1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620
|
.. _groupby:
{{ header }}
*****************************
Group by: split-apply-combine
*****************************
By "group by" we are referring to a process involving one or more of the following
steps:
* **Splitting** the data into groups based on some criteria.
* **Applying** a function to each group independently.
* **Combining** the results into a data structure.
Out of these, the split step is the most straightforward. In fact, in many
situations we may wish to split the data set into groups and do something with
those groups. In the apply step, we might wish to do one of the
following:
* **Aggregation**: compute a summary statistic (or statistics) for each
group. Some examples:
* Compute group sums or means.
* Compute group sizes / counts.
* **Transformation**: perform some group-specific computations and return a
like-indexed object. Some examples:
* Standardize data (zscore) within a group.
* Filling NAs within groups with a value derived from each group.
* **Filtration**: discard some groups, according to a group-wise computation
that evaluates True or False. Some examples:
* Discard data that belongs to groups with only a few members.
* Filter out data based on the group sum or mean.
* Some combination of the above: GroupBy will examine the results of the apply
step and try to return a sensibly combined result if it doesn't fit into
either of the above two categories.
Since the set of object instance methods on pandas data structures are generally
rich and expressive, we often simply want to invoke, say, a DataFrame function
on each group. The name GroupBy should be quite familiar to those who have used
a SQL-based tool (or ``itertools``), in which you can write code like:
.. code-block:: sql
SELECT Column1, Column2, mean(Column3), sum(Column4)
FROM SomeTable
GROUP BY Column1, Column2
We aim to make operations like this natural and easy to express using
pandas. We'll address each area of GroupBy functionality then provide some
non-trivial examples / use cases.
See the :ref:`cookbook<cookbook.grouping>` for some advanced strategies.
.. _groupby.split:
Splitting an object into groups
-------------------------------
pandas objects can be split on any of their axes. The abstract definition of
grouping is to provide a mapping of labels to group names. To create a GroupBy
object (more on what the GroupBy object is later), you may do the following:
.. ipython:: python
df = pd.DataFrame(
[
("bird", "Falconiformes", 389.0),
("bird", "Psittaciformes", 24.0),
("mammal", "Carnivora", 80.2),
("mammal", "Primates", np.nan),
("mammal", "Carnivora", 58),
],
index=["falcon", "parrot", "lion", "monkey", "leopard"],
columns=("class", "order", "max_speed"),
)
df
# default is axis=0
grouped = df.groupby("class")
grouped = df.groupby("order", axis="columns")
grouped = df.groupby(["class", "order"])
The mapping can be specified many different ways:
* A Python function, to be called on each of the axis labels.
* A list or NumPy array of the same length as the selected axis.
* A dict or ``Series``, providing a ``label -> group name`` mapping.
* For ``DataFrame`` objects, a string indicating either a column name or
an index level name to be used to group.
* ``df.groupby('A')`` is just syntactic sugar for ``df.groupby(df['A'])``.
* A list of any of the above things.
Collectively we refer to the grouping objects as the **keys**. For example,
consider the following ``DataFrame``:
.. note::
A string passed to ``groupby`` may refer to either a column or an index level.
If a string matches both a column name and an index level name, a
``ValueError`` will be raised.
.. ipython:: python
df = pd.DataFrame(
{
"A": ["foo", "bar", "foo", "bar", "foo", "bar", "foo", "foo"],
"B": ["one", "one", "two", "three", "two", "two", "one", "three"],
"C": np.random.randn(8),
"D": np.random.randn(8),
}
)
df
On a DataFrame, we obtain a GroupBy object by calling :meth:`~DataFrame.groupby`.
We could naturally group by either the ``A`` or ``B`` columns, or both:
.. ipython:: python
grouped = df.groupby("A")
grouped = df.groupby(["A", "B"])
If we also have a MultiIndex on columns ``A`` and ``B``, we can group by all
but the specified columns
.. ipython:: python
df2 = df.set_index(["A", "B"])
grouped = df2.groupby(level=df2.index.names.difference(["B"]))
grouped.sum()
These will split the DataFrame on its index (rows). We could also split by the
columns:
.. ipython::
In [4]: def get_letter_type(letter):
...: if letter.lower() in 'aeiou':
...: return 'vowel'
...: else:
...: return 'consonant'
...:
In [5]: grouped = df.groupby(get_letter_type, axis=1)
pandas :class:`~pandas.Index` objects support duplicate values. If a
non-unique index is used as the group key in a groupby operation, all values
for the same index value will be considered to be in one group and thus the
output of aggregation functions will only contain unique index values:
.. ipython:: python
lst = [1, 2, 3, 1, 2, 3]
s = pd.Series([1, 2, 3, 10, 20, 30], lst)
grouped = s.groupby(level=0)
grouped.first()
grouped.last()
grouped.sum()
Note that **no splitting occurs** until it's needed. Creating the GroupBy object
only verifies that you've passed a valid mapping.
.. note::
Many kinds of complicated data manipulations can be expressed in terms of
GroupBy operations (though can't be guaranteed to be the most
efficient). You can get quite creative with the label mapping functions.
.. _groupby.sorting:
GroupBy sorting
~~~~~~~~~~~~~~~~~~~~~~~~~
By default the group keys are sorted during the ``groupby`` operation. You may however pass ``sort=False`` for potential speedups:
.. ipython:: python
df2 = pd.DataFrame({"X": ["B", "B", "A", "A"], "Y": [1, 2, 3, 4]})
df2.groupby(["X"]).sum()
df2.groupby(["X"], sort=False).sum()
Note that ``groupby`` will preserve the order in which *observations* are sorted *within* each group.
For example, the groups created by ``groupby()`` below are in the order they appeared in the original ``DataFrame``:
.. ipython:: python
df3 = pd.DataFrame({"X": ["A", "B", "A", "B"], "Y": [1, 4, 3, 2]})
df3.groupby(["X"]).get_group("A")
df3.groupby(["X"]).get_group("B")
.. _groupby.dropna:
.. versionadded:: 1.1.0
GroupBy dropna
^^^^^^^^^^^^^^
By default ``NA`` values are excluded from group keys during the ``groupby`` operation. However,
in case you want to include ``NA`` values in group keys, you could pass ``dropna=False`` to achieve it.
