1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838
|
.. _visualization:
{{ header }}
*******************
Chart visualization
*******************
.. note::
The examples below assume that you're using `Jupyter <https://jupyter.org/>`_.
This section demonstrates visualization through charting. For information on
visualization of tabular data please see the section on `Table Visualization <style.ipynb>`_.
We use the standard convention for referencing the matplotlib API:
.. ipython:: python
import matplotlib.pyplot as plt
plt.close("all")
We provide the basics in pandas to easily create decent looking plots.
See the :ref:`ecosystem <ecosystem.visualization>` section for visualization
libraries that go beyond the basics documented here.
.. note::
All calls to ``np.random`` are seeded with 123456.
.. _visualization.basic:
Basic plotting: ``plot``
------------------------
We will demonstrate the basics, see the :ref:`cookbook<cookbook.plotting>` for
some advanced strategies.
The ``plot`` method on Series and DataFrame is just a simple wrapper around
:meth:`plt.plot() <matplotlib.axes.Axes.plot>`:
.. ipython:: python
:suppress:
np.random.seed(123456)
.. ipython:: python
ts = pd.Series(np.random.randn(1000), index=pd.date_range("1/1/2000", periods=1000))
ts = ts.cumsum()
@savefig series_plot_basic.png
ts.plot();
If the index consists of dates, it calls :meth:`gcf().autofmt_xdate() <matplotlib.figure.Figure.autofmt_xdate>`
to try to format the x-axis nicely as per above.
On DataFrame, :meth:`~DataFrame.plot` is a convenience to plot all of the columns with labels:
.. ipython:: python
:suppress:
plt.close("all")
np.random.seed(123456)
.. ipython:: python
df = pd.DataFrame(np.random.randn(1000, 4), index=ts.index, columns=list("ABCD"))
df = df.cumsum()
plt.figure();
@savefig frame_plot_basic.png
df.plot();
You can plot one column versus another using the ``x`` and ``y`` keywords in
:meth:`~DataFrame.plot`:
.. ipython:: python
:suppress:
plt.close("all")
plt.figure()
np.random.seed(123456)
.. ipython:: python
df3 = pd.DataFrame(np.random.randn(1000, 2), columns=["B", "C"]).cumsum()
df3["A"] = pd.Series(list(range(len(df))))
@savefig df_plot_xy.png
df3.plot(x="A", y="B");
.. note::
For more formatting and styling options, see
:ref:`formatting <visualization.formatting>` below.
.. ipython:: python
:suppress:
plt.close("all")
.. _visualization.other:
Other plots
-----------
Plotting methods allow for a handful of plot styles other than the
default line plot. These methods can be provided as the ``kind``
keyword argument to :meth:`~DataFrame.plot`, and include:
* :ref:`'bar' <visualization.barplot>` or :ref:`'barh' <visualization.barplot>` for bar plots
* :ref:`'hist' <visualization.hist>` for histogram
* :ref:`'box' <visualization.box>` for boxplot
* :ref:`'kde' <visualization.kde>` or :ref:`'density' <visualization.kde>` for density plots
* :ref:`'area' <visualization.area_plot>` for area plots
* :ref:`'scatter' <visualization.scatter>` for scatter plots
* :ref:`'hexbin' <visualization.hexbin>` for hexagonal bin plots
* :ref:`'pie' <visualization.pie>` for pie plots
For example, a bar plot can be created the following way:
.. ipython:: python
plt.figure();
@savefig bar_plot_ex.png
df.iloc[5].plot(kind="bar");
You can also create these other plots using the methods ``DataFrame.plot.<kind>`` instead of providing the ``kind`` keyword argument. This makes it easier to discover plot methods and the specific arguments they use:
.. ipython::
:verbatim:
In [14]: df = pd.DataFrame()
In [15]: df.plot.<TAB> # noqa: E225, E999
df.plot.area df.plot.barh df.plot.density df.plot.hist df.plot.line df.plot.scatter
df.plot.bar df.plot.box df.plot.hexbin df.plot.kde df.plot.pie
In addition to these ``kind`` s, there are the :ref:`DataFrame.hist() <visualization.hist>`,
and :ref:`DataFrame.boxplot() <visualization.box>` methods, which use a separate interface.
Finally, there are several :ref:`plotting functions <visualization.tools>` in ``pandas.plotting``
that take a :class:`Series` or :class:`DataFrame` as an argument. These
include:
* :ref:`Scatter Matrix <visualization.scatter_matrix>`
* :ref:`Andrews Curves <visualization.andrews_curves>`
* :ref:`Parallel Coordinates <visualization.parallel_coordinates>`
* :ref:`Lag Plot <visualization.lag>`
* :ref:`Autocorrelation Plot <visualization.autocorrelation>`
* :ref:`Bootstrap Plot <visualization.bootstrap>`
* :ref:`RadViz <visualization.radviz>`
Plots may also be adorned with :ref:`errorbars <visualization.errorbars>`
or :ref:`tables <visualization.table>`.
.. _visualization.barplot:
Bar plots
~~~~~~~~~
For labeled, non-time series data, you may wish to produce a bar plot:
.. ipython:: python
plt.figure();
@savefig bar_plot_ex.png
df.iloc[5].plot.bar();
plt.axhline(0, color="k");
Calling a DataFrame's :meth:`plot.bar() <DataFrame.plot.bar>` method produces a multiple
bar plot:
.. ipython:: python
:suppress:
plt.close("all")
plt.figure()
np.random.seed(123456)
.. ipython:: python
df2 = pd.DataFrame(np.random.rand(10, 4), columns=["a", "b", "c", "d"])
@savefig bar_plot_multi_ex.png
df2.plot.bar();
To produce a stacked bar plot, pass ``stacked=True``:
.. ipython:: python
:suppress:
plt.close("all")
plt.figure()
.. ipython:: python
@savefig bar_plot_stacked_ex.png
df2.plot.bar(stacked=True);
To get horizontal bar plots, use the ``barh`` method:
.. ipython:: python
:suppress:
plt.close("all")
plt.figure()
.. ipython:: python
@savefig barh_plot_stacked_ex.png
df2.plot.barh(stacked=True);
.. _visualization.hist:
Histograms
~~~~~~~~~~
Histograms can be drawn by using the :meth:`DataFrame.plot.hist` and :meth:`Series.plot.hist` methods.
