1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649
|
.. _window:
{{ header }}
********************
Windowing operations
********************
pandas contains a compact set of APIs for performing windowing operations - an operation that performs
an aggregation over a sliding partition of values. The API functions similarly to the ``groupby`` API
in that :class:`Series` and :class:`DataFrame` call the windowing method with
necessary parameters and then subsequently call the aggregation function.
.. ipython:: python
s = pd.Series(range(5))
s.rolling(window=2).sum()
The windows are comprised by looking back the length of the window from the current observation.
The result above can be derived by taking the sum of the following windowed partitions of data:
.. ipython:: python
for window in s.rolling(window=2):
print(window)
.. _window.overview:
Overview
--------
pandas supports 4 types of windowing operations:
#. Rolling window: Generic fixed or variable sliding window over the values.
#. Weighted window: Weighted, non-rectangular window supplied by the ``scipy.signal`` library.
#. Expanding window: Accumulating window over the values.
#. Exponentially Weighted window: Accumulating and exponentially weighted window over the values.
============================= ================= =========================== =========================== ======================== =================================== ===========================
Concept Method Returned Object Supports time-based windows Supports chained groupby Supports table method Supports online operations
============================= ================= =========================== =========================== ======================== =================================== ===========================
Rolling window ``rolling`` ``Rolling`` Yes Yes Yes (as of version 1.3) No
Weighted window ``rolling`` ``Window`` No No No No
Expanding window ``expanding`` ``Expanding`` No Yes Yes (as of version 1.3) No
Exponentially Weighted window ``ewm`` ``ExponentialMovingWindow`` No Yes (as of version 1.2) No Yes (as of version 1.3)
============================= ================= =========================== =========================== ======================== =================================== ===========================
As noted above, some operations support specifying a window based on a time offset:
.. ipython:: python
s = pd.Series(range(5), index=pd.date_range('2020-01-01', periods=5, freq='1D'))
s.rolling(window='2D').sum()
Additionally, some methods support chaining a ``groupby`` operation with a windowing operation
which will first group the data by the specified keys and then perform a windowing operation per group.
.. ipython:: python
df = pd.DataFrame({'A': ['a', 'b', 'a', 'b', 'a'], 'B': range(5)})
df.groupby('A').expanding().sum()
.. note::
Windowing operations currently only support numeric data (integer and float)
and will always return ``float64`` values.
.. warning::
Some windowing aggregation, ``mean``, ``sum``, ``var`` and ``std`` methods may suffer from numerical
imprecision due to the underlying windowing algorithms accumulating sums. When values differ
with magnitude :math:`1/np.finfo(np.double).eps` this results in truncation. It must be
noted, that large values may have an impact on windows, which do not include these values. `Kahan summation
<https://en.wikipedia.org/wiki/Kahan_summation_algorithm>`__ is used
to compute the rolling sums to preserve accuracy as much as possible.
.. versionadded:: 1.3.0
Some windowing operations also support the ``method='table'`` option in the constructor which
performs the windowing operation over an entire :class:`DataFrame` instead of a single column or row at a time.
This can provide a useful performance benefit for a :class:`DataFrame` with many columns or rows
(with the corresponding ``axis`` argument) or the ability to utilize other columns during the windowing
operation. The ``method='table'`` option can only be used if ``engine='numba'`` is specified
in the corresponding method call.
For example, a `weighted mean <https://en.wikipedia.org/wiki/Weighted_arithmetic_mean>`__ calculation can
be calculated with :meth:`~Rolling.apply` by specifying a separate column of weights.
.. ipython:: python
def weighted_mean(x):
arr = np.ones((1, x.shape[1]))
arr[:, :2] = (x[:, :2] * x[:, 2]).sum(axis=0) / x[:, 2].sum()
return arr
df = pd.DataFrame([[1, 2, 0.6], [2, 3, 0.4], [3, 4, 0.2], [4, 5, 0.7]])
df.rolling(2, method="table", min_periods=0).apply(weighted_mean, raw=True, engine="numba") # noqa:E501
.. versionadded:: 1.3
Some windowing operations also support an ``online`` method after constructing a windowing object
which returns a new object that supports passing in new :class:`DataFrame` or :class:`Series` objects
to continue the windowing calculation with the new values (i.e. online calculations).