.. ipython:: python
df_list = [[1, 2, 3], [1, None, 4], [2, 1, 3], [1, 2, 2]]
df_dropna = pd.DataFrame(df_list, columns=["a", "b", "c"])
df_dropna
.. ipython:: python
# Default ``dropna`` is set to True, which will exclude NaNs in keys
df_dropna.groupby(by=["b"], dropna=True).sum()
# In order to allow NaN in keys, set ``dropna`` to False
df_dropna.groupby(by=["b"], dropna=False).sum()
The default setting of ``dropna`` argument is ``True`` which means ``NA`` are not included in group keys.
.. _groupby.attributes:
GroupBy object attributes
~~~~~~~~~~~~~~~~~~~~~~~~~
The ``groups`` attribute is a dict whose keys are the computed unique groups
and corresponding values being the axis labels belonging to each group. In the
above example we have:
.. ipython:: python
df.groupby("A").groups
df.groupby(get_letter_type, axis=1).groups
Calling the standard Python ``len`` function on the GroupBy object just returns
the length of the ``groups`` dict, so it is largely just a convenience:
.. ipython:: python
grouped = df.groupby(["A", "B"])
grouped.groups
len(grouped)
.. _groupby.tabcompletion:
``GroupBy`` will tab complete column names (and other attributes):
.. ipython:: python
:suppress:
n = 10
weight = np.random.normal(166, 20, size=n)
height = np.random.normal(60, 10, size=n)
time = pd.date_range("1/1/2000", periods=n)
gender = np.random.choice(["male", "female"], size=n)
df = pd.DataFrame(
{"height": height, "weight": weight, "gender": gender}, index=time
)
.. ipython:: python
df
gb = df.groupby("gender")
.. ipython::
@verbatim
In [1]: gb.<TAB> # noqa: E225, E999
gb.agg gb.boxplot gb.cummin gb.describe gb.filter gb.get_group gb.height gb.last gb.median gb.ngroups gb.plot gb.rank gb.std gb.transform
gb.aggregate gb.count gb.cumprod gb.dtype gb.first gb.groups gb.hist gb.max gb.min gb.nth gb.prod gb.resample gb.sum gb.var
gb.apply gb.cummax gb.cumsum gb.fillna gb.gender gb.head gb.indices gb.mean gb.name gb.ohlc gb.quantile gb.size gb.tail gb.weight
.. _groupby.multiindex:
GroupBy with MultiIndex
~~~~~~~~~~~~~~~~~~~~~~~
With :ref:`hierarchically-indexed data <advanced.hierarchical>`, it's quite
natural to group by one of the levels of the hierarchy.
Let's create a Series with a two-level ``MultiIndex``.
.. ipython:: python
arrays = [
["bar", "bar", "baz", "baz", "foo", "foo", "qux", "qux"],
["one", "two", "one", "two", "one", "two", "one", "two"],
]
index = pd.MultiIndex.from_arrays(arrays, names=["first", "second"])
s = pd.Series(np.random.randn(8), index=index)
s
We can then group by one of the levels in ``s``.
.. ipython:: python
grouped = s.groupby(level=0)
grouped.sum()
If the MultiIndex has names specified, these can be passed instead of the level
number:
.. ipython:: python
s.groupby(level="second").sum()
Grouping with multiple levels is supported.
.. ipython:: python
:suppress:
arrays = [
["bar", "bar", "baz", "baz", "foo", "foo", "qux", "qux"],
["doo", "doo", "bee", "bee", "bop", "bop", "bop", "bop"],
["one", "two", "one", "two", "one", "two", "one", "two"],
]
tuples = list(zip(*arrays))
index = pd.MultiIndex.from_tuples(tuples, names=["first", "second", "third"])
s = pd.Series(np.random.randn(8), index=index)
.. ipython:: python
s
s.groupby(level=["first", "second"]).sum()
Index level names may be supplied as keys.
.. ipython:: python
s.groupby(["first", "second"]).sum()
More on the ``sum`` function and aggregation later.
Grouping DataFrame with Index levels and columns
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
A DataFrame may be grouped by a combination of columns and index levels by
specifying the column names as strings and the index levels as ``pd.Grouper``
objects.
.. ipython:: python
arrays = [
["bar", "bar", "baz", "baz", "foo", "foo", "qux", "qux"],
["one", "two", "one", "two", "one", "two", "one", "two"],
]
index = pd.MultiIndex.from_arrays(arrays, names=["first", "second"])
df = pd.DataFrame({"A": [1, 1, 1, 1, 2, 2, 3, 3], "B": np.arange(8)}, index=index)
df
The following example groups ``df`` by the ``second`` index level and
the ``A`` column.
.. ipython:: python
df.groupby([pd.Grouper(level=1), "A"]).sum()
Index levels may also be specified by name.
.. ipython:: python
df.groupby([pd.Grouper(level="second"), "A"]).sum()
Index level names may be specified as keys directly to ``groupby``.
.. ipython:: python
df.groupby(["second", "A"]).sum()
DataFrame column selection in GroupBy
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Once you have created the GroupBy object from a DataFrame, you might want to do
something different for each of the columns. Thus, using ``[]`` similar to
getting a column from a DataFrame, you can do:
.. ipython:: python
df = pd.DataFrame(
{
"A": ["foo", "bar", "foo", "bar", "foo", "bar", "foo", "foo"],
"B": ["one", "one", "two", "three", "two", "two", "one", "three"],
"C": np.random.randn(8),
"D": np.random.randn(8),
}
)
df
grouped = df.groupby(["A"])
grouped_C = grouped["C"]
grouped_D = grouped["D"]
This is mainly syntactic sugar for the alternative and much more verbose:
.. ipython:: python
df["C"].groupby(df["A"])
Additionally this method avoids recomputing the internal grouping information
derived from the passed key.