.. ipython:: python
df4 = pd.DataFrame(
{
"a": np.random.randn(1000) + 1,
"b": np.random.randn(1000),
"c": np.random.randn(1000) - 1,
},
columns=["a", "b", "c"],
)
plt.figure();
@savefig hist_new.png
df4.plot.hist(alpha=0.5);
.. ipython:: python
:suppress:
plt.close("all")
A histogram can be stacked using ``stacked=True``. Bin size can be changed
using the ``bins`` keyword.
.. ipython:: python
plt.figure();
@savefig hist_new_stacked.png
df4.plot.hist(stacked=True, bins=20);
.. ipython:: python
:suppress:
plt.close("all")
You can pass other keywords supported by matplotlib ``hist``. For example,
horizontal and cumulative histograms can be drawn by
``orientation='horizontal'`` and ``cumulative=True``.
.. ipython:: python
plt.figure();
@savefig hist_new_kwargs.png
df4["a"].plot.hist(orientation="horizontal", cumulative=True);
.. ipython:: python
:suppress:
plt.close("all")
See the :meth:`hist <matplotlib.axes.Axes.hist>` method and the
`matplotlib hist documentation <https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.hist.html>`__ for more.
The existing interface ``DataFrame.hist`` to plot histogram still can be used.
.. ipython:: python
plt.figure();
@savefig hist_plot_ex.png
df["A"].diff().hist();
.. ipython:: python
:suppress:
plt.close("all")
:meth:`DataFrame.hist` plots the histograms of the columns on multiple
subplots:
.. ipython:: python
plt.figure();
@savefig frame_hist_ex.png
df.diff().hist(color="k", alpha=0.5, bins=50);
The ``by`` keyword can be specified to plot grouped histograms:
.. ipython:: python
:suppress:
plt.close("all")
plt.figure()
np.random.seed(123456)
.. ipython:: python
data = pd.Series(np.random.randn(1000))
@savefig grouped_hist.png
data.hist(by=np.random.randint(0, 4, 1000), figsize=(6, 4));
.. ipython:: python
:suppress:
plt.close("all")
np.random.seed(123456)
In addition, the ``by`` keyword can also be specified in :meth:`DataFrame.plot.hist`.
.. versionchanged:: 1.4.0
.. ipython:: python
data = pd.DataFrame(
{
"a": np.random.choice(["x", "y", "z"], 1000),
"b": np.random.choice(["e", "f", "g"], 1000),
"c": np.random.randn(1000),
"d": np.random.randn(1000) - 1,
},
)
@savefig grouped_hist_by.png
data.plot.hist(by=["a", "b"], figsize=(10, 5));
.. ipython:: python
:suppress:
plt.close("all")
.. _visualization.box:
Box plots
~~~~~~~~~
Boxplot can be drawn calling :meth:`Series.plot.box` and :meth:`DataFrame.plot.box`,
or :meth:`DataFrame.boxplot` to visualize the distribution of values within each column.
For instance, here is a boxplot representing five trials of 10 observations of
a uniform random variable on [0,1).
.. ipython:: python
:suppress:
plt.close("all")
np.random.seed(123456)
.. ipython:: python
df = pd.DataFrame(np.random.rand(10, 5), columns=["A", "B", "C", "D", "E"])
@savefig box_plot_new.png
df.plot.box();
Boxplot can be colorized by passing ``color`` keyword. You can pass a ``dict``
whose keys are ``boxes``, ``whiskers``, ``medians`` and ``caps``.
If some keys are missing in the ``dict``, default colors are used
for the corresponding artists. Also, boxplot has ``sym`` keyword to specify fliers style.
When you pass other type of arguments via ``color`` keyword, it will be directly
passed to matplotlib for all the ``boxes``, ``whiskers``, ``medians`` and ``caps``
colorization.
The colors are applied to every boxes to be drawn. If you want
more complicated colorization, you can get each drawn artists by passing
:ref:`return_type <visualization.box.return>`.
.. ipython:: python
color = {
"boxes": "DarkGreen",
"whiskers": "DarkOrange",
"medians": "DarkBlue",
"caps": "Gray",
}
@savefig box_new_colorize.png
df.plot.box(color=color, sym="r+");
.. ipython:: python
:suppress:
plt.close("all")
Also, you can pass other keywords supported by matplotlib ``boxplot``.
For example, horizontal and custom-positioned boxplot can be drawn by
``vert=False`` and ``positions`` keywords.
.. ipython:: python
@savefig box_new_kwargs.png
df.plot.box(vert=False, positions=[1, 4, 5, 6, 8]);
See the :meth:`boxplot <matplotlib.axes.Axes.boxplot>` method and the
`matplotlib boxplot documentation <https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.boxplot.html>`__ for more.
The existing interface ``DataFrame.boxplot`` to plot boxplot still can be used.
.. ipython:: python
:suppress:
plt.close("all")
np.random.seed(123456)
.. ipython:: python
:okwarning:
df = pd.DataFrame(np.random.rand(10, 5))
plt.figure();
@savefig box_plot_ex.png
bp = df.boxplot()
You can create a stratified boxplot using the ``by`` keyword argument to create
groupings. For instance,
.. ipython:: python
:suppress:
plt.close("all")
np.random.seed(123456)
.. ipython:: python
:okwarning:
df = pd.DataFrame(np.random.rand(10, 2), columns=["Col1", "Col2"])
df["X"] = pd.Series(["A", "A", "A", "A", "A", "B", "B", "B", "B", "B"])
plt.figure();
@savefig box_plot_ex2.png
bp = df.boxplot(by="X")
You can also pass a subset of columns to plot, as well as group by multiple
columns:
.. ipython:: python
:suppress:
plt.close("all")
np.random.seed(123456)
.. ipython:: python
:okwarning:
df = pd.DataFrame(np.random.rand(10, 3), columns=["Col1", "Col2", "Col3"])
df["X"] = pd.Series(["A", "A", "A", "A", "A", "B", "B", "B", "B", "B"])
df["Y"] = pd.Series(["A", "B", "A", "B", "A", "B", "A", "B", "A", "B"])
plt.figure();
@savefig box_plot_ex3.png
bp = df.boxplot(column=["Col1", "Col2"], by=["X", "Y"])
.. ipython:: python
:suppress:
plt.close("all")
You could also create groupings with :meth:`DataFrame.plot.box`, for instance:
.. versionchanged:: 1.4.0
.. ipython:: python
:suppress:
plt.close("all")
np.random.seed(123456)
.. ipython:: python
:okwarning:
df = pd.DataFrame(np.random.rand(10, 3), columns=["Col1", "Col2", "Col3"])
df["X"] = pd.Series(["A", "A", "A", "A", "A", "B", "B", "B", "B", "B"])
plt.figure();
@savefig box_plot_ex4.png
bp = df.plot.box(column=["Col1", "Col2"], by="X")
.. ipython:: python
:suppress:
plt.close("all")
.. _visualization.box.return:
In ``boxplot``, the return type can be controlled by the ``return_type``, keyword. The valid choices are ``{"axes", "dict", "both", None}``.
