``
    :meth:`~Series.str.lstrip`;Equivalent to ``str.lstrip``
    :meth:`~Series.str.partition`;Equivalent to ``str.partition``
    :meth:`~Series.str.rpartition`;Equivalent to ``str.rpartition``
    :meth:`~Series.str.lower`;Equivalent to ``str.lower``
    :meth:`~Series.str.casefold`;Equivalent to ``str.casefold``
    :meth:`~Series.str.upper`;Equivalent to ``str.upper``
    :meth:`~Series.str.find`;Equivalent to ``str.find``
    :meth:`~Series.str.rfind`;Equivalent to ``str.rfind``
    :meth:`~Series.str.index`;Equivalent to ``str.index``
    :meth:`~Series.str.rindex`;Equivalent to ``str.rindex``
    :meth:`~Series.str.capitalize`;Equivalent to ``str.capitalize``
    :meth:`~Series.str.swapcase`;Equivalent to ``str.swapcase``
    :meth:`~Series.str.normalize`;Return Unicode normal form. Equivalent to ``unicodedata.normalize``
    :meth:`~Series.str.translate`;Equivalent to ``str.translate``
    :meth:`~Series.str.isalnum`;Equivalent to ``str.isalnum``
    :meth:`~Series.str.isalpha`;Equivalent to ``str.isalpha``
    :meth:`~Series.str.isdigit`;Equivalent to ``str.isdigit``
    :meth:`~Series.str.isspace`;Equivalent to ``str.isspace``
    :meth:`~Series.str.islower`;Equivalent to ``str.islower``
    :meth:`~Series.str.isupper`;Equivalent to ``str.isupper``
    :meth:`~Series.str.istitle`;Equivalent to ``str.istitle``
    :meth:`~Series.str.isnumeric`;Equivalent to ``str.isnumeric``
    :meth:`~Series.str.isdecimal`;Equivalent to ``str.isdecimal``