.. _groupby.iterating-label:
Iterating through groups
------------------------
With the GroupBy object in hand, iterating through the grouped data is very
natural and functions similarly to :py:func:`itertools.groupby`:
.. ipython::
In [4]: grouped = df.groupby('A')
In [5]: for name, group in grouped:
...: print(name)
...: print(group)
...:
In the case of grouping by multiple keys, the group name will be a tuple:
.. ipython::
In [5]: for name, group in df.groupby(['A', 'B']):
...: print(name)
...: print(group)
...:
See :ref:`timeseries.iterating-label`.
Selecting a group
-----------------
A single group can be selected using
:meth:`~pandas.core.groupby.DataFrameGroupBy.get_group`:
.. ipython:: python
grouped.get_group("bar")
Or for an object grouped on multiple columns:
.. ipython:: python
df.groupby(["A", "B"]).get_group(("bar", "one"))
.. _groupby.aggregate:
Aggregation
-----------
Once the GroupBy object has been created, several methods are available to
perform a computation on the grouped data. These operations are similar to the
:ref:`aggregating API <basics.aggregate>`, :ref:`window API <window.overview>`,
and :ref:`resample API <timeseries.aggregate>`.
An obvious one is aggregation via the
:meth:`~pandas.core.groupby.DataFrameGroupBy.aggregate` or equivalently
:meth:`~pandas.core.groupby.DataFrameGroupBy.agg` method:
.. ipython:: python
grouped = df.groupby("A")
grouped[["C", "D"]].aggregate(np.sum)
grouped = df.groupby(["A", "B"])
grouped.aggregate(np.sum)
As you can see, the result of the aggregation will have the group names as the
new index along the grouped axis. In the case of multiple keys, the result is a
:ref:`MultiIndex <advanced.hierarchical>` by default, though this can be
changed by using the ``as_index`` option:
.. ipython:: python
grouped = df.groupby(["A", "B"], as_index=False)
grouped.aggregate(np.sum)
df.groupby("A", as_index=False)[["C", "D"]].sum()
Note that you could use the ``reset_index`` DataFrame function to achieve the
same result as the column names are stored in the resulting ``MultiIndex``:
.. ipython:: python
df.groupby(["A", "B"]).sum().reset_index()
Another simple aggregation example is to compute the size of each group.
This is included in GroupBy as the ``size`` method. It returns a Series whose
index are the group names and whose values are the sizes of each group.
.. ipython:: python
grouped.size()
.. ipython:: python
grouped.describe()
Another aggregation example is to compute the number of unique values of each group. This is similar to the ``value_counts`` function, except that it only counts unique values.
.. ipython:: python
ll = [['foo', 1], ['foo', 2], ['foo', 2], ['bar', 1], ['bar', 1]]
df4 = pd.DataFrame(ll, columns=["A", "B"])
df4
df4.groupby("A")["B"].nunique()
.. note::
Aggregation functions **will not** return the groups that you are aggregating over
if they are named *columns*, when ``as_index=True``, the default. The grouped columns will
be the **indices** of the returned object.
Passing ``as_index=False`` **will** return the groups that you are aggregating over, if they are
named *columns*.
Aggregating functions are the ones that reduce the dimension of the returned objects.
Some common aggregating functions are tabulated below:
.. csv-table::
:header: "Function", "Description"
:widths: 20, 80
:delim: ;
:meth:`~pd.core.groupby.DataFrameGroupBy.mean`;Compute mean of groups
:meth:`~pd.core.groupby.DataFrameGroupBy.sum`;Compute sum of group values
:meth:`~pd.core.groupby.DataFrameGroupBy.size`;Compute group sizes
:meth:`~pd.core.groupby.DataFrameGroupBy.count`;Compute count of group
:meth:`~pd.core.groupby.DataFrameGroupBy.std`;Standard deviation of groups
:meth:`~pd.core.groupby.DataFrameGroupBy.var`;Compute variance of groups
:meth:`~pd.core.groupby.DataFrameGroupBy.sem`;Standard error of the mean of groups
:meth:`~pd.core.groupby.DataFrameGroupBy.describe`;Generates descriptive statistics
:meth:`~pd.core.groupby.DataFrameGroupBy.first`;Compute first of group values
:meth:`~pd.core.groupby.DataFrameGroupBy.last`;Compute last of group values
:meth:`~pd.core.groupby.DataFrameGroupBy.nth`;Take nth value, or a subset if n is a list
:meth:`~pd.core.groupby.DataFrameGroupBy.min`;Compute min of group values
:meth:`~pd.core.groupby.DataFrameGroupBy.max`;Compute max of group values
The aggregating functions above will exclude NA values. Any function which
reduces a :class:`Series` to a scalar value is an aggregation function and will work,
a trivial example is ``df.groupby('A').agg(lambda ser: 1)``. Note that
:meth:`~pd.core.groupby.DataFrameGroupBy.nth` can act as a reducer *or* a
filter, see :ref:`here <groupby.nth>`.
.. _groupby.aggregate.multifunc:
Applying multiple functions at once
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
With grouped ``Series`` you can also pass a list or dict of functions to do
aggregation with, outputting a DataFrame:
.. ipython:: python
grouped = df.groupby("A")
grouped["C"].agg([np.sum, np.mean, np.std])
On a grouped ``DataFrame``, you can pass a list of functions to apply to each
column, which produces an aggregated result with a hierarchical index:
.. ipython:: python
grouped[["C", "D"]].agg([np.sum, np.mean, np.std])
The resulting aggregations are named for the functions themselves. If you
need to rename, then you can add in a chained operation for a ``Series`` like this:
.. ipython:: python
(
grouped["C"]
.agg([np.sum, np.mean, np.std])
.rename(columns={"sum": "foo", "mean": "bar", "std": "baz"})
)
For a grouped ``DataFrame``, you can rename in a similar manner:
.. ipython:: python
(
grouped[["C", "D"]].agg([np.sum, np.mean, np.std]).rename(
columns={"sum": "foo", "mean": "bar", "std": "baz"}
)
)
.. note::
In general, the output column names should be unique. You can't apply
the same function (or two functions with the same name) to the same
column.