The methods on this new windowing objects must call the aggregation method first to "prime" the initial
state of the online calculation. Then, new :class:`DataFrame` or :class:`Series` objects can be passed in
the ``update`` argument to continue the windowing calculation.
.. ipython:: python
df = pd.DataFrame([[1, 2, 0.6], [2, 3, 0.4], [3, 4, 0.2], [4, 5, 0.7]])
df.ewm(0.5).mean()
.. ipython:: python
online_ewm = df.head(2).ewm(0.5).online()
online_ewm.mean()
online_ewm.mean(update=df.tail(1))
All windowing operations support a ``min_periods`` argument that dictates the minimum amount of
non-``np.nan`` values a window must have; otherwise, the resulting value is ``np.nan``.
``min_periods`` defaults to 1 for time-based windows and ``window`` for fixed windows
.. ipython:: python
s = pd.Series([np.nan, 1, 2, np.nan, np.nan, 3])
s.rolling(window=3, min_periods=1).sum()
s.rolling(window=3, min_periods=2).sum()
# Equivalent to min_periods=3
s.rolling(window=3, min_periods=None).sum()
Additionally, all windowing operations supports the ``aggregate`` method for returning a result
of multiple aggregations applied to a window.
.. ipython:: python
df = pd.DataFrame({"A": range(5), "B": range(10, 15)})
df.expanding().agg([np.sum, np.mean, np.std])
.. _window.generic:
Rolling window
--------------
Generic rolling windows support specifying windows as a fixed number of observations or variable
number of observations based on an offset. If a time based offset is provided, the corresponding
time based index must be monotonic.
.. ipython:: python
times = ['2020-01-01', '2020-01-03', '2020-01-04', '2020-01-05', '2020-01-29']
s = pd.Series(range(5), index=pd.DatetimeIndex(times))
s
# Window with 2 observations
s.rolling(window=2).sum()
# Window with 2 days worth of observations
s.rolling(window='2D').sum()
For all supported aggregation functions, see :ref:`api.functions_rolling`.
.. _window.center:
Centering windows
~~~~~~~~~~~~~~~~~
By default the labels are set to the right edge of the window, but a
``center`` keyword is available so the labels can be set at the center.
.. ipython:: python
s = pd.Series(range(10))
s.rolling(window=5).mean()
s.rolling(window=5, center=True).mean()
This can also be applied to datetime-like indices.
.. versionadded:: 1.3.0
.. ipython:: python
df = pd.DataFrame(
{"A": [0, 1, 2, 3, 4]}, index=pd.date_range("2020", periods=5, freq="1D")
)
df
df.rolling("2D", center=False).mean()
df.rolling("2D", center=True).mean()
.. _window.endpoints:
Rolling window endpoints
~~~~~~~~~~~~~~~~~~~~~~~~
The inclusion of the interval endpoints in rolling window calculations can be specified with the ``closed``
parameter:
============= ====================
Value Behavior
============= ====================
``'right'`` close right endpoint
``'left'`` close left endpoint
``'both'`` close both endpoints
``'neither'`` open endpoints
============= ====================
For example, having the right endpoint open is useful in many problems that require that there is no contamination
from present information back to past information. This allows the rolling window to compute statistics
"up to that point in time", but not including that point in time.
.. ipython:: python
df = pd.DataFrame(
{"x": 1},
index=[
pd.Timestamp("20130101 09:00:01"),
pd.Timestamp("20130101 09:00:02"),
pd.Timestamp("20130101 09:00:03"),
pd.Timestamp("20130101 09:00:04"),
pd.Timestamp("20130101 09:00:06"),
],
)
df["right"] = df.rolling("2s", closed="right").x.sum() # default
df["both"] = df.rolling("2s", closed="both").x.sum()
df["left"] = df.rolling("2s", closed="left").x.sum()
df["neither"] = df.rolling("2s", closed="neither").x.sum()
df
.. _window.custom_rolling_window:
Custom window rolling
~~~~~~~~~~~~~~~~~~~~~
.. versionadded:: 1.0
In addition to accepting an integer or offset as a ``window`` argument, ``rolling`` also accepts
a ``BaseIndexer`` subclass that allows a user to define a custom method for calculating window bounds.
