1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873
|
import string
import warnings
import numpy as np
from pandas import (
DataFrame,
Index,
MultiIndex,
NaT,
Series,
date_range,
isnull,
period_range,
timedelta_range,
)
class AsType:
params = [
[
# from_dtype == to_dtype
("Float64", "Float64"),
("float64[pyarrow]", "float64[pyarrow]"),
# from non-EA to EA
("float64", "Float64"),
("float64", "float64[pyarrow]"),
# from EA to non-EA
("Float64", "float64"),
("float64[pyarrow]", "float64"),
# from EA to EA
("Int64", "Float64"),
("int64[pyarrow]", "float64[pyarrow]"),
],
[False, True],
]
param_names = ["from_to_dtypes", "copy"]
def setup(self, from_to_dtypes, copy):
from_dtype = from_to_dtypes[0]
if from_dtype in ("float64", "Float64", "float64[pyarrow]"):
data = np.random.randn(100, 100)
elif from_dtype in ("int64", "Int64", "int64[pyarrow]"):
data = np.random.randint(0, 1000, (100, 100))
else:
raise NotImplementedError
self.df = DataFrame(data, dtype=from_dtype)
def time_astype(self, from_to_dtypes, copy):
self.df.astype(from_to_dtypes[1], copy=copy)
class Clip:
params = [
["float64", "Float64", "float64[pyarrow]"],
]
param_names = ["dtype"]
def setup(self, dtype):
data = np.random.randn(100_000, 10)
df = DataFrame(data, dtype=dtype)
self.df = df
def time_clip(self, dtype):
self.df.clip(-1.0, 1.0)
class GetNumericData:
def setup(self):
self.df = DataFrame(np.random.randn(10000, 25))
self.df["foo"] = "bar"
self.df["bar"] = "baz"
self.df = self.df._consolidate()
def time_frame_get_numeric_data(self):
self.df._get_numeric_data()
class Reindex:
def setup(self):
N = 10**3
self.df = DataFrame(np.random.randn(N * 10, N))
self.idx = np.arange(4 * N, 7 * N)
self.idx_cols = np.random.randint(0, N, N)
self.df2 = DataFrame(
{
c: {
0: np.random.randint(0, 2, N).astype(np.bool_),
1: np.random.randint(0, N, N).astype(np.int16),
2: np.random.randint(0, N, N).astype(np.int32),
3: np.random.randint(0, N, N).astype(np.int64),
}[np.random.randint(0, 4)]
for c in range(N)
}
)
def time_reindex_axis0(self):
self.df.reindex(self.idx)
def time_reindex_axis1(self):
self.df.reindex(columns=self.idx_cols)
def time_reindex_axis1_missing(self):
self.df.reindex(columns=self.idx)
def time_reindex_both_axes(self):
self.df.reindex(index=self.idx, columns=self.idx_cols)
def time_reindex_upcast(self):
self.df2.reindex(np.random.permutation(range(1200)))
class Rename:
def setup(self):
N = 10**3
self.df = DataFrame(np.random.randn(N * 10, N))
self.idx = np.arange(4 * N, 7 * N)
self.dict_idx = {k: k for k in self.idx}
self.df2 = DataFrame(
{
c: {
0: np.random.randint(0, 2, N).astype(np.bool_),
1: np.random.randint(0, N, N).astype(np.int16),
2: np.random.randint(0, N, N).astype(np.int32),
3: np.random.randint(0, N, N).astype(np.int64),
}[np.random.randint(0, 4)]
for c in range(N)
}
)
def time_rename_single(self):
self.df.rename({0: 0})
def time_rename_axis0(self):
self.df.rename(self.dict_idx)
def time_rename_axis1(self):
self.df.rename(columns=self.dict_idx)
def time_rename_both_axes(self):
self.df.rename(index=self.dict_idx, columns=self.dict_idx)
def time_dict_rename_both_axes(self):
self.df.rename(index=self.dict_idx, columns=self.dict_idx)
class Iteration:
# mem_itertuples_* benchmarks are slow
timeout = 120
def setup(self):
N = 1000
self.df = DataFrame(np.random.randn(N * 10, N))