Faceting, created by ``DataFrame.boxplot`` with the ``by``
keyword, will affect the output type as well:
================ ======= ==========================
``return_type`` Faceted Output type
================ ======= ==========================
``None`` No axes
``None`` Yes 2-D ndarray of axes
``'axes'`` No axes
``'axes'`` Yes Series of axes
``'dict'`` No dict of artists
``'dict'`` Yes Series of dicts of artists
``'both'`` No namedtuple
``'both'`` Yes Series of namedtuples
================ ======= ==========================
``Groupby.boxplot`` always returns a ``Series`` of ``return_type``.
.. ipython:: python
:okwarning:
np.random.seed(1234)
df_box = pd.DataFrame(np.random.randn(50, 2))
df_box["g"] = np.random.choice(["A", "B"], size=50)
df_box.loc[df_box["g"] == "B", 1] += 3
@savefig boxplot_groupby.png
bp = df_box.boxplot(by="g")
.. ipython:: python
:suppress:
plt.close("all")
The subplots above are split by the numeric columns first, then the value of
the ``g`` column. Below the subplots are first split by the value of ``g``,
then by the numeric columns.
.. ipython:: python
:okwarning:
@savefig groupby_boxplot_vis.png
bp = df_box.groupby("g").boxplot()
.. ipython:: python
:suppress:
plt.close("all")
.. _visualization.area_plot:
Area plot
~~~~~~~~~
You can create area plots with :meth:`Series.plot.area` and :meth:`DataFrame.plot.area`.
Area plots are stacked by default. To produce stacked area plot, each column must be either all positive or all negative values.
When input data contains ``NaN``, it will be automatically filled by 0. If you want to drop or fill by different values, use :func:`dataframe.dropna` or :func:`dataframe.fillna` before calling ``plot``.
.. ipython:: python
:suppress:
np.random.seed(123456)
plt.figure()
.. ipython:: python
df = pd.DataFrame(np.random.rand(10, 4), columns=["a", "b", "c", "d"])
@savefig area_plot_stacked.png
df.plot.area();
To produce an unstacked plot, pass ``stacked=False``. Alpha value is set to 0.5 unless otherwise specified:
.. ipython:: python
:suppress:
plt.close("all")
plt.figure()
.. ipython:: python
@savefig area_plot_unstacked.png
df.plot.area(stacked=False);
.. _visualization.scatter:
Scatter plot
~~~~~~~~~~~~
Scatter plot can be drawn by using the :meth:`DataFrame.plot.scatter` method.
Scatter plot requires numeric columns for the x and y axes.
These can be specified by the ``x`` and ``y`` keywords.
.. ipython:: python
:suppress:
np.random.seed(123456)
plt.close("all")
plt.figure()
.. ipython:: python
df = pd.DataFrame(np.random.rand(50, 4), columns=["a", "b", "c", "d"])
df["species"] = pd.Categorical(
["setosa"] * 20 + ["versicolor"] * 20 + ["virginica"] * 10
)
@savefig scatter_plot.png
df.plot.scatter(x="a", y="b");
To plot multiple column groups in a single axes, repeat ``plot`` method specifying target ``ax``.
It is recommended to specify ``color`` and ``label`` keywords to distinguish each groups.
.. ipython:: python
:okwarning:
ax = df.plot.scatter(x="a", y="b", color="DarkBlue", label="Group 1")
@savefig scatter_plot_repeated.png
df.plot.scatter(x="c", y="d", color="DarkGreen", label="Group 2", ax=ax);
.. ipython:: python
:suppress:
plt.close("all")
The keyword ``c`` may be given as the name of a column to provide colors for
each point:
.. ipython:: python
@savefig scatter_plot_colored.png
df.plot.scatter(x="a", y="b", c="c", s=50);
.. ipython:: python
:suppress:
plt.close("all")
If a categorical column is passed to ``c``, then a discrete colorbar will be produced:
.. versionadded:: 1.3.0
.. ipython:: python
@savefig scatter_plot_categorical.png
df.plot.scatter(x="a", y="b", c="species", cmap="viridis", s=50);
.. ipython:: python
:suppress:
plt.close("all")
You can pass other keywords supported by matplotlib
:meth:`scatter <matplotlib.axes.Axes.scatter>`. The example below shows a
bubble chart using a column of the ``DataFrame`` as the bubble size.
.. ipython:: python
@savefig scatter_plot_bubble.png
df.plot.scatter(x="a", y="b", s=df["c"] * 200);
.. ipython:: python
:suppress:
plt.close("all")
See the :meth:`scatter <matplotlib.axes.Axes.scatter>` method and the
`matplotlib scatter documentation <https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.scatter.html>`__ for more.
.. _visualization.hexbin:
Hexagonal bin plot
~~~~~~~~~~~~~~~~~~
You can create hexagonal bin plots with :meth:`DataFrame.plot.hexbin`.
Hexbin plots can be a useful alternative to scatter plots if your data are
too dense to plot each point individually.
.. ipython:: python
:suppress:
plt.figure()
np.random.seed(123456)
.. ipython:: python
df = pd.DataFrame(np.random.randn(1000, 2), columns=["a", "b"])
df["b"] = df["b"] + np.arange(1000)
@savefig hexbin_plot.png
df.plot.hexbin(x="a", y="b", gridsize=25);
A useful keyword argument is ``gridsize``; it controls the number of hexagons
in the x-direction, and defaults to 100. A larger ``gridsize`` means more, smaller
bins.