.. ipython:: python
:okexcept:
grouped["C"].agg(["sum", "sum"])
pandas *does* allow you to provide multiple lambdas. In this case, pandas
will mangle the name of the (nameless) lambda functions, appending ``_<i>``
to each subsequent lambda.
.. ipython:: python
grouped["C"].agg([lambda x: x.max() - x.min(), lambda x: x.median() - x.mean()])
.. _groupby.aggregate.named:
Named aggregation
~~~~~~~~~~~~~~~~~
.. versionadded:: 0.25.0
To support column-specific aggregation *with control over the output column names*, pandas
accepts the special syntax in :meth:`GroupBy.agg`, known as "named aggregation", where
- The keywords are the *output* column names
- The values are tuples whose first element is the column to select
and the second element is the aggregation to apply to that column. pandas
provides the ``pandas.NamedAgg`` namedtuple with the fields ``['column', 'aggfunc']``
to make it clearer what the arguments are. As usual, the aggregation can
be a callable or a string alias.
.. ipython:: python
animals = pd.DataFrame(
{
"kind": ["cat", "dog", "cat", "dog"],
"height": [9.1, 6.0, 9.5, 34.0],
"weight": [7.9, 7.5, 9.9, 198.0],
}
)
animals
animals.groupby("kind").agg(
min_height=pd.NamedAgg(column="height", aggfunc="min"),
max_height=pd.NamedAgg(column="height", aggfunc="max"),
average_weight=pd.NamedAgg(column="weight", aggfunc=np.mean),
)
``pandas.NamedAgg`` is just a ``namedtuple``. Plain tuples are allowed as well.
.. ipython:: python
animals.groupby("kind").agg(
min_height=("height", "min"),
max_height=("height", "max"),
average_weight=("weight", np.mean),
)
If your desired output column names are not valid Python keywords, construct a dictionary
and unpack the keyword arguments
.. ipython:: python
animals.groupby("kind").agg(
**{
"total weight": pd.NamedAgg(column="weight", aggfunc=sum)
}
)
Additional keyword arguments are not passed through to the aggregation functions. Only pairs
of ``(column, aggfunc)`` should be passed as ``**kwargs``. If your aggregation functions
requires additional arguments, partially apply them with :meth:`functools.partial`.
.. note::
For Python 3.5 and earlier, the order of ``**kwargs`` in a functions was not
preserved. This means that the output column ordering would not be
consistent. To ensure consistent ordering, the keys (and so output columns)
will always be sorted for Python 3.5.
Named aggregation is also valid for Series groupby aggregations. In this case there's
no column selection, so the values are just the functions.
.. ipython:: python
animals.groupby("kind").height.agg(
min_height="min",
max_height="max",
)
Applying different functions to DataFrame columns
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
By passing a dict to ``aggregate`` you can apply a different aggregation to the
columns of a DataFrame:
.. ipython:: python
grouped.agg({"C": np.sum, "D": lambda x: np.std(x, ddof=1)})
The function names can also be strings. In order for a string to be valid it
must be either implemented on GroupBy or available via :ref:`dispatching
<groupby.dispatch>`:
.. ipython:: python
grouped.agg({"C": "sum", "D": "std"})
.. _groupby.aggregate.cython:
Cython-optimized aggregation functions
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Some common aggregations, currently only ``sum``, ``mean``, ``std``, and ``sem``, have
optimized Cython implementations:
.. ipython:: python
df.groupby("A")[["C", "D"]].sum()
df.groupby(["A", "B"]).mean()
Of course ``sum`` and ``mean`` are implemented on pandas objects, so the above
code would work even without the special versions via dispatching (see below).
.. _groupby.aggregate.udfs:
Aggregations with User-Defined Functions
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Users can also provide their own functions for custom aggregations. When aggregating
with a User-Defined Function (UDF), the UDF should not mutate the provided ``Series``, see
:ref:`gotchas.udf-mutation` for more information.
.. ipython:: python
animals.groupby("kind")[["height"]].agg(lambda x: set(x))
The resulting dtype will reflect that of the aggregating function. If the results from different groups have
different dtypes, then a common dtype will be determined in the same way as ``DataFrame`` construction.
.. ipython:: python
animals.groupby("kind")[["height"]].agg(lambda x: x.astype(int).sum())
.. _groupby.transform:
Transformation
--------------
The ``transform`` method returns an object that is indexed the same
as the one being grouped. The transform function must:
* Return a result that is either the same size as the group chunk or
broadcastable to the size of the group chunk (e.g., a scalar,
``grouped.transform(lambda x: x.iloc[-1])``).
* Operate column-by-column on the group chunk. The transform is applied to
the first group chunk using chunk.apply.
* Not perform in-place operations on the group chunk. Group chunks should
be treated as immutable, and changes to a group chunk may produce unexpected
results. For example, when using ``fillna``, ``inplace`` must be ``False``
(``grouped.transform(lambda x: x.fillna(inplace=False))``).
* (Optionally) operates on the entire group chunk. If this is supported, a
fast path is used starting from the *second* chunk.
.. deprecated:: 1.5.0
When using ``.transform`` on a grouped DataFrame and the transformation function
returns a DataFrame, currently pandas does not align the result's index
with the input's index. This behavior is deprecated and alignment will
be performed in a future version of pandas. You can apply ``.to_numpy()`` to the
result of the transformation function to avoid alignment.
Similar to :ref:`groupby.aggregate.udfs`, the resulting dtype will reflect that of the
transformation function. If the results from different groups have different dtypes, then
a common dtype will be determined in the same way as ``DataFrame`` construction.