self.df2 = DataFrame(np.random.randn(N * 50, 10))
self.df3 = DataFrame(
np.random.randn(N, 5 * N), columns=["C" + str(c) for c in range(N * 5)]
)
self.df4 = DataFrame(np.random.randn(N * 1000, 10))
def time_items(self):
# (monitor no-copying behaviour)
if hasattr(self.df, "_item_cache"):
self.df._item_cache.clear()
for name, col in self.df.items():
pass
def time_items_cached(self):
for name, col in self.df.items():
pass
def time_iteritems_indexing(self):
for col in self.df3:
self.df3[col]
def time_itertuples_start(self):
self.df4.itertuples()
def time_itertuples_read_first(self):
next(self.df4.itertuples())
def time_itertuples(self):
for row in self.df4.itertuples():
pass
def time_itertuples_to_list(self):
list(self.df4.itertuples())
def mem_itertuples_start(self):
return self.df4.itertuples()
def peakmem_itertuples_start(self):
self.df4.itertuples()
def mem_itertuples_read_first(self):
return next(self.df4.itertuples())
def peakmem_itertuples(self):
for row in self.df4.itertuples():
pass
def mem_itertuples_to_list(self):
return list(self.df4.itertuples())
def peakmem_itertuples_to_list(self):
list(self.df4.itertuples())
def time_itertuples_raw_start(self):
self.df4.itertuples(index=False, name=None)
def time_itertuples_raw_read_first(self):
next(self.df4.itertuples(index=False, name=None))
def time_itertuples_raw_tuples(self):
for row in self.df4.itertuples(index=False, name=None):
pass
def time_itertuples_raw_tuples_to_list(self):
list(self.df4.itertuples(index=False, name=None))
def mem_itertuples_raw_start(self):
return self.df4.itertuples(index=False, name=None)
def peakmem_itertuples_raw_start(self):
self.df4.itertuples(index=False, name=None)
def peakmem_itertuples_raw_read_first(self):
next(self.df4.itertuples(index=False, name=None))
def peakmem_itertuples_raw(self):
for row in self.df4.itertuples(index=False, name=None):
pass
def mem_itertuples_raw_to_list(self):
return list(self.df4.itertuples(index=False, name=None))
def peakmem_itertuples_raw_to_list(self):
list(self.df4.itertuples(index=False, name=None))
def time_iterrows(self):
for row in self.df.iterrows():
pass
class ToString:
def setup(self):
self.df = DataFrame(np.random.randn(100, 10))
def time_to_string_floats(self):
self.df.to_string()
class ToHTML:
def setup(self):
nrows = 500
self.df2 = DataFrame(np.random.randn(nrows, 10))
self.df2[0] = period_range("2000", periods=nrows)
self.df2[1] = range(nrows)
def time_to_html_mixed(self):
self.df2.to_html()
class ToDict:
params = [["dict", "list", "series", "split", "records", "index"]]
param_names = ["orient"]
def setup(self, orient):
data = np.random.randint(0, 1000, size=(10000, 4))
self.int_df = DataFrame(data)
self.datetimelike_df = self.int_df.astype("timedelta64[ns]")
def time_to_dict_ints(self, orient):
self.int_df.to_dict(orient=orient)
def time_to_dict_datetimelike(self, orient):
self.datetimelike_df.to_dict(orient=orient)
class ToNumpy:
def setup(self):
N = 10000
M = 10
self.df_tall = DataFrame(np.random.randn(N, M))
self.df_wide = DataFrame(np.random.randn(M, N))
self.df_mixed_tall = self.df_tall.copy()
self.df_mixed_tall["foo"] = "bar"
self.df_mixed_tall[0] = period_range("2000", periods=N)
self.df_mixed_tall[1] = range(N)
self.df_mixed_wide = self.df_wide.copy()
self.df_mixed_wide["foo"] = "bar"