By default, a histogram of the counts around each ``(x, y)`` point is computed.
You can specify alternative aggregations by passing values to the ``C`` and
``reduce_C_function`` arguments. ``C`` specifies the value at each ``(x, y)`` point
and ``reduce_C_function`` is a function of one argument that reduces all the
values in a bin to a single number (e.g. ``mean``, ``max``, ``sum``, ``std``). In this
example the positions are given by columns ``a`` and ``b``, while the value is
given by column ``z``. The bins are aggregated with NumPy's ``max`` function.
.. ipython:: python
:suppress:
plt.close("all")
plt.figure()
np.random.seed(123456)
.. ipython:: python
df = pd.DataFrame(np.random.randn(1000, 2), columns=["a", "b"])
df["b"] = df["b"] + np.arange(1000)
df["z"] = np.random.uniform(0, 3, 1000)
@savefig hexbin_plot_agg.png
df.plot.hexbin(x="a", y="b", C="z", reduce_C_function=np.max, gridsize=25);
.. ipython:: python
:suppress:
plt.close("all")
See the :meth:`hexbin <matplotlib.axes.Axes.hexbin>` method and the
`matplotlib hexbin documentation <https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.hexbin.html>`__ for more.
.. _visualization.pie:
Pie plot
~~~~~~~~
You can create a pie plot with :meth:`DataFrame.plot.pie` or :meth:`Series.plot.pie`.
If your data includes any ``NaN``, they will be automatically filled with 0.
A ``ValueError`` will be raised if there are any negative values in your data.
.. ipython:: python
:suppress:
np.random.seed(123456)
plt.figure()
.. ipython:: python
:okwarning:
series = pd.Series(3 * np.random.rand(4), index=["a", "b", "c", "d"], name="series")
@savefig series_pie_plot.png
series.plot.pie(figsize=(6, 6));
.. ipython:: python
:suppress:
plt.close("all")
For pie plots it's best to use square figures, i.e. a figure aspect ratio 1.
You can create the figure with equal width and height, or force the aspect ratio
to be equal after plotting by calling ``ax.set_aspect('equal')`` on the returned
``axes`` object.
Note that pie plot with :class:`DataFrame` requires that you either specify a
target column by the ``y`` argument or ``subplots=True``. When ``y`` is
specified, pie plot of selected column will be drawn. If ``subplots=True`` is
specified, pie plots for each column are drawn as subplots. A legend will be
drawn in each pie plots by default; specify ``legend=False`` to hide it.
.. ipython:: python
:suppress:
np.random.seed(123456)
plt.figure()
.. ipython:: python
df = pd.DataFrame(
3 * np.random.rand(4, 2), index=["a", "b", "c", "d"], columns=["x", "y"]
)
@savefig df_pie_plot.png
df.plot.pie(subplots=True, figsize=(8, 4));
.. ipython:: python
:suppress:
plt.close("all")
You can use the ``labels`` and ``colors`` keywords to specify the labels and colors of each wedge.
.. warning::
Most pandas plots use the ``label`` and ``color`` arguments (note the lack of "s" on those).
To be consistent with :func:`matplotlib.pyplot.pie` you must use ``labels`` and ``colors``.
If you want to hide wedge labels, specify ``labels=None``.
If ``fontsize`` is specified, the value will be applied to wedge labels.
Also, other keywords supported by :func:`matplotlib.pyplot.pie` can be used.
.. ipython:: python
:suppress:
plt.figure()
.. ipython:: python
@savefig series_pie_plot_options.png
series.plot.pie(
labels=["AA", "BB", "CC", "DD"],
colors=["r", "g", "b", "c"],
autopct="%.2f",
fontsize=20,
figsize=(6, 6),
);
If you pass values whose sum total is less than 1.0 they will be rescaled so that they sum to 1.
.. ipython:: python
:suppress:
plt.close("all")
plt.figure()
.. ipython:: python
:okwarning:
series = pd.Series([0.1] * 4, index=["a", "b", "c", "d"], name="series2")
@savefig series_pie_plot_semi.png
series.plot.pie(figsize=(6, 6));
See the `matplotlib pie documentation <https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.pie.html>`__ for more.
.. ipython:: python
:suppress:
plt.close("all")
.. _visualization.missing_data:
Plotting with missing data
--------------------------
pandas tries to be pragmatic about plotting ``DataFrames`` or ``Series``
that contain missing data. Missing values are dropped, left out, or filled
depending on the plot type.
+----------------+--------------------------------------+
| Plot Type | NaN Handling |
+================+======================================+
| Line | Leave gaps at NaNs |
+----------------+--------------------------------------+
| Line (stacked) | Fill 0's |
+----------------+--------------------------------------+
| Bar | Fill 0's |
+----------------+--------------------------------------+
| Scatter | Drop NaNs |
+----------------+--------------------------------------+
| Histogram | Drop NaNs (column-wise) |
+----------------+--------------------------------------+
| Box | Drop NaNs (column-wise) |
+----------------+--------------------------------------+
| Area | Fill 0's |
+----------------+--------------------------------------+
| KDE | Drop NaNs (column-wise) |
+----------------+--------------------------------------+
| Hexbin | Drop NaNs |
+----------------+--------------------------------------+
| Pie | Fill 0's |
+----------------+--------------------------------------+
If any of these defaults are not what you want, or if you want to be
explicit about how missing values are handled, consider using
:meth:`~pandas.DataFrame.fillna` or :meth:`~pandas.DataFrame.dropna`
before plotting.
.. _visualization.tools:
Plotting tools
--------------
These functions can be imported from ``pandas.plotting``
and take a :class:`Series` or :class:`DataFrame` as an argument.
.. _visualization.scatter_matrix:
Scatter matrix plot
~~~~~~~~~~~~~~~~~~~
You can create a scatter plot matrix using the
``scatter_matrix`` method in ``pandas.plotting``:
.. ipython:: python
:suppress:
np.random.seed(123456)
.. ipython:: python
from pandas.plotting import scatter_matrix
df = pd.DataFrame(np.random.randn(1000, 4), columns=["a", "b", "c", "d"])
@savefig scatter_matrix_kde.png
scatter_matrix(df, alpha=0.2, figsize=(6, 6), diagonal="kde");
.. ipython:: python
:suppress:
plt.close("all")
.. _visualization.kde:
Density plot
~~~~~~~~~~~~
You can create density plots using the :meth:`Series.plot.kde` and :meth:`DataFrame.plot.kde` methods.