Suppose we wished to standardize the data within each group:
.. ipython:: python
index = pd.date_range("10/1/1999", periods=1100)
ts = pd.Series(np.random.normal(0.5, 2, 1100), index)
ts = ts.rolling(window=100, min_periods=100).mean().dropna()
ts.head()
ts.tail()
transformed = ts.groupby(lambda x: x.year).transform(
lambda x: (x - x.mean()) / x.std()
)
We would expect the result to now have mean 0 and standard deviation 1 within
each group, which we can easily check:
.. ipython:: python
# Original Data
grouped = ts.groupby(lambda x: x.year)
grouped.mean()
grouped.std()
# Transformed Data
grouped_trans = transformed.groupby(lambda x: x.year)
grouped_trans.mean()
grouped_trans.std()
We can also visually compare the original and transformed data sets.
.. ipython:: python
compare = pd.DataFrame({"Original": ts, "Transformed": transformed})
@savefig groupby_transform_plot.png
compare.plot()
Transformation functions that have lower dimension outputs are broadcast to
match the shape of the input array.
.. ipython:: python
ts.groupby(lambda x: x.year).transform(lambda x: x.max() - x.min())
Alternatively, the built-in methods could be used to produce the same outputs.
.. ipython:: python
max_ts = ts.groupby(lambda x: x.year).transform("max")
min_ts = ts.groupby(lambda x: x.year).transform("min")
max_ts - min_ts
Another common data transform is to replace missing data with the group mean.
.. ipython:: python
:suppress:
cols = ["A", "B", "C"]
values = np.random.randn(1000, 3)
values[np.random.randint(0, 1000, 100), 0] = np.nan
values[np.random.randint(0, 1000, 50), 1] = np.nan
values[np.random.randint(0, 1000, 200), 2] = np.nan
data_df = pd.DataFrame(values, columns=cols)
.. ipython:: python
data_df
countries = np.array(["US", "UK", "GR", "JP"])
key = countries[np.random.randint(0, 4, 1000)]
grouped = data_df.groupby(key)
# Non-NA count in each group
grouped.count()
transformed = grouped.transform(lambda x: x.fillna(x.mean()))
We can verify that the group means have not changed in the transformed data
and that the transformed data contains no NAs.
.. ipython:: python
grouped_trans = transformed.groupby(key)
grouped.mean() # original group means
grouped_trans.mean() # transformation did not change group means
grouped.count() # original has some missing data points
grouped_trans.count() # counts after transformation
grouped_trans.size() # Verify non-NA count equals group size
.. note::
Some functions will automatically transform the input when applied to a
GroupBy object, but returning an object of the same shape as the original.
Passing ``as_index=False`` will not affect these transformation methods.
For example: ``fillna, ffill, bfill, shift.``.
.. ipython:: python
grouped.ffill()
.. _groupby.transform.window_resample:
Window and resample operations
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
It is possible to use ``resample()``, ``expanding()`` and
``rolling()`` as methods on groupbys.
The example below will apply the ``rolling()`` method on the samples of
the column B based on the groups of column A.
.. ipython:: python
df_re = pd.DataFrame({"A": [1] * 10 + [5] * 10, "B": np.arange(20)})
df_re
df_re.groupby("A").rolling(4).B.mean()
The ``expanding()`` method will accumulate a given operation
(``sum()`` in the example) for all the members of each particular
group.
.. ipython:: python
df_re.groupby("A").expanding().sum()
Suppose you want to use the ``resample()`` method to get a daily
frequency in each group of your dataframe and wish to complete the
missing values with the ``ffill()`` method.
.. ipython:: python
df_re = pd.DataFrame(
{
"date": pd.date_range(start="2016-01-01", periods=4, freq="W"),
"group": [1, 1, 2, 2],
"val": [5, 6, 7, 8],
}
).set_index("date")
df_re
df_re.groupby("group").resample("1D").ffill()
.. _groupby.filter:
Filtration
----------
The ``filter`` method returns a subset of the original object. Suppose we
want to take only elements that belong to groups with a group sum greater
than 2.
.. ipython:: python
sf = pd.Series([1, 1, 2, 3, 3, 3])
sf.groupby(sf).filter(lambda x: x.sum() > 2)
The argument of ``filter`` must be a function that, applied to the group as a
whole, returns ``True`` or ``False``.
Another useful operation is filtering out elements that belong to groups
with only a couple members.
.. ipython:: python
dff = pd.DataFrame({"A": np.arange(8), "B": list("aabbbbcc")})
dff.groupby("B").filter(lambda x: len(x) > 2)
Alternatively, instead of dropping the offending groups, we can return a
like-indexed objects where the groups that do not pass the filter are filled
with NaNs.
.. ipython:: python
dff.groupby("B").filter(lambda x: len(x) > 2, dropna=False)
For DataFrames with multiple columns, filters should explicitly specify a column as the filter criterion.
.. ipython:: python
dff["C"] = np.arange(8)
dff.groupby("B").filter(lambda x: len(x["C"]) > 2)
.. note::
Some functions when applied to a groupby object will act as a **filter** on the input, returning
a reduced shape of the original (and potentially eliminating groups), but with the index unchanged.
Passing ``as_index=False`` will not affect these transformation methods.
For example: ``head, tail``.
.. ipython:: python
dff.groupby("B").head(2)
.. _groupby.dispatch:
Dispatching to instance methods
-------------------------------
When doing an aggregation or transformation, you might just want to call an
instance method on each data group. This is pretty easy to do by passing lambda
functions:
.. ipython:: python
:okwarning:
grouped = df.groupby("A")
grouped.agg(lambda x: x.std())
But, it's rather verbose and can be untidy if you need to pass additional
arguments. Using a bit of metaprogramming cleverness, GroupBy now has the
ability to "dispatch" method calls to the groups:
.. ipython:: python
:okwarning:
grouped.std()
What is actually happening here is that a function wrapper is being
generated. When invoked, it takes any passed arguments and invokes the function
with any arguments on each group (in the above example, the ``std``
function). The results are then combined together much in the style of ``agg``
and ``transform`` (it actually uses ``apply`` to infer the gluing, documented
next). This enables some operations to be carried out rather succinctly:
.. ipython:: python
tsdf = pd.DataFrame(
np.random.randn(1000, 3),
index=pd.date_range("1/1/2000", periods=1000),
columns=["A", "B", "C"],
)
tsdf.iloc[::2] = np.nan
grouped = tsdf.groupby(lambda x: x.year)
grouped.fillna(method="pad")
In this example, we chopped the collection of time series into yearly chunks
then independently called :ref:`fillna <missing_data.fillna>` on the
groups.