The ``BaseIndexer`` subclass will need to define a ``get_window_bounds`` method that returns
a tuple of two arrays, the first being the starting indices of the windows and second being the
ending indices of the windows. Additionally, ``num_values``, ``min_periods``, ``center``, ``closed``
and will automatically be passed to ``get_window_bounds`` and the defined method must
always accept these arguments.
For example, if we have the following :class:`DataFrame`
.. ipython:: python
use_expanding = [True, False, True, False, True]
use_expanding
df = pd.DataFrame({"values": range(5)})
df
and we want to use an expanding window where ``use_expanding`` is ``True`` otherwise a window of size
1, we can create the following ``BaseIndexer`` subclass:
.. code-block:: ipython
In [2]: from pandas.api.indexers import BaseIndexer
In [3]: class CustomIndexer(BaseIndexer):
...: def get_window_bounds(self, num_values, min_periods, center, closed):
...: start = np.empty(num_values, dtype=np.int64)
...: end = np.empty(num_values, dtype=np.int64)
...: for i in range(num_values):
...: if self.use_expanding[i]:
...: start[i] = 0
...: end[i] = i + 1
...: else:
...: start[i] = i
...: end[i] = i + self.window_size
...: return start, end
In [4]: indexer = CustomIndexer(window_size=1, use_expanding=use_expanding)
In [5]: df.rolling(indexer).sum()
Out[5]:
values
0 0.0
1 1.0
2 3.0
3 3.0
4 10.0
You can view other examples of ``BaseIndexer`` subclasses `here <https://github.com/pandas-dev/pandas/blob/main/pandas/core/indexers/objects.py>`__
.. versionadded:: 1.1
One subclass of note within those examples is the ``VariableOffsetWindowIndexer`` that allows
rolling operations over a non-fixed offset like a ``BusinessDay``.
.. ipython:: python
from pandas.api.indexers import VariableOffsetWindowIndexer
df = pd.DataFrame(range(10), index=pd.date_range("2020", periods=10))
offset = pd.offsets.BDay(1)
indexer = VariableOffsetWindowIndexer(index=df.index, offset=offset)
df
df.rolling(indexer).sum()
For some problems knowledge of the future is available for analysis. For example, this occurs when
each data point is a full time series read from an experiment, and the task is to extract underlying
conditions. In these cases it can be useful to perform forward-looking rolling window computations.
:func:`FixedForwardWindowIndexer <pandas.api.indexers.FixedForwardWindowIndexer>` class is available for this purpose.
This :func:`BaseIndexer <pandas.api.indexers.BaseIndexer>` subclass implements a closed fixed-width
forward-looking rolling window, and we can use it as follows:
.. ipython:: python
from pandas.api.indexers import FixedForwardWindowIndexer
indexer = FixedForwardWindowIndexer(window_size=2)
df.rolling(indexer, min_periods=1).sum()
We can also achieve this by using slicing, applying rolling aggregation, and then flipping the result as shown in example below:
.. ipython:: python
df = pd.DataFrame(
data=[
[pd.Timestamp("2018-01-01 00:00:00"), 100],
[pd.Timestamp("2018-01-01 00:00:01"), 101],
[pd.Timestamp("2018-01-01 00:00:03"), 103],
[pd.Timestamp("2018-01-01 00:00:04"), 111],
],
columns=["time", "value"],
).set_index("time")
df
reversed_df = df[::-1].rolling("2s").sum()[::-1]
reversed_df
.. _window.rolling_apply:
Rolling apply
~~~~~~~~~~~~~
The :meth:`~Rolling.apply` function takes an extra ``func`` argument and performs
generic rolling computations. The ``func`` argument should be a single function
that produces a single value from an ndarray input. ``raw`` specifies whether
the windows are cast as :class:`Series` objects (``raw=False``) or ndarray objects (``raw=True``).
