1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337
|
import string
import sys
import warnings
import numpy as np
import pandas as pd
try:
from pandas.api.types import union_categoricals
except ImportError:
try:
from pandas.types.concat import union_categoricals
except ImportError:
pass
class Constructor:
def setup(self):
N = 10**5
self.categories = list("abcde")
self.cat_idx = pd.Index(self.categories)
self.values = np.tile(self.categories, N)
self.codes = np.tile(range(len(self.categories)), N)
self.datetimes = pd.Series(
pd.date_range("1995-01-01 00:00:00", periods=N / 10, freq="s")
)
self.datetimes_with_nat = self.datetimes.copy()
self.datetimes_with_nat.iloc[-1] = pd.NaT
self.values_some_nan = list(np.tile(self.categories + [np.nan], N))
self.values_all_nan = [np.nan] * len(self.values)
self.values_all_int8 = np.ones(N, "int8")
self.categorical = pd.Categorical(self.values, self.categories)
self.series = pd.Series(self.categorical)
self.intervals = pd.interval_range(0, 1, periods=N // 10)
def time_regular(self):
pd.Categorical(self.values, self.categories)
def time_fastpath(self):
dtype = pd.CategoricalDtype(categories=self.cat_idx)
pd.Categorical._simple_new(self.codes, dtype)
def time_datetimes(self):
pd.Categorical(self.datetimes)
def time_interval(self):
pd.Categorical(self.datetimes, categories=self.datetimes)
def time_datetimes_with_nat(self):
pd.Categorical(self.datetimes_with_nat)
def time_with_nan(self):
pd.Categorical(self.values_some_nan)
def time_all_nan(self):
pd.Categorical(self.values_all_nan)
def time_from_codes_all_int8(self):
pd.Categorical.from_codes(self.values_all_int8, self.categories)
def time_existing_categorical(self):
pd.Categorical(self.categorical)
def time_existing_series(self):
pd.Categorical(self.series)
class AsType:
def setup(self):
N = 10**5
random_pick = np.random.default_rng().choice
categories = {
"str": list(string.ascii_letters),
"int": np.random.randint(2**16, size=154),
"float": sys.maxsize * np.random.random((38,)),
"timestamp": [
pd.Timestamp(x, unit="s") for x in np.random.randint(2**18, size=578)
],
}
self.df = pd.DataFrame(
{col: random_pick(cats, N) for col, cats in categories.items()}
)
for col in ("int", "float", "timestamp"):
self.df[col + "_as_str"] = self.df[col].astype(str)
for col in self.df.columns:
self.df[col] = self.df[col].astype("category")
def astype_str(self):
[self.df[col].astype("str") for col in "int float timestamp".split()]
def astype_int(self):
[self.df[col].astype("int") for col in "int_as_str timestamp".split()]
def astype_float(self):
[
self.df[col].astype("float")
for col in "float_as_str int int_as_str timestamp".split()
]
def astype_datetime(self):
self.df["float"].astype(pd.DatetimeTZDtype(tz="US/Pacific"))
class Concat:
def setup(self):
N = 10**5
self.s = pd.Series(list("aabbcd") * N).astype("category")
self.a = pd.Categorical(list("aabbcd") * N)
self.b = pd.Categorical(list("bbcdjk") * N)
self.idx_a = pd.CategoricalIndex(range(N), range(N))
self.idx_b = pd.CategoricalIndex(range(N + 1), range(N + 1))
self.df_a = pd.DataFrame(range(N), columns=["a"], index=self.idx_a)
self.df_b = pd.DataFrame(range(N + 1), columns=["a"], index=self.idx_b)
def time_concat(self):
pd.concat([self.s, self.s])
def time_union(self):
union_categoricals([self.a, self.b])
def time_append_overlapping_index(self):
self.idx_a.append(self.idx_a)
def time_append_non_overlapping_index(self):
self.idx_a.append(self.idx_b)
def time_concat_overlapping_index(self):
pd.concat([self.df_a, self.df_a])
def time_concat_non_overlapping_index(self):
pd.concat([self.df_a, self.df_b])
class ValueCounts:
params = [True, False]
param_names = ["dropna"]
def setup(self, dropna):
n = 5 * 10**5
arr = [f"s{i:04d}" for i in np.random.randint(0, n // 10, size=n)]
self.ts = pd.Series(arr).astype("category")
def time_value_counts(self, dropna):
self.ts.value_counts(dropna=dropna)
class Repr:
def setup(self):
self.sel = pd.Series(["s1234"]).astype("category")
def time_rendering(self):
str(self.sel)
class SetCategories:
def setup(self):
n = 5 * 10**5
arr = [f"s{i:04d}" for i in np.random.randint(0, n // 10, size=n)]