The ``nlargest`` and ``nsmallest`` methods work on ``Series`` style groupbys:
.. ipython:: python
s = pd.Series([9, 8, 7, 5, 19, 1, 4.2, 3.3])
g = pd.Series(list("abababab"))
gb = s.groupby(g)
gb.nlargest(3)
gb.nsmallest(3)
.. _groupby.apply:
Flexible ``apply``
------------------
Some operations on the grouped data might not fit into either the aggregate or
transform categories. Or, you may simply want GroupBy to infer how to combine
the results. For these, use the ``apply`` function, which can be substituted
for both ``aggregate`` and ``transform`` in many standard use cases. However,
``apply`` can handle some exceptional use cases.
.. note::
``apply`` can act as a reducer, transformer, *or* filter function, depending
on exactly what is passed to it. It can depend on the passed function and
exactly what you are grouping. Thus the grouped column(s) may be included in
the output as well as set the indices.
.. ipython:: python
df
grouped = df.groupby("A")
# could also just call .describe()
grouped["C"].apply(lambda x: x.describe())
The dimension of the returned result can also change:
.. ipython:: python
grouped = df.groupby('A')['C']
def f(group):
return pd.DataFrame({'original': group,
'demeaned': group - group.mean()})
grouped.apply(f)
``apply`` on a Series can operate on a returned value from the applied function,
that is itself a series, and possibly upcast the result to a DataFrame:
.. ipython:: python
def f(x):
return pd.Series([x, x ** 2], index=["x", "x^2"])
s = pd.Series(np.random.rand(5))
s
s.apply(f)
Control grouped column(s) placement with ``group_keys``
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. note::
If ``group_keys=True`` is specified when calling :meth:`~DataFrame.groupby`,
functions passed to ``apply`` that return like-indexed outputs will have the
group keys added to the result index. Previous versions of pandas would add
the group keys only when the result from the applied function had a different
index than the input. If ``group_keys`` is not specified, the group keys will
not be added for like-indexed outputs. In the future this behavior
will change to always respect ``group_keys``, which defaults to ``True``.
.. versionchanged:: 1.5.0
To control whether the grouped column(s) are included in the indices, you can use
the argument ``group_keys``. Compare
.. ipython:: python
df.groupby("A", group_keys=True).apply(lambda x: x)
with
.. ipython:: python
df.groupby("A", group_keys=False).apply(lambda x: x)
Similar to :ref:`groupby.aggregate.udfs`, the resulting dtype will reflect that of the
apply function. If the results from different groups have different dtypes, then
a common dtype will be determined in the same way as ``DataFrame`` construction.
Numba Accelerated Routines
--------------------------
.. versionadded:: 1.1
If `Numba <https://numba.pydata.org/>`__ is installed as an optional dependency, the ``transform`` and
``aggregate`` methods support ``engine='numba'`` and ``engine_kwargs`` arguments.
See :ref:`enhancing performance with Numba <enhancingperf.numba>` for general usage of the arguments
and performance considerations.
The function signature must start with ``values, index`` **exactly** as the data belonging to each group
will be passed into ``values``, and the group index will be passed into ``index``.
.. warning::
When using ``engine='numba'``, there will be no "fall back" behavior internally. The group
data and group index will be passed as NumPy arrays to the JITed user defined function, and no
alternative execution attempts will be tried.
Other useful features
---------------------
Automatic exclusion of "nuisance" columns
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Again consider the example DataFrame we've been looking at:
.. ipython:: python
df
Suppose we wish to compute the standard deviation grouped by the ``A``
column. There is a slight problem, namely that we don't care about the data in
column ``B``. We refer to this as a "nuisance" column. You can avoid nuisance
columns by specifying ``numeric_only=True``:
.. ipython:: python
df.groupby("A").std(numeric_only=True)
Note that ``df.groupby('A').colname.std().`` is more efficient than
``df.groupby('A').std().colname``, so if the result of an aggregation function
is only interesting over one column (here ``colname``), it may be filtered
*before* applying the aggregation function.
.. note::
Any object column, also if it contains numerical values such as ``Decimal``
objects, is considered as a "nuisance" columns. They are excluded from
aggregate functions automatically in groupby.
If you do wish to include decimal or object columns in an aggregation with
other non-nuisance data types, you must do so explicitly.
.. warning::
The automatic dropping of nuisance columns has been deprecated and will be removed
in a future version of pandas. If columns are included that cannot be operated
on, pandas will instead raise an error. In order to avoid this, either select
the columns you wish to operate on or specify ``numeric_only=True``.
.. ipython:: python
:okwarning:
from decimal import Decimal
df_dec = pd.DataFrame(
{
"id": [1, 2, 1, 2],
"int_column": [1, 2, 3, 4],
"dec_column": [
Decimal("0.50"),
Decimal("0.15"),
Decimal("0.25"),
Decimal("0.40"),
],
}
)
# Decimal columns can be sum'd explicitly by themselves...
df_dec.groupby(["id"])[["dec_column"]].sum()
# ...but cannot be combined with standard data types or they will be excluded
df_dec.groupby(["id"])[["int_column", "dec_column"]].sum()
# Use .agg function to aggregate over standard and "nuisance" data types
# at the same time
df_dec.groupby(["id"]).agg({"int_column": "sum", "dec_column": "sum"})
.. _groupby.observed:
Handling of (un)observed Categorical values
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
When using a ``Categorical`` grouper (as a single grouper, or as part of multiple groupers), the ``observed`` keyword
controls whether to return a cartesian product of all possible groupers values (``observed=False``) or only those
that are observed groupers (``observed=True``).
