1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479
|
import operator
import warnings
import numpy as np
import pandas as pd
from pandas import (
DataFrame,
Index,
Series,
Timestamp,
date_range,
to_timedelta,
)
from .pandas_vb_common import numeric_dtypes
try:
import pandas.core.computation.expressions as expr
except ImportError:
import pandas.computation.expressions as expr
try:
import pandas.tseries.holiday
except ImportError:
pass
class IntFrameWithScalar:
params = [
[np.float64, np.int64],
[2, 3.0, np.int32(4), np.float64(5)],
[
operator.add,
operator.sub,
operator.mul,
operator.truediv,
operator.floordiv,
operator.pow,
operator.mod,
operator.eq,
operator.ne,
operator.gt,
operator.ge,
operator.lt,
operator.le,
],
]
param_names = ["dtype", "scalar", "op"]
def setup(self, dtype, scalar, op):
arr = np.random.randn(20000, 100)
self.df = DataFrame(arr.astype(dtype))
def time_frame_op_with_scalar(self, dtype, scalar, op):
op(self.df, scalar)
class OpWithFillValue:
def setup(self):
# GH#31300
arr = np.arange(10**6)
df = DataFrame({"A": arr})
ser = df["A"]
self.df = df
self.ser = ser
def time_frame_op_with_fill_value_no_nas(self):
self.df.add(self.df, fill_value=4)
def time_series_op_with_fill_value_no_nas(self):
self.ser.add(self.ser, fill_value=4)
class MixedFrameWithSeriesAxis:
params = [
[
"eq",
"ne",
"lt",
"le",
"ge",
"gt",
"add",
"sub",
"truediv",
"floordiv",
"mul",
"pow",
]
]
param_names = ["opname"]
def setup(self, opname):
arr = np.arange(10**6).reshape(1000, -1)
df = DataFrame(arr)
df["C"] = 1.0
self.df = df
self.ser = df[0]
self.row = df.iloc[0]
def time_frame_op_with_series_axis0(self, opname):
getattr(self.df, opname)(self.ser, axis=0)
def time_frame_op_with_series_axis1(self, opname):
getattr(operator, opname)(self.df, self.ser)
# exclude comparisons from the params for time_frame_op_with_series_axis1
# since they do not do alignment so raise
time_frame_op_with_series_axis1.params = [params[0][6:]]
class FrameWithFrameWide:
# Many-columns, mixed dtypes
params = [
[
# GH#32779 has discussion of which operators are included here
operator.add,
operator.floordiv,
operator.gt,
],
[
# (n_rows, n_columns)
(1_000_000, 10),
(100_000, 100),
(10_000, 1000),
(1000, 10_000),
],
]
param_names = ["op", "shape"]
def setup(self, op, shape):
# we choose dtypes so as to make the blocks
# a) not perfectly match between right and left
# b) appreciably bigger than single columns
n_rows, n_cols = shape
if op is operator.floordiv:
# floordiv is much slower than the other operations -> use less data
n_rows = n_rows // 10
# construct dataframe with 2 blocks
arr1 = np.random.randn(n_rows, n_cols // 2).astype("f8")
arr2 = np.random.randn(n_rows, n_cols // 2).astype("f4")
df = pd.concat([DataFrame(arr1), DataFrame(arr2)], axis=1, ignore_index=True)
# should already be the case, but just to be sure
df._consolidate_inplace()
# TODO: GH#33198 the setting here shouldn't need two steps
arr1 = np.random.randn(n_rows, max(n_cols // 4, 3)).astype("f8")
arr2 = np.random.randn(n_rows, n_cols // 2).astype("i8")
arr3 = np.random.randn(n_rows, n_cols // 4).astype("f8")
df2 = pd.concat(
[DataFrame(arr1), DataFrame(arr2), DataFrame(arr3)],
axis=1,
ignore_index=True,
)
# should already be the case, but just to be sure
df2._consolidate_inplace()
self.left = df
self.right = df2
def time_op_different_blocks(self, op, shape):
