1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258
|
import gc
import numpy as np
from pandas import (
DatetimeIndex,
Index,
IntervalIndex,
MultiIndex,
RangeIndex,
Series,
date_range,
)
class SetOperations:
params = (
["monotonic", "non_monotonic"],
["datetime", "date_string", "int", "strings", "ea_int"],
["intersection", "union", "symmetric_difference"],
)
param_names = ["index_structure", "dtype", "method"]
def setup(self, index_structure, dtype, method):
N = 10**5
dates_left = date_range("1/1/2000", periods=N, freq="min")
fmt = "%Y-%m-%d %H:%M:%S"
date_str_left = Index(dates_left.strftime(fmt))
int_left = Index(np.arange(N))
ea_int_left = Index(np.arange(N), dtype="Int64")
str_left = Index([f"i-{i}" for i in range(N)], dtype=object)
data = {
"datetime": dates_left,
"date_string": date_str_left,
"int": int_left,
"strings": str_left,
"ea_int": ea_int_left,
}
if index_structure == "non_monotonic":
data = {k: mi[::-1] for k, mi in data.items()}
data = {k: {"left": idx, "right": idx[:-1]} for k, idx in data.items()}
self.left = data[dtype]["left"]
self.right = data[dtype]["right"]
def time_operation(self, index_structure, dtype, method):
getattr(self.left, method)(self.right)
class SetDisjoint:
def setup(self):
N = 10**5
B = N + 20000
self.datetime_left = DatetimeIndex(range(N))
self.datetime_right = DatetimeIndex(range(N, B))
def time_datetime_difference_disjoint(self):
self.datetime_left.difference(self.datetime_right)
class UnionWithDuplicates:
def setup(self):
self.left = Index(np.repeat(np.arange(1000), 100))
self.right = Index(np.tile(np.arange(500, 1500), 50))
def time_union_with_duplicates(self):
self.left.union(self.right)
class Range:
def setup(self):
self.idx_inc = RangeIndex(start=0, stop=10**6, step=3)
self.idx_dec = RangeIndex(start=10**6, stop=-1, step=-3)
def time_max(self):
self.idx_inc.max()
def time_max_trivial(self):
self.idx_dec.max()
def time_min(self):
self.idx_dec.min()
def time_min_trivial(self):
self.idx_inc.min()
def time_get_loc_inc(self):
self.idx_inc.get_loc(900_000)
def time_get_loc_dec(self):
self.idx_dec.get_loc(100_000)
def time_iter_inc(self):
for _ in self.idx_inc:
pass
def time_iter_dec(self):
for _ in self.idx_dec:
pass
def time_sort_values_asc(self):
self.idx_inc.sort_values()
def time_sort_values_des(self):
self.idx_inc.sort_values(ascending=False)
class IndexEquals:
def setup(self):
idx_large_fast = RangeIndex(100_000)
idx_small_slow = date_range(start="1/1/2012", periods=1)
self.mi_large_slow = MultiIndex.from_product([idx_large_fast, idx_small_slow])
self.idx_non_object = RangeIndex(1)
def time_non_object_equals_multiindex(self):
self.idx_non_object.equals(self.mi_large_slow)
class IndexAppend:
def setup(self):
N = 10_000
self.range_idx = RangeIndex(0, 100)
self.int_idx = self.range_idx.astype(int)
self.obj_idx = self.int_idx.astype(str)
self.range_idxs = []
self.int_idxs = []
self.object_idxs = []
for i in range(1, N):
r_idx = RangeIndex(i * 100, (i + 1) * 100)
self.range_idxs.append(r_idx)
i_idx = r_idx.astype(int)
self.int_idxs.append(i_idx)
o_idx = i_idx.astype(str)
self.object_idxs.append(o_idx)
def time_append_range_list(self):
self.range_idx.append(self.range_idxs)
def time_append_int_list(self):
self.int_idx.append(self.int_idxs)
def time_append_obj_list(self):
self.obj_idx.append(self.object_idxs)
class Indexing:
params = ["String", "Float", "Int"]
param_names = ["dtype"]
def setup(self, dtype):
N = 10**6
if dtype == "String":
self.idx = Index([f"i-{i}" for i in range(N)], dtype=object)
elif dtype == "Float":
self.idx = Index(np.arange(N), dtype=np.float64)
elif dtype == "Int":
self.idx = Index(np.arange(N), dtype=np.int64)
self.array_mask = (np.arange(N) % 3) == 0
self.series_mask = Series(self.array_mask)
self.sorted = self.idx.sort_values()
half = N // 2
self.non_unique = self.idx[:half].append(self.idx[:half])
self.non_unique_sorted = self.sorted[:half].repeat(2)
self.key = self.sorted[N // 4]
def time_boolean_array(self, dtype):
self.idx[self.array_mask]
def time_boolean_series(self, dtype):
self.idx[self.series_mask]
def time_get(self, dtype):
self.idx[1]
def time_slice(self, dtype):
self.idx[:-1]
def time_slice_step(self, dtype):
self.idx[::2]
def time_get_loc(self, dtype):
self.idx.get_loc(self.key)
def time_get_loc_sorted(self, dtype):
self.sorted.get_loc(self.key)
def time_get_loc_non_unique(self, dtype):
self.non_unique.get_loc(self.key)
def time_get_loc_non_unique_sorted(self, dtype):
self.non_unique_sorted.get_loc(self.key)
class Float64IndexMethod:
# GH 13166
def setup(self):
N = 100_000
a = np.arange(N, dtype=np.float64)
self.ind = Index(a * 4.8000000418824129e-08)
def time_get_loc(self):
self.ind.get_loc(0)
class IntervalIndexMethod:
# GH 24813
params = [10**3, 10**5]
def setup(self, N):
left = np.append(np.arange(N), np.array(0))
right = np.append(np.arange(1, N + 1), np.array(1))
self.intv = IntervalIndex.from_arrays(left, right)
self.intv._engine
self.intv2 = IntervalIndex.from_arrays(left + 1, right + 1)
self.intv2._engine
self.left = IntervalIndex.from_breaks(np.arange(N))
self.right = IntervalIndex.from_breaks(np.arange(N - 3, 2 * N - 3))
def time_monotonic_inc(self, N):
self.intv.is_monotonic_increasing
def time_is_unique(self, N):
self.intv.is_unique
def time_intersection(self, N):
self.left.intersection(self.right)
def time_intersection_one_duplicate(self, N):
self.intv.intersection(self.right)
def time_intersection_both_duplicate(self, N):
self.intv.intersection(self.intv2)
class GC:
params = [1, 2, 5]
def create_use_drop(self):
idx = Index(list(range(1_000_000)))
idx._engine
def peakmem_gc_instances(self, N):
try:
gc.disable()
for _ in range(N):
self.create_use_drop()
finally:
gc.enable()
from .pandas_vb_common import setup # noqa: F401 isort:skip
|