.. ipython:: python
def mad(x):
return np.fabs(x - x.mean()).mean()
s = pd.Series(range(10))
s.rolling(window=4).apply(mad, raw=True)
.. _window.numba_engine:
Numba engine
~~~~~~~~~~~~
.. versionadded:: 1.0
Additionally, :meth:`~Rolling.apply` can leverage `Numba <https://numba.pydata.org/>`__
if installed as an optional dependency. The apply aggregation can be executed using Numba by specifying
``engine='numba'`` and ``engine_kwargs`` arguments (``raw`` must also be set to ``True``).
See :ref:`enhancing performance with Numba <enhancingperf.numba>` for general usage of the arguments and performance considerations.
Numba will be applied in potentially two routines:
#. If ``func`` is a standard Python function, the engine will `JIT <https://numba.pydata.org/numba-doc/latest/user/overview.html>`__ the passed function. ``func`` can also be a JITed function in which case the engine will not JIT the function again.
#. The engine will JIT the for loop where the apply function is applied to each window.
The ``engine_kwargs`` argument is a dictionary of keyword arguments that will be passed into the
`numba.jit decorator <https://numba.pydata.org/numba-doc/latest/reference/jit-compilation.html#numba.jit>`__.
These keyword arguments will be applied to *both* the passed function (if a standard Python function)
and the apply for loop over each window.
.. versionadded:: 1.3.0
``mean``, ``median``, ``max``, ``min``, and ``sum`` also support the ``engine`` and ``engine_kwargs`` arguments.
.. _window.cov_corr:
Binary window functions
~~~~~~~~~~~~~~~~~~~~~~~
:meth:`~Rolling.cov` and :meth:`~Rolling.corr` can compute moving window statistics about
two :class:`Series` or any combination of :class:`DataFrame`/:class:`Series` or
:class:`DataFrame`/:class:`DataFrame`. Here is the behavior in each case:
* two :class:`Series`: compute the statistic for the pairing.
* :class:`DataFrame`/:class:`Series`: compute the statistics for each column of the DataFrame
with the passed Series, thus returning a DataFrame.
* :class:`DataFrame`/:class:`DataFrame`: by default compute the statistic for matching column
names, returning a DataFrame. If the keyword argument ``pairwise=True`` is
passed then computes the statistic for each pair of columns, returning a :class:`DataFrame` with a
:class:`MultiIndex` whose values are the dates in question (see :ref:`the next section
<window.corr_pairwise>`).
For example:
.. ipython:: python
df = pd.DataFrame(
np.random.randn(10, 4),
index=pd.date_range("2020-01-01", periods=10),
columns=["A", "B", "C", "D"],
)
df = df.cumsum()
df2 = df[:4]
df2.rolling(window=2).corr(df2["B"])
.. _window.corr_pairwise:
Computing rolling pairwise covariances and correlations
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
In financial data analysis and other fields it's common to compute covariance
and correlation matrices for a collection of time series. Often one is also
interested in moving-window covariance and correlation matrices. This can be
done by passing the ``pairwise`` keyword argument, which in the case of
:class:`DataFrame` inputs will yield a MultiIndexed :class:`DataFrame` whose ``index`` are the dates in
question. In the case of a single DataFrame argument the ``pairwise`` argument
can even be omitted:
.. note::
Missing values are ignored and each entry is computed using the pairwise
complete observations.
Assuming the missing data are missing at random this results in an estimate
for the covariance matrix which is unbiased. However, for many applications
this estimate may not be acceptable because the estimated covariance matrix
is not guaranteed to be positive semi-definite. This could lead to
estimated correlations having absolute values which are greater than one,
and/or a non-invertible covariance matrix. See `Estimation of covariance
matrices <https://en.wikipedia.org/w/index.php?title=Estimation_of_covariance_matrices>`_
for more details.
