1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
|
from importlib import import_module
import numpy as np
import pandas as pd
for imp in ["pandas.util", "pandas.tools.hashing"]:
try:
hashing = import_module(imp)
break
except (ImportError, TypeError, ValueError):
pass
class Factorize:
params = [
[True, False],
[True, False],
[
"int64",
"uint64",
"float64",
"object",
"object_str",
"datetime64[ns]",
"datetime64[ns, tz]",
"Int64",
"boolean",
"string[pyarrow]",
],
]
param_names = ["unique", "sort", "dtype"]
def setup(self, unique, sort, dtype):
N = 10**5
if dtype in ["int64", "uint64", "Int64", "object"]:
data = pd.Index(np.arange(N), dtype=dtype)
elif dtype == "float64":
data = pd.Index(np.random.randn(N), dtype=dtype)
elif dtype == "boolean":
data = pd.array(np.random.randint(0, 2, N), dtype=dtype)
elif dtype == "datetime64[ns]":
data = pd.date_range("2011-01-01", freq="h", periods=N)
elif dtype == "datetime64[ns, tz]":
data = pd.date_range("2011-01-01", freq="h", periods=N, tz="Asia/Tokyo")
elif dtype == "object_str":
data = pd.Index([f"i-{i}" for i in range(N)], dtype=object)
elif dtype == "string[pyarrow]":
data = pd.array(
pd.Index([f"i-{i}" for i in range(N)], dtype=object),
dtype="string[pyarrow]",
)
else:
raise NotImplementedError
if not unique:
data = data.repeat(5)
self.data = data
def time_factorize(self, unique, sort, dtype):
pd.factorize(self.data, sort=sort)
def peakmem_factorize(self, unique, sort, dtype):
pd.factorize(self.data, sort=sort)
class Duplicated:
params = [
[True, False],
["first", "last", False],
[
"int64",
"uint64",
"float64",
"string",
"datetime64[ns]",
"datetime64[ns, tz]",
"timestamp[ms][pyarrow]",
"duration[s][pyarrow]",
],
]
param_names = ["unique", "keep", "dtype"]
def setup(self, unique, keep, dtype):
N = 10**5
if dtype in ["int64", "uint64"]:
data = pd.Index(np.arange(N), dtype=dtype)
elif dtype == "float64":
data = pd.Index(np.random.randn(N), dtype="float64")
elif dtype == "string":
data = pd.Index([f"i-{i}" for i in range(N)], dtype=object)
elif dtype == "datetime64[ns]":
data = pd.date_range("2011-01-01", freq="h", periods=N)
elif dtype == "datetime64[ns, tz]":
data = pd.date_range("2011-01-01", freq="h", periods=N, tz="Asia/Tokyo")
elif dtype in ["timestamp[ms][pyarrow]", "duration[s][pyarrow]"]:
data = pd.Index(np.arange(N), dtype=dtype)
else:
raise NotImplementedError
if not unique:
data = data.repeat(5)
self.idx = data
# cache is_unique
self.idx.is_unique
def time_duplicated(self, unique, keep, dtype):
self.idx.duplicated(keep=keep)
class DuplicatedMaskedArray:
params = [
[True, False],
["first", "last", False],
["Int64", "Float64"],
]
param_names = ["unique", "keep", "dtype"]
def setup(self, unique, keep, dtype):
N = 10**5
data = pd.Series(np.arange(N), dtype=dtype)
data[list(range(1, N, 100))] = pd.NA
if not unique:
data = data.repeat(5)
self.ser = data
# cache is_unique
self.ser.is_unique
def time_duplicated(self, unique, keep, dtype):
self.ser.duplicated(keep=keep)
class Hashing:
def setup_cache(self):
N = 10**5
df = pd.DataFrame(
{
"strings": pd.Series(
pd.Index([f"i-{i}" for i in range(10000)], dtype=object).take(
np.random.randint(0, 10000, size=N)
)
),
"floats": np.random.randn(N),
"ints": np.arange(N),
"dates": pd.date_range("20110101", freq="s", periods=N),
"timedeltas": pd.timedelta_range("1 day", freq="s", periods=N),
}
)
df["categories"] = df["strings"].astype("category")
df.iloc[10:20] = np.nan
return df
def time_frame(self, df):
hashing.hash_pandas_object(df)
def time_series_int(self, df):
hashing.hash_pandas_object(df["ints"])
def time_series_string(self, df):
hashing.hash_pandas_object(df["strings"])
def time_series_float(self, df):
hashing.hash_pandas_object(df["floats"])
def time_series_categorical(self, df):
hashing.hash_pandas_object(df["categories"])
def time_series_timedeltas(self, df):
hashing.hash_pandas_object(df["timedeltas"])
def time_series_dates(self, df):
hashing.hash_pandas_object(df["dates"])
class Quantile:
params = [
[0, 0.5, 1],
["linear", "nearest", "lower", "higher", "midpoint"],
["float64", "int64", "uint64"],
]
param_names = ["quantile", "interpolation", "dtype"]
def setup(self, quantile, interpolation, dtype):
N = 10**5
if dtype in ["int64", "uint64"]:
data = np.arange(N, dtype=dtype)
elif dtype == "float64":
data = np.random.randn(N)
else:
raise NotImplementedError
self.ser = pd.Series(data.repeat(5))
def time_quantile(self, quantile, interpolation, dtype):
self.ser.quantile(quantile, interpolation=interpolation)
class SortIntegerArray:
params = [10**3, 10**5]
def setup(self, N):
data = np.arange(N, dtype=float)
data[40] = np.nan
self.array = pd.array(data, dtype="Int64")
def time_argsort(self, N):
self.array.argsort()
from .pandas_vb_common import setup # noqa: F401 isort:skip
|