self.ts = pd.Series(arr).astype("category")
def time_set_categories(self):
self.ts.cat.set_categories(self.ts.cat.categories[::2])
class RemoveCategories:
def setup(self):
n = 5 * 10**5
arr = [f"s{i:04d}" for i in np.random.randint(0, n // 10, size=n)]
self.ts = pd.Series(arr).astype("category")
def time_remove_categories(self):
self.ts.cat.remove_categories(self.ts.cat.categories[::2])
class Rank:
def setup(self):
N = 10**5
ncats = 15
self.s_str = pd.Series(np.random.randint(0, ncats, size=N).astype(str))
self.s_str_cat = pd.Series(self.s_str, dtype="category")
with warnings.catch_warnings(record=True):
str_cat_type = pd.CategoricalDtype(set(self.s_str), ordered=True)
self.s_str_cat_ordered = self.s_str.astype(str_cat_type)
self.s_int = pd.Series(np.random.randint(0, ncats, size=N))
self.s_int_cat = pd.Series(self.s_int, dtype="category")
with warnings.catch_warnings(record=True):
int_cat_type = pd.CategoricalDtype(set(self.s_int), ordered=True)
self.s_int_cat_ordered = self.s_int.astype(int_cat_type)
def time_rank_string(self):
self.s_str.rank()
def time_rank_string_cat(self):
self.s_str_cat.rank()
def time_rank_string_cat_ordered(self):
self.s_str_cat_ordered.rank()
def time_rank_int(self):
self.s_int.rank()
def time_rank_int_cat(self):
self.s_int_cat.rank()
def time_rank_int_cat_ordered(self):
self.s_int_cat_ordered.rank()
class IsMonotonic:
def setup(self):
N = 1000
self.c = pd.CategoricalIndex(list("a" * N + "b" * N + "c" * N))
self.s = pd.Series(self.c)
def time_categorical_index_is_monotonic_increasing(self):
self.c.is_monotonic_increasing
def time_categorical_index_is_monotonic_decreasing(self):
self.c.is_monotonic_decreasing
def time_categorical_series_is_monotonic_increasing(self):
self.s.is_monotonic_increasing
def time_categorical_series_is_monotonic_decreasing(self):
self.s.is_monotonic_decreasing
class Contains:
def setup(self):
N = 10**5
self.ci = pd.CategoricalIndex(np.arange(N))
self.c = self.ci.values
self.key = self.ci.categories[0]
def time_categorical_index_contains(self):
self.key in self.ci
def time_categorical_contains(self):
self.key in self.c
class CategoricalSlicing:
params = ["monotonic_incr", "monotonic_decr", "non_monotonic"]
param_names = ["index"]
def setup(self, index):
N = 10**6
categories = ["a", "b", "c"]
if index == "monotonic_incr":
codes = np.repeat([0, 1, 2], N)
elif index == "monotonic_decr":
codes = np.repeat([2, 1, 0], N)
elif index == "non_monotonic":
codes = np.tile([0, 1, 2], N)
else:
raise ValueError(f"Invalid index param: {index}")
self.data = pd.Categorical.from_codes(codes, categories=categories)
self.scalar = 10000
self.list = list(range(10000))
self.cat_scalar = "b"
def time_getitem_scalar(self, index):
self.data[self.scalar]
def time_getitem_slice(self, index):
self.data[: self.scalar]
def time_getitem_list_like(self, index):
self.data[[self.scalar]]
def time_getitem_list(self, index):
self.data[self.list]
def time_getitem_bool_array(self, index):
self.data[self.data == self.cat_scalar]
class Indexing:
def setup(self):
N = 10**5
self.index = pd.CategoricalIndex(range(N), range(N))
self.series = pd.Series(range(N), index=self.index).sort_index()
self.category = self.index[500]
def time_get_loc(self):
self.index.get_loc(self.category)
def time_shallow_copy(self):
self.index._view()
def time_align(self):
pd.DataFrame({"a": self.series, "b": self.series[:500]})
def time_intersection(self):
self.index[:750].intersection(self.index[250:])
def time_unique(self):
self.index.unique()
def time_reindex(self):
self.index.reindex(self.index[:500])
def time_reindex_missing(self):
self.index.reindex(["a", "b", "c", "d"])
def time_sort_values(self):
self.index.sort_values(ascending=False)
class SearchSorted:
def setup(self):
N = 10**5
self.ci = pd.CategoricalIndex(np.arange(N)).sort_values()
self.c = self.ci.values
self.key = self.ci.categories[1]
def time_categorical_index_contains(self):
self.ci.searchsorted(self.key)
def time_categorical_contains(self):
self.c.searchsorted(self.key)
from .pandas_vb_common import setup # noqa: F401 isort:skip
|