.. ipython:: python
:suppress:
plt.figure()
np.random.seed(123456)
.. ipython:: python
ser = pd.Series(np.random.randn(1000))
@savefig kde_plot.png
ser.plot.kde();
.. ipython:: python
:suppress:
plt.close("all")
.. _visualization.andrews_curves:
Andrews curves
~~~~~~~~~~~~~~
Andrews curves allow one to plot multivariate data as a large number
of curves that are created using the attributes of samples as coefficients
for Fourier series, see the `Wikipedia entry <https://en.wikipedia.org/wiki/Andrews_plot>`__
for more information. By coloring these curves differently for each class
it is possible to visualize data clustering. Curves belonging to samples
of the same class will usually be closer together and form larger structures.
**Note**: The "Iris" dataset is available `here <https://raw.githubusercontent.com/pandas-dev/pandas/main/pandas/tests/io/data/csv/iris.csv>`__.
.. ipython:: python
from pandas.plotting import andrews_curves
data = pd.read_csv("data/iris.data")
plt.figure();
@savefig andrews_curves.png
andrews_curves(data, "Name");
.. _visualization.parallel_coordinates:
Parallel coordinates
~~~~~~~~~~~~~~~~~~~~
Parallel coordinates is a plotting technique for plotting multivariate data,
see the `Wikipedia entry <https://en.wikipedia.org/wiki/Parallel_coordinates>`__
for an introduction.
Parallel coordinates allows one to see clusters in data and to estimate other statistics visually.
Using parallel coordinates points are represented as connected line segments.
Each vertical line represents one attribute. One set of connected line segments
represents one data point. Points that tend to cluster will appear closer together.
.. ipython:: python
from pandas.plotting import parallel_coordinates
data = pd.read_csv("data/iris.data")
plt.figure();
@savefig parallel_coordinates.png
parallel_coordinates(data, "Name");
.. ipython:: python
:suppress:
plt.close("all")
.. _visualization.lag:
Lag plot
~~~~~~~~
Lag plots are used to check if a data set or time series is random. Random
data should not exhibit any structure in the lag plot. Non-random structure
implies that the underlying data are not random. The ``lag`` argument may
be passed, and when ``lag=1`` the plot is essentially ``data[:-1]`` vs.
``data[1:]``.
.. ipython:: python
:suppress:
np.random.seed(123456)
random.seed(123456) # for reproducibility - bootstrap_plot uses random.sample
.. ipython:: python
from pandas.plotting import lag_plot
plt.figure();
spacing = np.linspace(-99 * np.pi, 99 * np.pi, num=1000)
data = pd.Series(0.1 * np.random.rand(1000) + 0.9 * np.sin(spacing))
@savefig lag_plot.png
lag_plot(data);
.. ipython:: python
:suppress:
plt.close("all")
.. _visualization.autocorrelation:
Autocorrelation plot
~~~~~~~~~~~~~~~~~~~~
Autocorrelation plots are often used for checking randomness in time series.
This is done by computing autocorrelations for data values at varying time lags.
If time series is random, such autocorrelations should be near zero for any and
all time-lag separations. If time series is non-random then one or more of the
autocorrelations will be significantly non-zero. The horizontal lines displayed
in the plot correspond to 95% and 99% confidence bands. The dashed line is 99%
confidence band. See the
`Wikipedia entry <https://en.wikipedia.org/wiki/Correlogram>`__ for more about
autocorrelation plots.
.. ipython:: python
:suppress:
np.random.seed(123456)
.. ipython:: python
from pandas.plotting import autocorrelation_plot
plt.figure();
spacing = np.linspace(-9 * np.pi, 9 * np.pi, num=1000)
data = pd.Series(0.7 * np.random.rand(1000) + 0.3 * np.sin(spacing))
@savefig autocorrelation_plot.png
autocorrelation_plot(data);
.. ipython:: python
:suppress:
plt.close("all")
.. _visualization.bootstrap:
Bootstrap plot
~~~~~~~~~~~~~~
Bootstrap plots are used to visually assess the uncertainty of a statistic, such
as mean, median, midrange, etc. A random subset of a specified size is selected
from a data set, the statistic in question is computed for this subset and the
process is repeated a specified number of times. Resulting plots and histograms
are what constitutes the bootstrap plot.
.. ipython:: python
:suppress:
np.random.seed(123456)
.. ipython:: python
from pandas.plotting import bootstrap_plot
data = pd.Series(np.random.rand(1000))
@savefig bootstrap_plot.png
bootstrap_plot(data, size=50, samples=500, color="grey");
.. ipython:: python
:suppress:
plt.close("all")
.. _visualization.radviz:
RadViz
~~~~~~
RadViz is a way of visualizing multi-variate data. It is based on a simple
spring tension minimization algorithm. Basically you set up a bunch of points in
a plane. In our case they are equally spaced on a unit circle. Each point
represents a single attribute. You then pretend that each sample in the data set
is attached to each of these points by a spring, the stiffness of which is
proportional to the numerical value of that attribute (they are normalized to
unit interval). The point in the plane, where our sample settles to (where the
forces acting on our sample are at an equilibrium) is where a dot representing
our sample will be drawn. Depending on which class that sample belongs it will
be colored differently.
See the R package `Radviz <https://cran.r-project.org/web/packages/Radviz/index.html>`__
for more information.
**Note**: The "Iris" dataset is available `here <https://raw.githubusercontent.com/pandas-dev/pandas/main/pandas/tests/io/data/csv/iris.csv>`__.
.. ipython:: python
from pandas.plotting import radviz
data = pd.read_csv("data/iris.data")
plt.figure();
@savefig radviz.png
radviz(data, "Name");
.. ipython:: python
:suppress:
plt.close("all")
.. _visualization.formatting:
Plot formatting
---------------
Setting the plot style
~~~~~~~~~~~~~~~~~~~~~~
From version 1.5 and up, matplotlib offers a range of pre-configured plotting styles. Setting the
style can be used to easily give plots the general look that you want.
Setting the style is as easy as calling ``matplotlib.style.use(my_plot_style)`` before
creating your plot. For example you could write ``matplotlib.style.use('ggplot')`` for ggplot-style
plots.
