1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570
|
"""
These benchmarks are for Series and DataFrame indexing methods. For the
lower-level methods directly on Index and subclasses, see index_object.py,
indexing_engine.py, and index_cached.py
"""
from datetime import datetime
import warnings
import numpy as np
from pandas import (
NA,
CategoricalIndex,
DataFrame,
Index,
IntervalIndex,
MultiIndex,
Series,
concat,
date_range,
option_context,
period_range,
)
class NumericSeriesIndexing:
params = [
(np.int64, np.uint64, np.float64),
("unique_monotonic_inc", "nonunique_monotonic_inc"),
]
param_names = ["dtype", "index_structure"]
def setup(self, dtype, index_structure):
N = 10**6
indices = {
"unique_monotonic_inc": Index(range(N), dtype=dtype),
"nonunique_monotonic_inc": Index(
list(range(55)) + [54] + list(range(55, N - 1)), dtype=dtype
),
}
self.data = Series(np.random.rand(N), index=indices[index_structure])
self.array = np.arange(10000)
self.array_list = self.array.tolist()
def time_getitem_scalar(self, index, index_structure):
self.data[800000]
def time_getitem_slice(self, index, index_structure):
self.data[:800000]
def time_getitem_list_like(self, index, index_structure):
self.data[[800000]]
def time_getitem_array(self, index, index_structure):
self.data[self.array]
def time_getitem_lists(self, index, index_structure):
self.data[self.array_list]
def time_iloc_array(self, index, index_structure):
self.data.iloc[self.array]
def time_iloc_list_like(self, index, index_structure):
self.data.iloc[[800000]]
def time_iloc_scalar(self, index, index_structure):
self.data.iloc[800000]
def time_iloc_slice(self, index, index_structure):
self.data.iloc[:800000]
def time_loc_array(self, index, index_structure):
self.data.loc[self.array]
def time_loc_list_like(self, index, index_structure):
self.data.loc[[800000]]
def time_loc_scalar(self, index, index_structure):
self.data.loc[800000]
def time_loc_slice(self, index, index_structure):
self.data.loc[:800000]
class NumericMaskedIndexing:
monotonic_list = list(range(10**6))
non_monotonic_list = (
list(range(50)) + [54, 53, 52, 51] + list(range(55, 10**6 - 1))
)
params = [
("Int64", "UInt64", "Float64"),
(True, False),
]
param_names = ["dtype", "monotonic"]
def setup(self, dtype, monotonic):
indices = {
True: Index(self.monotonic_list, dtype=dtype),
False: Index(self.non_monotonic_list, dtype=dtype).append(
Index([NA], dtype=dtype)
),
}
self.data = indices[monotonic]
self.indexer = np.arange(300, 1_000)
self.data_dups = self.data.append(self.data)
def time_get_indexer(self, dtype, monotonic):
self.data.get_indexer(self.indexer)
def time_get_indexer_dups(self, dtype, monotonic):
self.data.get_indexer_for(self.indexer)
class NonNumericSeriesIndexing:
params = [
("string", "datetime", "period"),
("unique_monotonic_inc", "nonunique_monotonic_inc", "non_monotonic"),
]
param_names = ["index_dtype", "index_structure"]
def setup(self, index, index_structure):
N = 10**6
if index == "string":
index = Index([f"i-{i}" for i in range(N)], dtype=object)
elif index == "datetime":
index = date_range("1900", periods=N, freq="s")
elif index == "period":
index = period_range("1900", periods=N, freq="s")
index = index.sort_values()
assert index.is_unique and index.is_monotonic_increasing
if index_structure == "nonunique_monotonic_inc":
index = index.insert(item=index[2], loc=2)[:-1]
elif index_structure == "non_monotonic":
index = index[::2].append(index[1::2])
assert len(index) == N
self.s = Series(np.random.rand(N), index=index)
self.lbl = index[80000]
