1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327
|
from functools import wraps
import threading
import numpy as np
from pandas import (
DataFrame,
Index,
Series,
date_range,
factorize,
read_csv,
)
from pandas.core.algorithms import take_nd
try:
from pandas import (
rolling_kurt,
rolling_max,
rolling_mean,
rolling_median,
rolling_min,
rolling_skew,
rolling_std,
rolling_var,
)
have_rolling_methods = True
except ImportError:
have_rolling_methods = False
try:
from pandas._libs import algos
except ImportError:
from pandas import algos
from .pandas_vb_common import BaseIO # isort:skip
def test_parallel(num_threads=2, kwargs_list=None):
"""
Decorator to run the same function multiple times in parallel.
Parameters
----------
num_threads : int, optional
The number of times the function is run in parallel.
kwargs_list : list of dicts, optional
The list of kwargs to update original
function kwargs on different threads.
Notes
-----
This decorator does not pass the return value of the decorated function.
Original from scikit-image:
https://github.com/scikit-image/scikit-image/pull/1519
"""
assert num_threads > 0
has_kwargs_list = kwargs_list is not None
if has_kwargs_list:
assert len(kwargs_list) == num_threads
def wrapper(func):
@wraps(func)
def inner(*args, **kwargs):
if has_kwargs_list:
update_kwargs = lambda i: dict(kwargs, **kwargs_list[i])
else:
update_kwargs = lambda i: kwargs
threads = []
for i in range(num_threads):
updated_kwargs = update_kwargs(i)
thread = threading.Thread(target=func, args=args, kwargs=updated_kwargs)
threads.append(thread)
for thread in threads:
thread.start()
for thread in threads:
thread.join()
return inner
return wrapper
class ParallelGroupbyMethods:
params = ([2, 4, 8], ["count", "last", "max", "mean", "min", "prod", "sum", "var"])
param_names = ["threads", "method"]
def setup(self, threads, method):
N = 10**6
ngroups = 10**3
df = DataFrame(
{"key": np.random.randint(0, ngroups, size=N), "data": np.random.randn(N)}
)
@test_parallel(num_threads=threads)
def parallel():
getattr(df.groupby("key")["data"], method)()
self.parallel = parallel
def loop():
getattr(df.groupby("key")["data"], method)()
self.loop = loop
def time_parallel(self, threads, method):
self.parallel()
def time_loop(self, threads, method):
for i in range(threads):
self.loop()
class ParallelGroups:
params = [2, 4, 8]
param_names = ["threads"]
def setup(self, threads):
size = 2**22
ngroups = 10**3
data = Series(np.random.randint(0, ngroups, size=size))
@test_parallel(num_threads=threads)
def get_groups():
data.groupby(data).groups
self.get_groups = get_groups
def time_get_groups(self, threads):
self.get_groups()
class ParallelTake1D:
params = ["int64", "float64"]
param_names = ["dtype"]
def setup(self, dtype):
N = 10**6
df = DataFrame({"col": np.arange(N, dtype=dtype)})
indexer = np.arange(100, len(df) - 100)
@test_parallel(num_threads=2)
def parallel_take1d():
take_nd(df["col"].values, indexer)
self.parallel_take1d = parallel_take1d
def time_take1d(self, dtype):
self.parallel_take1d()
class ParallelKth:
# This depends exclusively on code in _libs/, could go in libs.py
number = 1
repeat = 5
def setup(self):
N = 10**7
k = 5 * 10**5
kwargs_list = [{"arr": np.random.randn(N)}, {"arr": np.random.randn(N)}]
@test_parallel(num_threads=2, kwargs_list=kwargs_list)
def parallel_kth_smallest(arr):
algos.kth_smallest(arr, k)
self.parallel_kth_smallest = parallel_kth_smallest
def time_kth_smallest(self):
self.parallel_kth_smallest()
class ParallelDatetimeFields:
def setup(self):
N = 10**6
self.dti = date_range("1900-01-01", periods=N, freq="min")
self.period = self.dti.to_period("D")
def time_datetime_field_year(self):
@test_parallel(num_threads=2)
def run(dti):
dti.year
run(self.dti)
def time_datetime_field_day(self):
@test_parallel(num_threads=2)
def run(dti):
dti.day
run(self.dti)
def time_datetime_field_daysinmonth(self):
@test_parallel(num_threads=2)
def run(dti):
dti.days_in_month
run(self.dti)
def time_datetime_field_normalize(self):
@test_parallel(num_threads=2)
def run(dti):
dti.normalize()
run(self.dti)
def time_datetime_to_period(self):
@test_parallel(num_threads=2)
def run(dti):
dti.to_period("s")
run(self.dti)
def time_period_to_datetime(self):
@test_parallel(num_threads=2)
def run(period):
period.to_timestamp()
run(self.period)
class ParallelRolling:
params = ["median", "mean", "min", "max", "var", "skew", "kurt", "std"]
param_names = ["method"]
def setup(self, method):
win = 100
arr = np.random.rand(100000)
if hasattr(DataFrame, "rolling"):
df = DataFrame(arr).rolling(win)
@test_parallel(num_threads=2)
def parallel_rolling():
getattr(df, method)()
self.parallel_rolling = parallel_rolling
elif have_rolling_methods:
rolling = {
"median": rolling_median,
"mean": rolling_mean,
"min": rolling_min,
"max": rolling_max,
"var": rolling_var,
"skew": rolling_skew,
"kurt": rolling_kurt,
"std": rolling_std,
}
@test_parallel(num_threads=2)
def parallel_rolling():
rolling[method](arr, win)
self.parallel_rolling = parallel_rolling
else:
raise NotImplementedError
def time_rolling(self, method):
self.parallel_rolling()
class ParallelReadCSV(BaseIO):
number = 1
repeat = 5
params = ["float", "object", "datetime"]
param_names = ["dtype"]
def setup(self, dtype):
rows = 10000
cols = 50
if dtype == "float":
df = DataFrame(np.random.randn(rows, cols))
elif dtype == "datetime":
df = DataFrame(
np.random.randn(rows, cols), index=date_range("1/1/2000", periods=rows)
)
elif dtype == "object":
df = DataFrame(
"foo", index=range(rows), columns=["object%03d" for _ in range(5)]
)
else:
raise NotImplementedError
self.fname = f"__test_{dtype}__.csv"
df.to_csv(self.fname)
@test_parallel(num_threads=2)
def parallel_read_csv():
read_csv(self.fname)
self.parallel_read_csv = parallel_read_csv
def time_read_csv(self, dtype):
self.parallel_read_csv()
class ParallelFactorize:
number = 1
repeat = 5
params = [2, 4, 8]
param_names = ["threads"]
def setup(self, threads):
strings = Index([f"i-{i}" for i in range(100000)], dtype=object)
@test_parallel(num_threads=threads)
def parallel():
factorize(strings)
self.parallel = parallel
def loop():
factorize(strings)
self.loop = loop
def time_parallel(self, threads):
self.parallel()
def time_loop(self, threads):
for i in range(threads):
self.loop()
from .pandas_vb_common import setup # noqa: F401 isort:skip
|