You can see the various available style names at ``matplotlib.style.available`` and it's very
easy to try them out.
General plot style arguments
~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Most plotting methods have a set of keyword arguments that control the
layout and formatting of the returned plot:
.. ipython:: python
plt.figure();
@savefig series_plot_basic2.png
ts.plot(style="k--", label="Series");
.. ipython:: python
:suppress:
plt.close("all")
For each kind of plot (e.g. ``line``, ``bar``, ``scatter``) any additional arguments
keywords are passed along to the corresponding matplotlib function
(:meth:`ax.plot() <matplotlib.axes.Axes.plot>`,
:meth:`ax.bar() <matplotlib.axes.Axes.bar>`,
:meth:`ax.scatter() <matplotlib.axes.Axes.scatter>`). These can be used
to control additional styling, beyond what pandas provides.
Controlling the legend
~~~~~~~~~~~~~~~~~~~~~~
You may set the ``legend`` argument to ``False`` to hide the legend, which is
shown by default.
.. ipython:: python
:suppress:
np.random.seed(123456)
.. ipython:: python
df = pd.DataFrame(np.random.randn(1000, 4), index=ts.index, columns=list("ABCD"))
df = df.cumsum()
@savefig frame_plot_basic_noleg.png
df.plot(legend=False);
.. ipython:: python
:suppress:
plt.close("all")
Controlling the labels
~~~~~~~~~~~~~~~~~~~~~~
.. versionadded:: 1.1.0
You may set the ``xlabel`` and ``ylabel`` arguments to give the plot custom labels
for x and y axis. By default, pandas will pick up index name as xlabel, while leaving
it empty for ylabel.
.. ipython:: python
:suppress:
plt.figure();
.. ipython:: python
df.plot();
@savefig plot_xlabel_ylabel.png
df.plot(xlabel="new x", ylabel="new y");
.. ipython:: python
:suppress:
plt.close("all")
Scales
~~~~~~
You may pass ``logy`` to get a log-scale Y axis.
.. ipython:: python
:suppress:
plt.figure()
np.random.seed(123456)
.. ipython:: python
ts = pd.Series(np.random.randn(1000), index=pd.date_range("1/1/2000", periods=1000))
ts = np.exp(ts.cumsum())
@savefig series_plot_logy.png
ts.plot(logy=True);
.. ipython:: python
:suppress:
plt.close("all")
See also the ``logx`` and ``loglog`` keyword arguments.
Plotting on a secondary y-axis
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
To plot data on a secondary y-axis, use the ``secondary_y`` keyword:
.. ipython:: python
:suppress:
plt.figure()
.. ipython:: python
df["A"].plot();
@savefig series_plot_secondary_y.png
df["B"].plot(secondary_y=True, style="g");
.. ipython:: python
:suppress:
plt.close("all")
To plot some columns in a ``DataFrame``, give the column names to the ``secondary_y``
keyword:
.. ipython:: python
plt.figure();
ax = df.plot(secondary_y=["A", "B"])
ax.set_ylabel("CD scale");
@savefig frame_plot_secondary_y.png
ax.right_ax.set_ylabel("AB scale");
.. ipython:: python
:suppress:
plt.close("all")
Note that the columns plotted on the secondary y-axis is automatically marked
with "(right)" in the legend. To turn off the automatic marking, use the
``mark_right=False`` keyword:
.. ipython:: python
plt.figure();
@savefig frame_plot_secondary_y_no_right.png
df.plot(secondary_y=["A", "B"], mark_right=False);
.. ipython:: python
:suppress:
plt.close("all")
.. _plotting.formatters:
Custom formatters for timeseries plots
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. versionchanged:: 1.0.0
pandas provides custom formatters for timeseries plots. These change the
formatting of the axis labels for dates and times. By default,
the custom formatters are applied only to plots created by pandas with
:meth:`DataFrame.plot` or :meth:`Series.plot`. To have them apply to all
plots, including those made by matplotlib, set the option
``pd.options.plotting.matplotlib.register_converters = True`` or use
:meth:`pandas.plotting.register_matplotlib_converters`.
Suppressing tick resolution adjustment
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
pandas includes automatic tick resolution adjustment for regular frequency
time-series data. For limited cases where pandas cannot infer the frequency
information (e.g., in an externally created ``twinx``), you can choose to
suppress this behavior for alignment purposes.
Here is the default behavior, notice how the x-axis tick labeling is performed:
.. ipython:: python
plt.figure();
@savefig ser_plot_suppress.png
df["A"].plot();
.. ipython:: python
:suppress:
plt.close("all")
Using the ``x_compat`` parameter, you can suppress this behavior:
.. ipython:: python
plt.figure();
@savefig ser_plot_suppress_parm.png
df["A"].plot(x_compat=True);
.. ipython:: python
:suppress:
plt.close("all")
If you have more than one plot that needs to be suppressed, the ``use`` method
in ``pandas.plotting.plot_params`` can be used in a ``with`` statement:
.. ipython:: python
plt.figure();
@savefig ser_plot_suppress_context.png
with pd.plotting.plot_params.use("x_compat", True):
df["A"].plot(color="r")
df["B"].plot(color="g")
df["C"].plot(color="b")
.. ipython:: python
:suppress:
plt.close("all")
Automatic date tick adjustment
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
``TimedeltaIndex`` now uses the native matplotlib
tick locator methods, it is useful to call the automatic
date tick adjustment from matplotlib for figures whose ticklabels overlap.
See the :meth:`autofmt_xdate <matplotlib.figure.autofmt_xdate>` method and the
`matplotlib documentation <https://matplotlib.org/2.0.2/users/recipes.html#fixing-common-date-annoyances>`__ for more.
Subplots
~~~~~~~~
Each ``Series`` in a ``DataFrame`` can be plotted on a different axis
with the ``subplots`` keyword:
.. ipython:: python
@savefig frame_plot_subplots.png
df.plot(subplots=True, figsize=(6, 6));
.. ipython:: python
:suppress:
plt.close("all")
Using layout and targeting multiple axes
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The layout of subplots can be specified by the ``layout`` keyword. It can accept
``(rows, columns)``. The ``layout`` keyword can be used in
``hist`` and ``boxplot`` also. If the input is invalid, a ``ValueError`` will be raised.