# warm up index mapping
self.s[self.lbl]
def time_getitem_label_slice(self, index, index_structure):
self.s[: self.lbl]
def time_getitem_pos_slice(self, index, index_structure):
self.s[:80000]
def time_getitem_scalar(self, index, index_structure):
self.s[self.lbl]
def time_getitem_list_like(self, index, index_structure):
self.s[[self.lbl]]
class DataFrameStringIndexing:
def setup(self):
index = Index([f"i-{i}" for i in range(1000)], dtype=object)
columns = Index([f"i-{i}" for i in range(30)], dtype=object)
with warnings.catch_warnings(record=True):
self.df = DataFrame(np.random.randn(1000, 30), index=index, columns=columns)
self.idx_scalar = index[100]
self.col_scalar = columns[10]
self.bool_indexer = self.df[self.col_scalar] > 0
self.bool_obj_indexer = self.bool_indexer.astype(object)
self.boolean_indexer = (self.df[self.col_scalar] > 0).astype("boolean")
def time_loc(self):
self.df.loc[self.idx_scalar, self.col_scalar]
def time_at(self):
self.df.at[self.idx_scalar, self.col_scalar]
def time_at_setitem(self):
self.df.at[self.idx_scalar, self.col_scalar] = 0.0
def time_getitem_scalar(self):
self.df[self.col_scalar][self.idx_scalar]
def time_boolean_rows(self):
self.df[self.bool_indexer]
def time_boolean_rows_object(self):
self.df[self.bool_obj_indexer]
def time_boolean_rows_boolean(self):
self.df[self.boolean_indexer]
class DataFrameNumericIndexing:
params = [
(np.int64, np.uint64, np.float64),
("unique_monotonic_inc", "nonunique_monotonic_inc"),
]
param_names = ["dtype", "index_structure"]
def setup(self, dtype, index_structure):
N = 10**5
indices = {
"unique_monotonic_inc": Index(range(N), dtype=dtype),
"nonunique_monotonic_inc": Index(
list(range(55)) + [54] + list(range(55, N - 1)), dtype=dtype
),
}
self.idx_dupe = np.array(range(30)) * 99
self.df = DataFrame(np.random.randn(N, 5), index=indices[index_structure])
self.df_dup = concat([self.df, 2 * self.df, 3 * self.df])
self.bool_indexer = [True] * (N // 2) + [False] * (N - N // 2)
def time_iloc_dups(self, index, index_structure):
self.df_dup.iloc[self.idx_dupe]
def time_loc_dups(self, index, index_structure):
self.df_dup.loc[self.idx_dupe]
def time_iloc(self, index, index_structure):
self.df.iloc[:100, 0]
def time_loc(self, index, index_structure):
self.df.loc[:100, 0]
def time_bool_indexer(self, index, index_structure):
self.df[self.bool_indexer]
class Take:
params = ["int", "datetime"]
param_names = ["index"]
def setup(self, index):
N = 100000
indexes = {
"int": Index(np.arange(N), dtype=np.int64),
"datetime": date_range("2011-01-01", freq="s", periods=N),
}
index = indexes[index]
self.s = Series(np.random.rand(N), index=index)
self.indexer = np.random.randint(0, N, size=N)
def time_take(self, index):
self.s.take(self.indexer)
class MultiIndexing:
params = [True, False]
param_names = ["unique_levels"]
def setup(self, unique_levels):
self.nlevels = 2
if unique_levels:
mi = MultiIndex.from_arrays([range(1000000)] * self.nlevels)
else:
mi = MultiIndex.from_product([range(1000)] * self.nlevels)
self.df = DataFrame(np.random.randn(len(mi)), index=mi)
self.tgt_slice = slice(200, 800)
self.tgt_null_slice = slice(None)
self.tgt_list = list(range(0, 1000, 10))
self.tgt_scalar = 500
bool_indexer = np.zeros(len(mi), dtype=np.bool_)
bool_indexer[slice(0, len(mi), 100)] = True
self.tgt_bool_indexer = bool_indexer
def time_loc_partial_key_slice(self, unique_levels):
self.df.loc[self.tgt_slice, :]
def time_loc_partial_key_null_slice(self, unique_levels):
self.df.loc[self.tgt_null_slice, :]