.. ipython:: python
covs = (
df[["B", "C", "D"]]
.rolling(window=4)
.cov(df[["A", "B", "C"]], pairwise=True)
)
covs
.. _window.weighted:
Weighted window
---------------
The ``win_type`` argument in ``.rolling`` generates a weighted windows that are commonly used in filtering
and spectral estimation. ``win_type`` must be string that corresponds to a `scipy.signal window function
<https://docs.scipy.org/doc/scipy/reference/signal.windows.html#module-scipy.signal.windows>`__.
Scipy must be installed in order to use these windows, and supplementary arguments
that the Scipy window methods take must be specified in the aggregation function.
.. ipython:: python
s = pd.Series(range(10))
s.rolling(window=5).mean()
s.rolling(window=5, win_type="triang").mean()
# Supplementary Scipy arguments passed in the aggregation function
s.rolling(window=5, win_type="gaussian").mean(std=0.1)
For all supported aggregation functions, see :ref:`api.functions_window`.
.. _window.expanding:
Expanding window
----------------
An expanding window yields the value of an aggregation statistic with all the data available up to that
point in time. Since these calculations are a special case of rolling statistics,
they are implemented in pandas such that the following two calls are equivalent:
.. ipython:: python
df = pd.DataFrame(range(5))
df.rolling(window=len(df), min_periods=1).mean()
df.expanding(min_periods=1).mean()
For all supported aggregation functions, see :ref:`api.functions_expanding`.
.. _window.exponentially_weighted:
Exponentially weighted window
-----------------------------
An exponentially weighted window is similar to an expanding window but with each prior point
being exponentially weighted down relative to the current point.
In general, a weighted moving average is calculated as
.. math::
y_t = \frac{\sum_{i=0}^t w_i x_{t-i}}{\sum_{i=0}^t w_i},
where :math:`x_t` is the input, :math:`y_t` is the result and the :math:`w_i`
are the weights.
For all supported aggregation functions, see :ref:`api.functions_ewm`.
The EW functions support two variants of exponential weights.
The default, ``adjust=True``, uses the weights :math:`w_i = (1 - \alpha)^i`
which gives
.. math::
y_t = \frac{x_t + (1 - \alpha)x_{t-1} + (1 - \alpha)^2 x_{t-2} + ...
+ (1 - \alpha)^t x_{0}}{1 + (1 - \alpha) + (1 - \alpha)^2 + ...
+ (1 - \alpha)^t}
When ``adjust=False`` is specified, moving averages are calculated as
.. math::
y_0 &= x_0 \\
y_t &= (1 - \alpha) y_{t-1} + \alpha x_t,
which is equivalent to using weights
.. math::
w_i = \begin{cases}
\alpha (1 - \alpha)^i & \text{if } i < t \\
(1 - \alpha)^i & \text{if } i = t.
\end{cases}
.. note::
These equations are sometimes written in terms of :math:`\alpha' = 1 - \alpha`, e.g.
.. math::
y_t = \alpha' y_{t-1} + (1 - \alpha') x_t.
The difference between the above two variants arises because we are
dealing with series which have finite history. Consider a series of infinite
history, with ``adjust=True``:
.. math::
y_t = \frac{x_t + (1 - \alpha)x_{t-1} + (1 - \alpha)^2 x_{t-2} + ...}
{1 + (1 - \alpha) + (1 - \alpha)^2 + ...}
Noting that the denominator is a geometric series with initial term equal to 1
and a ratio of :math:`1 - \alpha` we have
.. math::
y_t &= \frac{x_t + (1 - \alpha)x_{t-1} + (1 - \alpha)^2 x_{t-2} + ...}
{\frac{1}{1 - (1 - \alpha)}}\\
&= [x_t + (1 - \alpha)x_{t-1} + (1 - \alpha)^2 x_{t-2} + ...] \alpha \\
&= \alpha x_t + [(1-\alpha)x_{t-1} + (1 - \alpha)^2 x_{t-2} + ...]\alpha \\
&= \alpha x_t + (1 - \alpha)[x_{t-1} + (1 - \alpha) x_{t-2} + ...]\alpha\\
&= \alpha x_t + (1 - \alpha) y_{t-1}
which is the same expression as ``adjust=False`` above and therefore
shows the equivalence of the two variants for infinite series.