The number of axes which can be contained by rows x columns specified by ``layout`` must be
larger than the number of required subplots. If layout can contain more axes than required,
blank axes are not drawn. Similar to a NumPy array's ``reshape`` method, you
can use ``-1`` for one dimension to automatically calculate the number of rows
or columns needed, given the other.
.. ipython:: python
@savefig frame_plot_subplots_layout.png
df.plot(subplots=True, layout=(2, 3), figsize=(6, 6), sharex=False);
.. ipython:: python
:suppress:
plt.close("all")
The above example is identical to using:
.. ipython:: python
df.plot(subplots=True, layout=(2, -1), figsize=(6, 6), sharex=False);
.. ipython:: python
:suppress:
plt.close("all")
The required number of columns (3) is inferred from the number of series to plot
and the given number of rows (2).
You can pass multiple axes created beforehand as list-like via ``ax`` keyword.
This allows more complicated layouts.
The passed axes must be the same number as the subplots being drawn.
When multiple axes are passed via the ``ax`` keyword, ``layout``, ``sharex`` and ``sharey`` keywords
don't affect to the output. You should explicitly pass ``sharex=False`` and ``sharey=False``,
otherwise you will see a warning.
.. ipython:: python
fig, axes = plt.subplots(4, 4, figsize=(9, 9))
plt.subplots_adjust(wspace=0.5, hspace=0.5)
target1 = [axes[0][0], axes[1][1], axes[2][2], axes[3][3]]
target2 = [axes[3][0], axes[2][1], axes[1][2], axes[0][3]]
df.plot(subplots=True, ax=target1, legend=False, sharex=False, sharey=False);
@savefig frame_plot_subplots_multi_ax.png
(-df).plot(subplots=True, ax=target2, legend=False, sharex=False, sharey=False);
.. ipython:: python
:suppress:
plt.close("all")
Another option is passing an ``ax`` argument to :meth:`Series.plot` to plot on a particular axis:
.. ipython:: python
:suppress:
np.random.seed(123456)
ts = pd.Series(np.random.randn(1000), index=pd.date_range("1/1/2000", periods=1000))
ts = ts.cumsum()
df = pd.DataFrame(np.random.randn(1000, 4), index=ts.index, columns=list("ABCD"))
df = df.cumsum()
.. ipython:: python
:suppress:
plt.close("all")
.. ipython:: python
fig, axes = plt.subplots(nrows=2, ncols=2)
plt.subplots_adjust(wspace=0.2, hspace=0.5)
df["A"].plot(ax=axes[0, 0]);
axes[0, 0].set_title("A");
df["B"].plot(ax=axes[0, 1]);
axes[0, 1].set_title("B");
df["C"].plot(ax=axes[1, 0]);
axes[1, 0].set_title("C");
df["D"].plot(ax=axes[1, 1]);
@savefig series_plot_multi.png
axes[1, 1].set_title("D");
.. ipython:: python
:suppress:
plt.close("all")
.. _visualization.errorbars:
Plotting with error bars
~~~~~~~~~~~~~~~~~~~~~~~~
Plotting with error bars is supported in :meth:`DataFrame.plot` and :meth:`Series.plot`.
Horizontal and vertical error bars can be supplied to the ``xerr`` and ``yerr`` keyword arguments to :meth:`~DataFrame.plot()`. The error values can be specified using a variety of formats:
* As a :class:`DataFrame` or ``dict`` of errors with column names matching the ``columns`` attribute of the plotting :class:`DataFrame` or matching the ``name`` attribute of the :class:`Series`.
* As a ``str`` indicating which of the columns of plotting :class:`DataFrame` contain the error values.
* As raw values (``list``, ``tuple``, or ``np.ndarray``). Must be the same length as the plotting :class:`DataFrame`/:class:`Series`.
Here is an example of one way to easily plot group means with standard deviations from the raw data.
.. ipython:: python
# Generate the data
ix3 = pd.MultiIndex.from_arrays(
[
["a", "a", "a", "a", "a", "b", "b", "b", "b", "b"],
["foo", "foo", "foo", "bar", "bar", "foo", "foo", "bar", "bar", "bar"],
],
names=["letter", "word"],
)
df3 = pd.DataFrame(
{
"data1": [9, 3, 2, 4, 3, 2, 4, 6, 3, 2],
"data2": [9, 6, 5, 7, 5, 4, 5, 6, 5, 1],
},
index=ix3,
)
# Group by index labels and take the means and standard deviations
# for each group
gp3 = df3.groupby(level=("letter", "word"))
means = gp3.mean()
errors = gp3.std()
means
errors
# Plot
fig, ax = plt.subplots()
@savefig errorbar_example.png
means.plot.bar(yerr=errors, ax=ax, capsize=4, rot=0);
.. ipython:: python
:suppress:
plt.close("all")
Asymmetrical error bars are also supported, however raw error values must be provided in this case. For a ``N`` length :class:`Series`, a ``2xN`` array should be provided indicating lower and upper (or left and right) errors. For a ``MxN`` :class:`DataFrame`, asymmetrical errors should be in a ``Mx2xN`` array.
Here is an example of one way to plot the min/max range using asymmetrical error bars.
.. ipython:: python
mins = gp3.min()
maxs = gp3.max()
# errors should be positive, and defined in the order of lower, upper
errors = [[means[c] - mins[c], maxs[c] - means[c]] for c in df3.columns]
# Plot
fig, ax = plt.subplots()
@savefig errorbar_asymmetrical_example.png
means.plot.bar(yerr=errors, ax=ax, capsize=4, rot=0);
.. ipython:: python
:suppress:
plt.close("all")
.. _visualization.table:
Plotting tables
~~~~~~~~~~~~~~~
Plotting with matplotlib table is now supported in :meth:`DataFrame.plot` and :meth:`Series.plot` with a ``table`` keyword. The ``table`` keyword can accept ``bool``, :class:`DataFrame` or :class:`Series`. The simple way to draw a table is to specify ``table=True``. Data will be transposed to meet matplotlib's default layout.
.. ipython:: python
:suppress:
np.random.seed(123456)
.. ipython:: python
fig, ax = plt.subplots(1, 1, figsize=(7, 6.5))
df = pd.DataFrame(np.random.rand(5, 3), columns=["a", "b", "c"])
ax.xaxis.tick_top() # Display x-axis ticks on top.