self.df_mixed_wide[0] = period_range("2000", periods=M)
self.df_mixed_wide[1] = range(M)
def time_to_numpy_tall(self):
self.df_tall.to_numpy()
def time_to_numpy_wide(self):
self.df_wide.to_numpy()
def time_to_numpy_mixed_tall(self):
self.df_mixed_tall.to_numpy()
def time_to_numpy_mixed_wide(self):
self.df_mixed_wide.to_numpy()
def time_values_tall(self):
self.df_tall.values
def time_values_wide(self):
self.df_wide.values
def time_values_mixed_tall(self):
self.df_mixed_tall.values
def time_values_mixed_wide(self):
self.df_mixed_wide.values
class ToRecords:
def setup(self):
N = 100_000
data = np.random.randn(N, 2)
mi = MultiIndex.from_arrays(
[
np.arange(N),
date_range("1970-01-01", periods=N, freq="ms"),
]
)
self.df = DataFrame(data)
self.df_mi = DataFrame(data, index=mi)
def time_to_records(self):
self.df.to_records(index=True)
def time_to_records_multiindex(self):
self.df_mi.to_records(index=True)
class Repr:
def setup(self):
nrows = 10000
data = np.random.randn(nrows, 10)
arrays = np.tile(np.random.randn(3, nrows // 100), 100)
idx = MultiIndex.from_arrays(arrays)
self.df3 = DataFrame(data, index=idx)
self.df4 = DataFrame(data, index=np.random.randn(nrows))
self.df_tall = DataFrame(np.random.randn(nrows, 10))
self.df_wide = DataFrame(np.random.randn(10, nrows))
def time_html_repr_trunc_mi(self):
self.df3._repr_html_()
def time_html_repr_trunc_si(self):
self.df4._repr_html_()
def time_repr_tall(self):
repr(self.df_tall)
def time_frame_repr_wide(self):
repr(self.df_wide)
class MaskBool:
def setup(self):
data = np.random.randn(1000, 500)
df = DataFrame(data)
df = df.where(df > 0)
self.bools = df > 0
self.mask = isnull(df)
def time_frame_mask_bools(self):
self.bools.mask(self.mask)
def time_frame_mask_floats(self):
self.bools.astype(float).mask(self.mask)
class Isnull:
def setup(self):
N = 10**3
self.df_no_null = DataFrame(np.random.randn(N, N))
sample = np.array([np.nan, 1.0])
data = np.random.choice(sample, (N, N))
self.df = DataFrame(data)
sample = np.array(list(string.ascii_letters + string.whitespace))
data = np.random.choice(sample, (N, N))
self.df_strings = DataFrame(data)
sample = np.array(
[
NaT,
np.nan,
None,
np.datetime64("NaT"),
np.timedelta64("NaT"),
0,
1,
2.0,
"",
"abcd",
]
)
data = np.random.choice(sample, (N, N))
self.df_obj = DataFrame(data)
def time_isnull_floats_no_null(self):
isnull(self.df_no_null)
def time_isnull(self):
isnull(self.df)
def time_isnull_strngs(self):
isnull(self.df_strings)
def time_isnull_obj(self):
isnull(self.df_obj)
class Fillna:
params = (
[True, False],
[
"float64",
"float32",
"object",
"Int64",
"Float64",
"datetime64[ns]",
"datetime64[ns, tz]",
"timedelta64[ns]",
],
)
param_names = ["inplace", "dtype"]
def setup(self, inplace, dtype):
N, M = 10000, 100
if dtype in ("datetime64[ns]", "datetime64[ns, tz]", "timedelta64[ns]"):
data = {
"datetime64[ns]": date_range("2011-01-01", freq="h", periods=N),
"datetime64[ns, tz]": date_range(
"2011-01-01", freq="h", periods=N, tz="Asia/Tokyo"
),
"timedelta64[ns]": timedelta_range(start="1 day", periods=N, freq="1D"),
}
self.df = DataFrame({f"col_{i}": data[dtype] for i in range(M)})
self.df[::2] = None
else:
values = np.random.randn(N, M)
values[::2] = np.nan
if dtype == "Int64":
values = values.round()
self.df = DataFrame(values, dtype=dtype)
self.fill_values = self.df.iloc[self.df.first_valid_index()].to_dict()