When ``adjust=False``, we have :math:`y_0 = x_0` and
:math:`y_t = \alpha x_t + (1 - \alpha) y_{t-1}`.
Therefore, there is an assumption that :math:`x_0` is not an ordinary value
but rather an exponentially weighted moment of the infinite series up to that
point.
One must have :math:`0 < \alpha \leq 1`, and while it is possible to pass
:math:`\alpha` directly, it's often easier to think about either the
**span**, **center of mass (com)** or **half-life** of an EW moment:
.. math::
\alpha =
\begin{cases}
\frac{2}{s + 1}, & \text{for span}\ s \geq 1\\
\frac{1}{1 + c}, & \text{for center of mass}\ c \geq 0\\
1 - \exp^{\frac{\log 0.5}{h}}, & \text{for half-life}\ h > 0
\end{cases}
One must specify precisely one of **span**, **center of mass**, **half-life**
and **alpha** to the EW functions:
* **Span** corresponds to what is commonly called an "N-day EW moving average".
* **Center of mass** has a more physical interpretation and can be thought of
in terms of span: :math:`c = (s - 1) / 2`.
* **Half-life** is the period of time for the exponential weight to reduce to
one half.
* **Alpha** specifies the smoothing factor directly.
.. versionadded:: 1.1.0
You can also specify ``halflife`` in terms of a timedelta convertible unit to specify the amount of
time it takes for an observation to decay to half its value when also specifying a sequence
of ``times``.
.. ipython:: python
df = pd.DataFrame({"B": [0, 1, 2, np.nan, 4]})
df
times = ["2020-01-01", "2020-01-03", "2020-01-10", "2020-01-15", "2020-01-17"]
df.ewm(halflife="4 days", times=pd.DatetimeIndex(times)).mean()
The following formula is used to compute exponentially weighted mean with an input vector of times:
.. math::
y_t = \frac{\sum_{i=0}^t 0.5^\frac{t_{t} - t_{i}}{\lambda} x_{t-i}}{\sum_{i=0}^t 0.5^\frac{t_{t} - t_{i}}{\lambda}},
ExponentialMovingWindow also has an ``ignore_na`` argument, which determines how
intermediate null values affect the calculation of the weights.
When ``ignore_na=False`` (the default), weights are calculated based on absolute
positions, so that intermediate null values affect the result.
When ``ignore_na=True``,
weights are calculated by ignoring intermediate null values.
For example, assuming ``adjust=True``, if ``ignore_na=False``, the weighted
average of ``3, NaN, 5`` would be calculated as
.. math::
\frac{(1-\alpha)^2 \cdot 3 + 1 \cdot 5}{(1-\alpha)^2 + 1}.
Whereas if ``ignore_na=True``, the weighted average would be calculated as
.. math::
\frac{(1-\alpha) \cdot 3 + 1 \cdot 5}{(1-\alpha) + 1}.
The :meth:`~Ewm.var`, :meth:`~Ewm.std`, and :meth:`~Ewm.cov` functions have a ``bias`` argument,
specifying whether the result should contain biased or unbiased statistics.
For example, if ``bias=True``, ``ewmvar(x)`` is calculated as
``ewmvar(x) = ewma(x**2) - ewma(x)**2``;
whereas if ``bias=False`` (the default), the biased variance statistics
are scaled by debiasing factors
.. math::
\frac{\left(\sum_{i=0}^t w_i\right)^2}{\left(\sum_{i=0}^t w_i\right)^2 - \sum_{i=0}^t w_i^2}.
(For :math:`w_i = 1`, this reduces to the usual :math:`N / (N - 1)` factor,
with :math:`N = t + 1`.)
See `Weighted Sample Variance <https://en.wikipedia.org/wiki/Weighted_arithmetic_mean#Weighted_sample_variance>`__
on Wikipedia for further details.
|