@savefig line_plot_table_true.png
df.plot(table=True, ax=ax);
.. ipython:: python
:suppress:
plt.close("all")
Also, you can pass a different :class:`DataFrame` or :class:`Series` to the
``table`` keyword. The data will be drawn as displayed in print method
(not transposed automatically). If required, it should be transposed manually
as seen in the example below.
.. ipython:: python
fig, ax = plt.subplots(1, 1, figsize=(7, 6.75))
ax.xaxis.tick_top() # Display x-axis ticks on top.
@savefig line_plot_table_data.png
df.plot(table=np.round(df.T, 2), ax=ax);
.. ipython:: python
:suppress:
plt.close("all")
There also exists a helper function ``pandas.plotting.table``, which creates a
table from :class:`DataFrame` or :class:`Series`, and adds it to an
``matplotlib.Axes`` instance. This function can accept keywords which the
matplotlib `table <https://matplotlib.org/stable/api/_as_gen/matplotlib.axes.Axes.table.html>`__ has.
.. ipython:: python
from pandas.plotting import table
fig, ax = plt.subplots(1, 1)
table(ax, np.round(df.describe(), 2), loc="upper right", colWidths=[0.2, 0.2, 0.2]);
@savefig line_plot_table_describe.png
df.plot(ax=ax, ylim=(0, 2), legend=None);
.. ipython:: python
:suppress:
plt.close("all")
**Note**: You can get table instances on the axes using ``axes.tables`` property for further decorations. See the `matplotlib table documentation <https://matplotlib.org/api/axes_api.html#matplotlib.axes.Axes.table>`__ for more.
.. _visualization.colormaps:
Colormaps
~~~~~~~~~
A potential issue when plotting a large number of columns is that it can be
difficult to distinguish some series due to repetition in the default colors. To
remedy this, ``DataFrame`` plotting supports the use of the ``colormap`` argument,
which accepts either a Matplotlib `colormap <https://matplotlib.org/api/cm_api.html>`__
or a string that is a name of a colormap registered with Matplotlib. A
visualization of the default matplotlib colormaps is available `here
<https://matplotlib.org/stable/gallery/color/colormap_reference.html>`__.
As matplotlib does not directly support colormaps for line-based plots, the
colors are selected based on an even spacing determined by the number of columns
in the ``DataFrame``. There is no consideration made for background color, so some
colormaps will produce lines that are not easily visible.
To use the cubehelix colormap, we can pass ``colormap='cubehelix'``.
.. ipython:: python
:suppress:
np.random.seed(123456)
.. ipython:: python
df = pd.DataFrame(np.random.randn(1000, 10), index=ts.index)
df = df.cumsum()
plt.figure();
@savefig cubehelix.png
df.plot(colormap="cubehelix");
.. ipython:: python
:suppress:
plt.close("all")
Alternatively, we can pass the colormap itself:
.. ipython:: python
from matplotlib import cm
plt.figure();
@savefig cubehelix_cm.png
df.plot(colormap=cm.cubehelix);
.. ipython:: python
:suppress:
plt.close("all")
Colormaps can also be used other plot types, like bar charts:
.. ipython:: python
:suppress:
np.random.seed(123456)
.. ipython:: python
dd = pd.DataFrame(np.random.randn(10, 10)).applymap(abs)
dd = dd.cumsum()
plt.figure();
@savefig greens.png
dd.plot.bar(colormap="Greens");
.. ipython:: python
:suppress:
plt.close("all")
Parallel coordinates charts:
.. ipython:: python
plt.figure();
@savefig parallel_gist_rainbow.png
parallel_coordinates(data, "Name", colormap="gist_rainbow");
.. ipython:: python
:suppress:
plt.close("all")
Andrews curves charts:
.. ipython:: python
plt.figure();
@savefig andrews_curve_winter.png
andrews_curves(data, "Name", colormap="winter");
.. ipython:: python
:suppress:
plt.close("all")
Plotting directly with Matplotlib
---------------------------------
In some situations it may still be preferable or necessary to prepare plots
directly with matplotlib, for instance when a certain type of plot or
customization is not (yet) supported by pandas. ``Series`` and ``DataFrame``
objects behave like arrays and can therefore be passed directly to
matplotlib functions without explicit casts.
pandas also automatically registers formatters and locators that recognize date
indices, thereby extending date and time support to practically all plot types
available in matplotlib. Although this formatting does not provide the same
level of refinement you would get when plotting via pandas, it can be faster
when plotting a large number of points.
.. ipython:: python
:suppress:
np.random.seed(123456)
.. ipython:: python
price = pd.Series(
np.random.randn(150).cumsum(),
index=pd.date_range("2000-1-1", periods=150, freq="B"),
)
ma = price.rolling(20).mean()
mstd = price.rolling(20).std()
plt.figure();
plt.plot(price.index, price, "k");
plt.plot(ma.index, ma, "b");
@savefig bollinger.png
plt.fill_between(mstd.index, ma - 2 * mstd, ma + 2 * mstd, color="b", alpha=0.2);
.. ipython:: python
:suppress:
plt.close("all")
Plotting backends
-----------------
Starting in version 0.25, pandas can be extended with third-party plotting backends. The
main idea is letting users select a plotting backend different than the provided
one based on Matplotlib.
This can be done by passing 'backend.module' as the argument ``backend`` in ``plot``
function. For example:
.. code-block:: python
>>> Series([1, 2, 3]).plot(backend="backend.module")
Alternatively, you can also set this option globally, do you don't need to specify
the keyword in each ``plot`` call. For example:
.. code-block:: python
>>> pd.set_option("plotting.backend", "backend.module")
>>> pd.Series([1, 2, 3]).plot()
Or:
.. code-block:: python
>>> pd.options.plotting.backend = "backend.module"
>>> pd.Series([1, 2, 3]).plot()
This would be more or less equivalent to:
.. code-block:: python
>>> import backend.module
>>> backend.module.plot(pd.Series([1, 2, 3]))
The backend module can then use other visualization tools (Bokeh, Altair, hvplot,...)
to generate the plots. Some libraries implementing a backend for pandas are listed
on the ecosystem :ref:`ecosystem.visualization` page.
Developers guide can be found at
https://pandas.pydata.org/docs/dev/development/extending.html#plotting-backends
|