def time_fillna(self, inplace, dtype):
self.df.fillna(value=self.fill_values, inplace=inplace)
def time_ffill(self, inplace, dtype):
self.df.ffill(inplace=inplace)
def time_bfill(self, inplace, dtype):
self.df.bfill(inplace=inplace)
class Dropna:
params = (["all", "any"], [0, 1])
param_names = ["how", "axis"]
def setup(self, how, axis):
self.df = DataFrame(np.random.randn(10000, 1000))
self.df.iloc[50:1000, 20:50] = np.nan
self.df.iloc[2000:3000] = np.nan
self.df.iloc[:, 60:70] = np.nan
self.df_mixed = self.df.copy()
self.df_mixed["foo"] = "bar"
def time_dropna(self, how, axis):
self.df.dropna(how=how, axis=axis)
def time_dropna_axis_mixed_dtypes(self, how, axis):
self.df_mixed.dropna(how=how, axis=axis)
class Isna:
params = ["float64", "Float64", "float64[pyarrow]"]
param_names = ["dtype"]
def setup(self, dtype):
data = np.random.randn(10000, 1000)
# all-na columns
data[:, 600:800] = np.nan
# partial-na columns
data[800:1000, 4000:5000] = np.nan
self.df = DataFrame(data, dtype=dtype)
def time_isna(self, dtype):
self.df.isna()
class Count:
params = [0, 1]
param_names = ["axis"]
def setup(self, axis):
self.df = DataFrame(np.random.randn(10000, 1000))
self.df.iloc[50:1000, 20:50] = np.nan
self.df.iloc[2000:3000] = np.nan
self.df.iloc[:, 60:70] = np.nan
self.df_mixed = self.df.copy()
self.df_mixed["foo"] = "bar"
def time_count(self, axis):
self.df.count(axis=axis)
def time_count_mixed_dtypes(self, axis):
self.df_mixed.count(axis=axis)
class Apply:
def setup(self):
self.df = DataFrame(np.random.randn(1000, 100))
self.s = Series(np.arange(1028.0))
self.df2 = DataFrame({i: self.s for i in range(1028)})
self.df3 = DataFrame(np.random.randn(1000, 3), columns=list("ABC"))
def time_apply_user_func(self):
self.df2.apply(lambda x: np.corrcoef(x, self.s)[(0, 1)])
def time_apply_axis_1(self):
self.df.apply(lambda x: x + 1, axis=1)
def time_apply_lambda_mean(self):
self.df.apply(lambda x: x.mean())
def time_apply_str_mean(self):
self.df.apply("mean")
def time_apply_pass_thru(self):
self.df.apply(lambda x: x)
def time_apply_ref_by_name(self):
self.df3.apply(lambda x: x["A"] + x["B"], axis=1)
class Dtypes:
def setup(self):
self.df = DataFrame(np.random.randn(1000, 1000))
def time_frame_dtypes(self):
self.df.dtypes
class Equals:
def setup(self):
N = 10**3
self.float_df = DataFrame(np.random.randn(N, N))
self.float_df_nan = self.float_df.copy()
self.float_df_nan.iloc[-1, -1] = np.nan
self.object_df = DataFrame("foo", index=range(N), columns=range(N))
self.object_df_nan = self.object_df.copy()
self.object_df_nan.iloc[-1, -1] = np.nan
self.nonunique_cols = self.object_df.copy()
self.nonunique_cols.columns = ["A"] * len(self.nonunique_cols.columns)
self.nonunique_cols_nan = self.nonunique_cols.copy()
self.nonunique_cols_nan.iloc[-1, -1] = np.nan
def time_frame_float_equal(self):
self.float_df.equals(self.float_df)
def time_frame_float_unequal(self):
self.float_df.equals(self.float_df_nan)
def time_frame_nonunique_equal(self):
self.nonunique_cols.equals(self.nonunique_cols)
def time_frame_nonunique_unequal(self):
self.nonunique_cols.equals(self.nonunique_cols_nan)
def time_frame_object_equal(self):
self.object_df.equals(self.object_df)
def time_frame_object_unequal(self):
self.object_df.equals(self.object_df_nan)
class Interpolate:
def setup(self):