Show all values:
.. ipython:: python
pd.Series([1, 1, 1]).groupby(
pd.Categorical(["a", "a", "a"], categories=["a", "b"]), observed=False
).count()
Show only the observed values:
.. ipython:: python
pd.Series([1, 1, 1]).groupby(
pd.Categorical(["a", "a", "a"], categories=["a", "b"]), observed=True
).count()
The returned dtype of the grouped will *always* include *all* of the categories that were grouped.
.. ipython:: python
s = (
pd.Series([1, 1, 1])
.groupby(pd.Categorical(["a", "a", "a"], categories=["a", "b"]), observed=False)
.count()
)
s.index.dtype
.. _groupby.missing:
NA and NaT group handling
~~~~~~~~~~~~~~~~~~~~~~~~~
If there are any NaN or NaT values in the grouping key, these will be
automatically excluded. In other words, there will never be an "NA group" or
"NaT group". This was not the case in older versions of pandas, but users were
generally discarding the NA group anyway (and supporting it was an
implementation headache).
Grouping with ordered factors
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Categorical variables represented as instance of pandas's ``Categorical`` class
can be used as group keys. If so, the order of the levels will be preserved:
.. ipython:: python
data = pd.Series(np.random.randn(100))
factor = pd.qcut(data, [0, 0.25, 0.5, 0.75, 1.0])
data.groupby(factor).mean()
.. _groupby.specify:
Grouping with a grouper specification
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
You may need to specify a bit more data to properly group. You can
use the ``pd.Grouper`` to provide this local control.
.. ipython:: python
import datetime
df = pd.DataFrame(
{
"Branch": "A A A A A A A B".split(),
"Buyer": "Carl Mark Carl Carl Joe Joe Joe Carl".split(),
"Quantity": [1, 3, 5, 1, 8, 1, 9, 3],
"Date": [
datetime.datetime(2013, 1, 1, 13, 0),
datetime.datetime(2013, 1, 1, 13, 5),
datetime.datetime(2013, 10, 1, 20, 0),
datetime.datetime(2013, 10, 2, 10, 0),
datetime.datetime(2013, 10, 1, 20, 0),
datetime.datetime(2013, 10, 2, 10, 0),
datetime.datetime(2013, 12, 2, 12, 0),
datetime.datetime(2013, 12, 2, 14, 0),
],
}
)
df
Groupby a specific column with the desired frequency. This is like resampling.
.. ipython:: python
df.groupby([pd.Grouper(freq="1M", key="Date"), "Buyer"])[["Quantity"]].sum()
You have an ambiguous specification in that you have a named index and a column
that could be potential groupers.
.. ipython:: python
df = df.set_index("Date")
df["Date"] = df.index + pd.offsets.MonthEnd(2)
df.groupby([pd.Grouper(freq="6M", key="Date"), "Buyer"])[["Quantity"]].sum()
df.groupby([pd.Grouper(freq="6M", level="Date"), "Buyer"])[["Quantity"]].sum()
Taking the first rows of each group
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Just like for a DataFrame or Series you can call head and tail on a groupby:
.. ipython:: python
df = pd.DataFrame([[1, 2], [1, 4], [5, 6]], columns=["A", "B"])
df
g = df.groupby("A")
g.head(1)
g.tail(1)
This shows the first or last n rows from each group.
.. _groupby.nth:
Taking the nth row of each group
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
To select from a DataFrame or Series the nth item, use
:meth:`~pd.core.groupby.DataFrameGroupBy.nth`. This is a reduction method, and
will return a single row (or no row) per group if you pass an int for n:
.. ipython:: python
df = pd.DataFrame([[1, np.nan], [1, 4], [5, 6]], columns=["A", "B"])
g = df.groupby("A")
g.nth(0)
g.nth(-1)
g.nth(1)
If you want to select the nth not-null item, use the ``dropna`` kwarg. For a DataFrame this should be either ``'any'`` or ``'all'`` just like you would pass to dropna:
.. ipython:: python
# nth(0) is the same as g.first()
g.nth(0, dropna="any")
g.first()
# nth(-1) is the same as g.last()
g.nth(-1, dropna="any") # NaNs denote group exhausted when using dropna
g.last()
g.B.nth(0, dropna="all")
As with other methods, passing ``as_index=False``, will achieve a filtration, which returns the grouped row.
.. ipython:: python
df = pd.DataFrame([[1, np.nan], [1, 4], [5, 6]], columns=["A", "B"])
g = df.groupby("A", as_index=False)
g.nth(0)
g.nth(-1)
You can also select multiple rows from each group by specifying multiple nth values as a list of ints.
.. ipython:: python
business_dates = pd.date_range(start="4/1/2014", end="6/30/2014", freq="B")
df = pd.DataFrame(1, index=business_dates, columns=["a", "b"])
# get the first, 4th, and last date index for each month
df.groupby([df.index.year, df.index.month]).nth([0, 3, -1])
Enumerate group items
~~~~~~~~~~~~~~~~~~~~~
To see the order in which each row appears within its group, use the
``cumcount`` method:
.. ipython:: python
dfg = pd.DataFrame(list("aaabba"), columns=["A"])
dfg
dfg.groupby("A").cumcount()
dfg.groupby("A").cumcount(ascending=False)
.. _groupby.ngroup:
Enumerate groups
~~~~~~~~~~~~~~~~
To see the ordering of the groups (as opposed to the order of rows
within a group given by ``cumcount``) you can use
:meth:`~pandas.core.groupby.DataFrameGroupBy.ngroup`.
Note that the numbers given to the groups match the order in which the
groups would be seen when iterating over the groupby object, not the
order they are first observed.