def time_loc_partial_key_list(self, unique_levels):
self.df.loc[self.tgt_list, :]
def time_loc_partial_key_scalar(self, unique_levels):
self.df.loc[self.tgt_scalar, :]
def time_loc_partial_key_bool_indexer(self, unique_levels):
self.df.loc[self.tgt_bool_indexer, :]
def time_loc_all_slices(self, unique_levels):
target = tuple([self.tgt_slice] * self.nlevels)
self.df.loc[target, :]
def time_loc_all_null_slices(self, unique_levels):
target = tuple([self.tgt_null_slice] * self.nlevels)
self.df.loc[target, :]
def time_loc_all_lists(self, unique_levels):
target = tuple([self.tgt_list] * self.nlevels)
self.df.loc[target, :]
def time_loc_all_scalars(self, unique_levels):
target = tuple([self.tgt_scalar] * self.nlevels)
self.df.loc[target, :]
def time_loc_all_bool_indexers(self, unique_levels):
target = tuple([self.tgt_bool_indexer] * self.nlevels)
self.df.loc[target, :]
def time_loc_slice_plus_null_slice(self, unique_levels):
target = (self.tgt_slice, self.tgt_null_slice)
self.df.loc[target, :]
def time_loc_null_slice_plus_slice(self, unique_levels):
target = (self.tgt_null_slice, self.tgt_slice)
self.df.loc[target, :]
def time_loc_multiindex(self, unique_levels):
target = self.df.index[::10]
self.df.loc[target]
def time_xs_level_0(self, unique_levels):
target = self.tgt_scalar
self.df.xs(target, level=0)
def time_xs_level_1(self, unique_levels):
target = self.tgt_scalar
self.df.xs(target, level=1)
def time_xs_full_key(self, unique_levels):
target = tuple([self.tgt_scalar] * self.nlevels)
self.df.xs(target)
class IntervalIndexing:
def setup_cache(self):
idx = IntervalIndex.from_breaks(np.arange(1000001))
monotonic = Series(np.arange(1000000), index=idx)
return monotonic
def time_getitem_scalar(self, monotonic):
monotonic[80000]
def time_loc_scalar(self, monotonic):
monotonic.loc[80000]
def time_getitem_list(self, monotonic):
monotonic[80000:]
def time_loc_list(self, monotonic):
monotonic.loc[80000:]
class DatetimeIndexIndexing:
def setup(self):
dti = date_range("2016-01-01", periods=10000, tz="US/Pacific")
dti2 = dti.tz_convert("UTC")
self.dti = dti
self.dti2 = dti2
def time_get_indexer_mismatched_tz(self):
# reached via e.g.
# ser = Series(range(len(dti)), index=dti)
# ser[dti2]
self.dti.get_indexer(self.dti2)
class SortedAndUnsortedDatetimeIndexLoc:
def setup(self):
dti = date_range("2016-01-01", periods=10000, tz="US/Pacific")
index = np.array(dti)
unsorted_index = index.copy()
unsorted_index[10] = unsorted_index[20]
self.df_unsorted = DataFrame(index=unsorted_index, data={"a": 1})
self.df_sort = DataFrame(index=index, data={"a": 1})
def time_loc_unsorted(self):
self.df_unsorted.loc["2016-6-11"]
def time_loc_sorted(self):
self.df_sort.loc["2016-6-11"]
class CategoricalIndexIndexing:
params = ["monotonic_incr", "monotonic_decr", "non_monotonic"]
param_names = ["index"]
def setup(self, index):
N = 10**5
values = list("a" * N + "b" * N + "c" * N)
indices = {
"monotonic_incr": CategoricalIndex(values),
"monotonic_decr": CategoricalIndex(reversed(values)),
"non_monotonic": CategoricalIndex(list("abc" * N)),
}
self.data = indices[index]
self.data_unique = CategoricalIndex([str(i) for i in range(N * 3)])
self.int_scalar = 10000
self.int_list = list(range(10000))
self.cat_scalar = "b"
self.cat_list = ["1", "3"]
def time_getitem_scalar(self, index):
self.data[self.int_scalar]
def time_getitem_slice(self, index):
self.data[: self.int_scalar]
def time_getitem_list_like(self, index):
self.data[[self.int_scalar]]
def time_getitem_list(self, index):
self.data[self.int_list]
def time_getitem_bool_array(self, index):