N = 10000
# this is the worst case, where every column has NaNs.
arr = np.random.randn(N, 100)
# NB: we need to set values in array, not in df.values, otherwise
# the benchmark will be misleading for ArrayManager
arr[::2] = np.nan
self.df = DataFrame(arr)
self.df2 = DataFrame(
{
"A": np.arange(0, N),
"B": np.random.randint(0, 100, N),
"C": np.random.randn(N),
"D": np.random.randn(N),
}
)
self.df2.loc[1::5, "A"] = np.nan
self.df2.loc[1::5, "C"] = np.nan
def time_interpolate(self):
self.df.interpolate()
def time_interpolate_some_good(self):
self.df2.interpolate()
class Shift:
# frame shift speedup issue-5609
params = [0, 1]
param_names = ["axis"]
def setup(self, axis):
self.df = DataFrame(np.random.rand(10000, 500))
def time_shift(self, axis):
self.df.shift(1, axis=axis)
class Nunique:
def setup(self):
self.df = DataFrame(np.random.randn(10000, 1000))
def time_frame_nunique(self):
self.df.nunique()
class SeriesNuniqueWithNan:
def setup(self):
values = 100 * [np.nan] + list(range(100))
self.ser = Series(np.tile(values, 10000), dtype=float)
def time_series_nunique_nan(self):
self.ser.nunique()
class Duplicated:
def setup(self):
n = 1 << 20
t = date_range("2015-01-01", freq="s", periods=(n // 64))
xs = np.random.randn(n // 64).round(2)
self.df = DataFrame(
{
"a": np.random.randint(-1 << 8, 1 << 8, n),
"b": np.random.choice(t, n),
"c": np.random.choice(xs, n),
}
)
self.df2 = DataFrame(np.random.randn(1000, 100).astype(str)).T
def time_frame_duplicated(self):
self.df.duplicated()
def time_frame_duplicated_wide(self):
self.df2.duplicated()
def time_frame_duplicated_subset(self):
self.df.duplicated(subset=["a"])
class XS:
params = [0, 1]
param_names = ["axis"]
def setup(self, axis):
self.N = 10**4
self.df = DataFrame(np.random.randn(self.N, self.N))
def time_frame_xs(self, axis):
self.df.xs(self.N / 2, axis=axis)
class SortValues:
params = [True, False]
param_names = ["ascending"]
def setup(self, ascending):
self.df = DataFrame(np.random.randn(1000000, 2), columns=list("AB"))
def time_frame_sort_values(self, ascending):
self.df.sort_values(by="A", ascending=ascending)
class SortMultiKey:
params = [True, False]
param_names = ["monotonic"]
def setup(self, monotonic):
N = 10000
K = 10
df = DataFrame(
{
"key1": Index([f"i-{i}" for i in range(N)], dtype=object).values.repeat(
K
),
"key2": Index([f"i-{i}" for i in range(N)], dtype=object).values.repeat(
K
),
"value": np.random.randn(N * K),
}
)
if monotonic:
df = df.sort_values(["key1", "key2"])
self.df_by_columns = df
self.df_by_index = df.set_index(["key1", "key2"])
def time_sort_values(self, monotonic):
self.df_by_columns.sort_values(by=["key1", "key2"])
def time_sort_index(self, monotonic):
self.df_by_index.sort_index()
class Quantile:
params = [0, 1]
param_names = ["axis"]
def setup(self, axis):
self.df = DataFrame(np.random.randn(1000, 3), columns=list("ABC"))