# blocks (and dtypes) are not aligned
op(self.left, self.right)
def time_op_same_blocks(self, op, shape):
# blocks (and dtypes) are aligned
op(self.left, self.left)
class Ops:
params = [[True, False], ["default", 1]]
param_names = ["use_numexpr", "threads"]
def setup(self, use_numexpr, threads):
self.df = DataFrame(np.random.randn(20000, 100))
self.df2 = DataFrame(np.random.randn(20000, 100))
if threads != "default":
expr.set_numexpr_threads(threads)
if not use_numexpr:
expr.set_use_numexpr(False)
def time_frame_add(self, use_numexpr, threads):
self.df + self.df2
def time_frame_mult(self, use_numexpr, threads):
self.df * self.df2
def time_frame_multi_and(self, use_numexpr, threads):
self.df[(self.df > 0) & (self.df2 > 0)]
def time_frame_comparison(self, use_numexpr, threads):
self.df > self.df2
def teardown(self, use_numexpr, threads):
expr.set_use_numexpr(True)
expr.set_numexpr_threads()
class Ops2:
def setup(self):
N = 10**3
self.df = DataFrame(np.random.randn(N, N))
self.df2 = DataFrame(np.random.randn(N, N))
self.df_int = DataFrame(
np.random.randint(
np.iinfo(np.int16).min, np.iinfo(np.int16).max, size=(N, N)
)
)
self.df2_int = DataFrame(
np.random.randint(
np.iinfo(np.int16).min, np.iinfo(np.int16).max, size=(N, N)
)
)
self.s = Series(np.random.randn(N))
# Division
def time_frame_float_div(self):
self.df // self.df2
def time_frame_float_div_by_zero(self):
self.df / 0
def time_frame_float_floor_by_zero(self):
self.df // 0
def time_frame_int_div_by_zero(self):
self.df_int / 0
# Modulo
def time_frame_int_mod(self):
self.df_int % self.df2_int
def time_frame_float_mod(self):
self.df % self.df2
# Dot product
def time_frame_dot(self):
self.df.dot(self.df2)
def time_series_dot(self):
self.s.dot(self.s)
def time_frame_series_dot(self):
self.df.dot(self.s)
class Timeseries:
params = [None, "US/Eastern"]
param_names = ["tz"]
def setup(self, tz):
N = 10**6
halfway = (N // 2) - 1
self.s = Series(date_range("20010101", periods=N, freq="min", tz=tz))
self.ts = self.s[halfway]
self.s2 = Series(date_range("20010101", periods=N, freq="s", tz=tz))
self.ts_different_reso = Timestamp("2001-01-02", tz=tz)
def time_series_timestamp_compare(self, tz):
self.s <= self.ts
def time_series_timestamp_different_reso_compare(self, tz):
self.s <= self.ts_different_reso
def time_timestamp_series_compare(self, tz):
self.ts >= self.s
def time_timestamp_ops_diff(self, tz):
self.s2.diff()
def time_timestamp_ops_diff_with_shift(self, tz):
self.s - self.s.shift()
class IrregularOps:
def setup(self):
N = 10**5
idx = date_range(start="1/1/2000", periods=N, freq="s")
s = Series(np.random.randn(N), index=idx)
self.left = s.sample(frac=1)
self.right = s.sample(frac=1)
def time_add(self):
self.left + self.right
class TimedeltaOps:
def setup(self):
self.td = to_timedelta(np.arange(1000000))
self.ts = Timestamp("2000")
def time_add_td_ts(self):
self.td + self.ts
class CategoricalComparisons:
params = ["__lt__", "__le__", "__eq__", "__ne__", "__ge__", "__gt__"]
param_names = ["op"]
def setup(self, op):
N = 10**5
self.cat = pd.Categorical(list("aabbcd") * N, ordered=True)
def time_categorical_op(self, op):
getattr(self.cat, op)("b")
class IndexArithmetic:
params = ["float", "int"]
param_names = ["dtype"]
def setup(self, dtype):
N = 10**6
if dtype == "float":
self.index = Index(np.arange(N), dtype=np.float64)
elif dtype == "int":