.. ipython:: python
dfg = pd.DataFrame(list("aaabba"), columns=["A"])
dfg
dfg.groupby("A").ngroup()
dfg.groupby("A").ngroup(ascending=False)
Plotting
~~~~~~~~
Groupby also works with some plotting methods. For example, suppose we
suspect that some features in a DataFrame may differ by group, in this case,
the values in column 1 where the group is "B" are 3 higher on average.
.. ipython:: python
np.random.seed(1234)
df = pd.DataFrame(np.random.randn(50, 2))
df["g"] = np.random.choice(["A", "B"], size=50)
df.loc[df["g"] == "B", 1] += 3
We can easily visualize this with a boxplot:
.. ipython:: python
:okwarning:
@savefig groupby_boxplot.png
df.groupby("g").boxplot()
The result of calling ``boxplot`` is a dictionary whose keys are the values
of our grouping column ``g`` ("A" and "B"). The values of the resulting dictionary
can be controlled by the ``return_type`` keyword of ``boxplot``.
See the :ref:`visualization documentation<visualization.box>` for more.
.. warning::
For historical reasons, ``df.groupby("g").boxplot()`` is not equivalent
to ``df.boxplot(by="g")``. See :ref:`here<visualization.box.return>` for
an explanation.
.. _groupby.pipe:
Piping function calls
~~~~~~~~~~~~~~~~~~~~~
Similar to the functionality provided by ``DataFrame`` and ``Series``, functions
that take ``GroupBy`` objects can be chained together using a ``pipe`` method to
allow for a cleaner, more readable syntax. To read about ``.pipe`` in general terms,
see :ref:`here <basics.pipe>`.
Combining ``.groupby`` and ``.pipe`` is often useful when you need to reuse
GroupBy objects.
As an example, imagine having a DataFrame with columns for stores, products,
revenue and quantity sold. We'd like to do a groupwise calculation of *prices*
(i.e. revenue/quantity) per store and per product. We could do this in a
multi-step operation, but expressing it in terms of piping can make the
code more readable. First we set the data:
.. ipython:: python
n = 1000
df = pd.DataFrame(
{
"Store": np.random.choice(["Store_1", "Store_2"], n),
"Product": np.random.choice(["Product_1", "Product_2"], n),
"Revenue": (np.random.random(n) * 50 + 10).round(2),
"Quantity": np.random.randint(1, 10, size=n),
}
)
df.head(2)
Now, to find prices per store/product, we can simply do:
.. ipython:: python
(
df.groupby(["Store", "Product"])
.pipe(lambda grp: grp.Revenue.sum() / grp.Quantity.sum())
.unstack()
.round(2)
)
Piping can also be expressive when you want to deliver a grouped object to some
arbitrary function, for example:
.. ipython:: python
def mean(groupby):
return groupby.mean()
df.groupby(["Store", "Product"]).pipe(mean)
where ``mean`` takes a GroupBy object and finds the mean of the Revenue and Quantity
columns respectively for each Store-Product combination. The ``mean`` function can
be any function that takes in a GroupBy object; the ``.pipe`` will pass the GroupBy
object as a parameter into the function you specify.
Examples
--------
Regrouping by factor
~~~~~~~~~~~~~~~~~~~~
Regroup columns of a DataFrame according to their sum, and sum the aggregated ones.
.. ipython:: python
df = pd.DataFrame({"a": [1, 0, 0], "b": [0, 1, 0], "c": [1, 0, 0], "d": [2, 3, 4]})
df
df.groupby(df.sum(), axis=1).sum()
.. _groupby.multicolumn_factorization:
Multi-column factorization
~~~~~~~~~~~~~~~~~~~~~~~~~~
By using :meth:`~pandas.core.groupby.DataFrameGroupBy.ngroup`, we can extract
information about the groups in a way similar to :func:`factorize` (as described
further in the :ref:`reshaping API <reshaping.factorize>`) but which applies
naturally to multiple columns of mixed type and different
sources. This can be useful as an intermediate categorical-like step
in processing, when the relationships between the group rows are more
important than their content, or as input to an algorithm which only
accepts the integer encoding. (For more information about support in
pandas for full categorical data, see the :ref:`Categorical
introduction <categorical>` and the
:ref:`API documentation <api.arrays.categorical>`.)
.. ipython:: python
dfg = pd.DataFrame({"A": [1, 1, 2, 3, 2], "B": list("aaaba")})
dfg
dfg.groupby(["A", "B"]).ngroup()
dfg.groupby(["A", [0, 0, 0, 1, 1]]).ngroup()
Groupby by indexer to 'resample' data
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Resampling produces new hypothetical samples (resamples) from already existing observed data or from a model that generates data. These new samples are similar to the pre-existing samples.
In order to resample to work on indices that are non-datetimelike, the following procedure can be utilized.
In the following examples, **df.index // 5** returns a binary array which is used to determine what gets selected for the groupby operation.
.. note:: The below example shows how we can downsample by consolidation of samples into fewer samples. Here by using **df.index // 5**, we are aggregating the samples in bins. By applying **std()** function, we aggregate the information contained in many samples into a small subset of values which is their standard deviation thereby reducing the number of samples.
.. ipython:: python
df = pd.DataFrame(np.random.randn(10, 2))
df
df.index // 5
df.groupby(df.index // 5).std()
Returning a Series to propagate names
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Group DataFrame columns, compute a set of metrics and return a named Series.
The Series name is used as the name for the column index. This is especially
useful in conjunction with reshaping operations such as stacking in which the
column index name will be used as the name of the inserted column:
.. ipython:: python
df = pd.DataFrame(
{
"a": [0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2],
"b": [0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1],
"c": [1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0],
"d": [0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1],
}
)
def compute_metrics(x):
result = {"b_sum": x["b"].sum(), "c_mean": x["c"].mean()}
return pd.Series(result, name="metrics")
result = df.groupby("a").apply(compute_metrics)
result
result.stack()
|