def time_frame_quantile(self, axis):
self.df.quantile([0.1, 0.5], axis=axis)
class Rank:
param_names = ["dtype"]
params = [
["int", "uint", "float", "object"],
]
def setup(self, dtype):
self.df = DataFrame(
np.random.randn(10000, 10).astype(dtype), columns=range(10), dtype=dtype
)
def time_rank(self, dtype):
self.df.rank()
class GetDtypeCounts:
# 2807
def setup(self):
self.df = DataFrame(np.random.randn(10, 10000))
def time_frame_get_dtype_counts(self):
with warnings.catch_warnings(record=True):
self.df.dtypes.value_counts()
def time_info(self):
self.df.info()
class NSort:
params = ["first", "last", "all"]
param_names = ["keep"]
def setup(self, keep):
self.df = DataFrame(np.random.randn(100000, 3), columns=list("ABC"))
def time_nlargest_one_column(self, keep):
self.df.nlargest(100, "A", keep=keep)
def time_nlargest_two_columns(self, keep):
self.df.nlargest(100, ["A", "B"], keep=keep)
def time_nsmallest_one_column(self, keep):
self.df.nsmallest(100, "A", keep=keep)
def time_nsmallest_two_columns(self, keep):
self.df.nsmallest(100, ["A", "B"], keep=keep)
class Describe:
def setup(self):
self.df = DataFrame(
{
"a": np.random.randint(0, 100, 10**6),
"b": np.random.randint(0, 100, 10**6),
"c": np.random.randint(0, 100, 10**6),
}
)
def time_series_describe(self):
self.df["a"].describe()
def time_dataframe_describe(self):
self.df.describe()
class MemoryUsage:
def setup(self):
self.df = DataFrame(np.random.randn(100000, 2), columns=list("AB"))
self.df2 = self.df.copy()
self.df2["A"] = self.df2["A"].astype("object")
def time_memory_usage(self):
self.df.memory_usage(deep=True)
def time_memory_usage_object_dtype(self):
self.df2.memory_usage(deep=True)
class Round:
def setup(self):
self.df = DataFrame(np.random.randn(10000, 10))
self.df_t = self.df.transpose(copy=True)
def time_round(self):
self.df.round()
def time_round_transposed(self):
self.df_t.round()
def peakmem_round(self):
self.df.round()
def peakmem_round_transposed(self):
self.df_t.round()
class Where:
params = (
[True, False],
["float64", "Float64", "float64[pyarrow]"],
)
param_names = ["dtype"]
def setup(self, inplace, dtype):
self.df = DataFrame(np.random.randn(100_000, 10), dtype=dtype)
self.mask = self.df < 0
def time_where(self, inplace, dtype):
self.df.where(self.mask, other=0.0, inplace=inplace)
class FindValidIndex:
param_names = ["dtype"]
params = [
["float", "Float64", "float64[pyarrow]"],
]
def setup(self, dtype):
df = DataFrame(
np.random.randn(100000, 2),
columns=list("AB"),
dtype=dtype,
)
df.iloc[:100, 0] = None
df.iloc[:200, 1] = None
df.iloc[-100:, 0] = None
df.iloc[-200:, 1] = None
self.df = df
def time_first_valid_index(self, dtype):
self.df.first_valid_index()
def time_last_valid_index(self, dtype):
self.df.last_valid_index()
from .pandas_vb_common import setup # noqa: F401 isort:skip
|