self.index = Index(np.arange(N), dtype=np.int64)
def time_add(self, dtype):
self.index + 2
def time_subtract(self, dtype):
self.index - 2
def time_multiply(self, dtype):
self.index * 2
def time_divide(self, dtype):
self.index / 2
def time_modulo(self, dtype):
self.index % 2
class NumericInferOps:
# from GH 7332
params = numeric_dtypes
param_names = ["dtype"]
def setup(self, dtype):
N = 5 * 10**5
self.df = DataFrame(
{"A": np.arange(N).astype(dtype), "B": np.arange(N).astype(dtype)}
)
def time_add(self, dtype):
self.df["A"] + self.df["B"]
def time_subtract(self, dtype):
self.df["A"] - self.df["B"]
def time_multiply(self, dtype):
self.df["A"] * self.df["B"]
def time_divide(self, dtype):
self.df["A"] / self.df["B"]
def time_modulo(self, dtype):
self.df["A"] % self.df["B"]
class DateInferOps:
# from GH 7332
def setup_cache(self):
N = 5 * 10**5
df = DataFrame({"datetime64": np.arange(N).astype("datetime64[ms]")})
df["timedelta"] = df["datetime64"] - df["datetime64"]
return df
def time_subtract_datetimes(self, df):
df["datetime64"] - df["datetime64"]
def time_timedelta_plus_datetime(self, df):
df["timedelta"] + df["datetime64"]
def time_add_timedeltas(self, df):
df["timedelta"] + df["timedelta"]
hcal = pd.tseries.holiday.USFederalHolidayCalendar()
# These offsets currently raise a NotImplementedError with .apply_index()
non_apply = [
pd.offsets.Day(),
pd.offsets.BYearEnd(),
pd.offsets.BYearBegin(),
pd.offsets.BQuarterEnd(),
pd.offsets.BQuarterBegin(),
pd.offsets.BMonthEnd(),
pd.offsets.BMonthBegin(),
pd.offsets.CustomBusinessDay(),
pd.offsets.CustomBusinessDay(calendar=hcal),
pd.offsets.CustomBusinessMonthBegin(calendar=hcal),
pd.offsets.CustomBusinessMonthEnd(calendar=hcal),
pd.offsets.CustomBusinessMonthEnd(calendar=hcal),
]
other_offsets = [
pd.offsets.YearEnd(),
pd.offsets.YearBegin(),
pd.offsets.QuarterEnd(),
pd.offsets.QuarterBegin(),
pd.offsets.MonthEnd(),
pd.offsets.MonthBegin(),
pd.offsets.DateOffset(months=2, days=2),
pd.offsets.BusinessDay(),
pd.offsets.SemiMonthEnd(),
pd.offsets.SemiMonthBegin(),
]
offsets = non_apply + other_offsets
class OffsetArrayArithmetic:
params = offsets
param_names = ["offset"]
def setup(self, offset):
N = 10000
rng = date_range(start="1/1/2000", periods=N, freq="min")
self.rng = rng
self.ser = Series(rng)
def time_add_series_offset(self, offset):
with warnings.catch_warnings(record=True):
self.ser + offset
def time_add_dti_offset(self, offset):
with warnings.catch_warnings(record=True):
self.rng + offset
class ApplyIndex:
params = other_offsets
param_names = ["offset"]
def setup(self, offset):
N = 10000
rng = date_range(start="1/1/2000", periods=N, freq="min")
self.rng = rng
def time_apply_index(self, offset):
self.rng + offset
class BinaryOpsMultiIndex:
params = ["sub", "add", "mul", "div"]
param_names = ["func"]
def setup(self, func):
array = date_range("20200101 00:00", "20200102 0:00", freq="s")
level_0_names = [str(i) for i in range(30)]
index = pd.MultiIndex.from_product([level_0_names, array])
column_names = ["col_1", "col_2"]
self.df = DataFrame(
np.random.rand(len(index), 2), index=index, columns=column_names
)
self.arg_df = DataFrame(
np.random.randint(1, 10, (len(level_0_names), 2)),
index=level_0_names,
columns=column_names,
)
def time_binary_op_multiindex(self, func):
getattr(self.df, func)(self.arg_df, level=0)
from .pandas_vb_common import setup # noqa: F401 isort:skip
|