self.data[self.data == self.cat_scalar]
def time_get_loc_scalar(self, index):
self.data.get_loc(self.cat_scalar)
def time_get_indexer_list(self, index):
self.data_unique.get_indexer(self.cat_list)
class MethodLookup:
def setup_cache(self):
s = Series()
return s
def time_lookup_iloc(self, s):
s.iloc
def time_lookup_loc(self, s):
s.loc
class GetItemSingleColumn:
def setup(self):
self.df_string_col = DataFrame(np.random.randn(3000, 1), columns=["A"])
self.df_int_col = DataFrame(np.random.randn(3000, 1))
def time_frame_getitem_single_column_label(self):
self.df_string_col["A"]
def time_frame_getitem_single_column_int(self):
self.df_int_col[0]
class IndexSingleRow:
params = [True, False]
param_names = ["unique_cols"]
def setup(self, unique_cols):
arr = np.arange(10**7).reshape(-1, 10)
df = DataFrame(arr)
dtypes = ["u1", "u2", "u4", "u8", "i1", "i2", "i4", "i8", "f8", "f4"]
for i, d in enumerate(dtypes):
df[i] = df[i].astype(d)
if not unique_cols:
# GH#33032 single-row lookups with non-unique columns were
# 15x slower than with unique columns
df.columns = ["A", "A"] + list(df.columns[2:])
self.df = df
def time_iloc_row(self, unique_cols):
self.df.iloc[10000]
def time_loc_row(self, unique_cols):
self.df.loc[10000]
class AssignTimeseriesIndex:
def setup(self):
N = 100000
idx = date_range("1/1/2000", periods=N, freq="h")
self.df = DataFrame(np.random.randn(N, 1), columns=["A"], index=idx)
def time_frame_assign_timeseries_index(self):
self.df["date"] = self.df.index
class InsertColumns:
def setup(self):
self.N = 10**3
self.df = DataFrame(index=range(self.N))
self.df2 = DataFrame(np.random.randn(self.N, 2))
def time_insert(self):
for i in range(100):
self.df.insert(0, i, np.random.randn(self.N), allow_duplicates=True)
def time_insert_middle(self):
# same as time_insert but inserting to a middle column rather than
# front or back (which have fast-paths)
for i in range(100):
self.df2.insert(
1, "colname", np.random.randn(self.N), allow_duplicates=True
)
def time_assign_with_setitem(self):
for i in range(100):
self.df[i] = np.random.randn(self.N)
def time_assign_list_like_with_setitem(self):
self.df[list(range(100))] = np.random.randn(self.N, 100)
def time_assign_list_of_columns_concat(self):
df = DataFrame(np.random.randn(self.N, 100))
concat([self.df, df], axis=1)
class Setitem:
def setup(self):
N = 500_000
cols = 500
self.df = DataFrame(np.random.rand(N, cols))
def time_setitem(self):
self.df[100] = 100
def time_setitem_list(self):
self.df[[100, 200, 300]] = 100
class SetitemObjectDtype:
# GH#19299
def setup(self):
N = 1000
cols = 500
self.df = DataFrame(index=range(N), columns=range(cols), dtype=object)
def time_setitem_object_dtype(self):
self.df.loc[0, 1] = 1.0
class ChainIndexing:
params = [None, "warn"]
param_names = ["mode"]
def setup(self, mode):
self.N = 1000000
self.df = DataFrame({"A": np.arange(self.N), "B": "foo"})
def time_chained_indexing(self, mode):
df = self.df
N = self.N
with warnings.catch_warnings(record=True):
with option_context("mode.chained_assignment", mode):
df2 = df[df.A > N // 2]
df2["C"] = 1.0
class Block:
params = [
(True, "True"),
(np.array(True), "np.array(True)"),
]
def setup(self, true_value, mode):
self.df = DataFrame(
False,
columns=np.arange(500).astype(str),
index=date_range("2010-01-01", "2011-01-01"),
)
self.true_value = true_value
def time_test(self, true_value, mode):
start = datetime(2010, 5, 1)
end = datetime(2010, 9, 1)
self.df.loc[start:end, :] = true_value
from .pandas_vb_common import setup # noqa: F401 isort:skip
|