1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316
|
"""
The functions benchmarked in this file depend _almost_ exclusively on
_libs, but not in a way that is easy to formalize.
If a PR does not change anything in pandas/_libs/ or pandas/core/tools/, then
it is likely that these benchmarks will be unaffected.
"""
import numpy as np
from pandas import (
Index,
NaT,
Series,
date_range,
to_datetime,
to_numeric,
to_timedelta,
)
from .pandas_vb_common import lib
class ToNumeric:
params = ["ignore", "coerce"]
param_names = ["errors"]
def setup(self, errors):
N = 10000
self.float = Series(np.random.randn(N))
self.numstr = self.float.astype("str")
self.str = Series(Index([f"i-{i}" for i in range(N)], dtype=object))
def time_from_float(self, errors):
to_numeric(self.float, errors=errors)
def time_from_numeric_str(self, errors):
to_numeric(self.numstr, errors=errors)
def time_from_str(self, errors):
to_numeric(self.str, errors=errors)
class ToNumericDowncast:
param_names = ["dtype", "downcast"]
params = [
[
"string-float",
"string-int",
"string-nint",
"datetime64",
"int-list",
"int32",
],
[None, "integer", "signed", "unsigned", "float"],
]
N = 500000
N2 = N // 2
data_dict = {
"string-int": ["1"] * N2 + [2] * N2,
"string-nint": ["-1"] * N2 + [2] * N2,
"datetime64": np.repeat(
np.array(["1970-01-01", "1970-01-02"], dtype="datetime64[D]"), N
),
"string-float": ["1.1"] * N2 + [2] * N2,
"int-list": [1] * N2 + [2] * N2,
"int32": np.repeat(np.int32(1), N),
}
def setup(self, dtype, downcast):
self.data = self.data_dict[dtype]
def time_downcast(self, dtype, downcast):
to_numeric(self.data, downcast=downcast)
class MaybeConvertNumeric:
# maybe_convert_numeric depends _exclusively_ on _libs, could
# go in benchmarks/libs.py
def setup_cache(self):
N = 10**6
arr = np.repeat([2**63], N) + np.arange(N).astype("uint64")
data = arr.astype(object)
data[1::2] = arr[1::2].astype(str)
data[-1] = -1
return data
def time_convert(self, data):
lib.maybe_convert_numeric(data, set(), coerce_numeric=False)
class MaybeConvertObjects:
# maybe_convert_objects depends _almost_ exclusively on _libs, but
# does have some run-time imports from outside of _libs
def setup(self):
N = 10**5
data = list(range(N))
data[0] = NaT
data = np.array(data)
self.data = data
def time_maybe_convert_objects(self):
lib.maybe_convert_objects(self.data)
class ToDatetimeFromIntsFloats:
def setup(self):
self.ts_sec = Series(range(1521080307, 1521685107), dtype="int64")
self.ts_sec_uint = Series(range(1521080307, 1521685107), dtype="uint64")
self.ts_sec_float = self.ts_sec.astype("float64")
self.ts_nanosec = 1_000_000 * self.ts_sec
self.ts_nanosec_uint = 1_000_000 * self.ts_sec_uint
self.ts_nanosec_float = self.ts_nanosec.astype("float64")
# speed of int64, uint64 and float64 paths should be comparable
def time_nanosec_int64(self):
to_datetime(self.ts_nanosec, unit="ns")
def time_nanosec_uint64(self):
to_datetime(self.ts_nanosec_uint, unit="ns")
def time_nanosec_float64(self):
to_datetime(self.ts_nanosec_float, unit="ns")
def time_sec_uint64(self):
to_datetime(self.ts_sec_uint, unit="s")
def time_sec_int64(self):
to_datetime(self.ts_sec, unit="s")
def time_sec_float64(self):
to_datetime(self.ts_sec_float, unit="s")
class ToDatetimeYYYYMMDD:
def setup(self):
rng = date_range(start="1/1/2000", periods=10000, freq="D")
self.stringsD = Series(rng.strftime("%Y%m%d"))
def time_format_YYYYMMDD(self):
to_datetime(self.stringsD, format="%Y%m%d")
class ToDatetimeCacheSmallCount:
params = ([True, False], [50, 500, 5000, 100000])
param_names = ["cache", "count"]
def setup(self, cache, count):
rng = date_range(start="1/1/1971", periods=count)
self.unique_date_strings = rng.strftime("%Y-%m-%d").tolist()
def time_unique_date_strings(self, cache, count):
to_datetime(self.unique_date_strings, cache=cache)
class ToDatetimeISO8601:
def setup(self):
rng = date_range(start="1/1/2000", periods=20000, freq="h")
self.strings = rng.strftime("%Y-%m-%d %H:%M:%S").tolist()
self.strings_nosep = rng.strftime("%Y%m%d %H:%M:%S").tolist()
self.strings_tz_space = [
x.strftime("%Y-%m-%d %H:%M:%S") + " -0800" for x in rng
]
self.strings_zero_tz = [x.strftime("%Y-%m-%d %H:%M:%S") + "Z" for x in rng]
def time_iso8601(self):
to_datetime(self.strings)
def time_iso8601_nosep(self):
to_datetime(self.strings_nosep)
def time_iso8601_format(self):
to_datetime(self.strings, format="%Y-%m-%d %H:%M:%S")
def time_iso8601_format_no_sep(self):
to_datetime(self.strings_nosep, format="%Y%m%d %H:%M:%S")
def time_iso8601_tz_spaceformat(self):
to_datetime(self.strings_tz_space)
def time_iso8601_infer_zero_tz_fromat(self):
# GH 41047
to_datetime(self.strings_zero_tz, infer_datetime_format=True)
class ToDatetimeNONISO8601:
def setup(self):
N = 10000
half = N // 2
ts_string_1 = "March 1, 2018 12:00:00+0400"
ts_string_2 = "March 1, 2018 12:00:00+0500"
self.same_offset = [ts_string_1] * N
self.diff_offset = [ts_string_1] * half + [ts_string_2] * half
def time_same_offset(self):
to_datetime(self.same_offset)
def time_different_offset(self):
to_datetime(self.diff_offset)
class ToDatetimeFormatQuarters:
def setup(self):
self.s = Series(["2Q2005", "2Q05", "2005Q1", "05Q1"] * 10000)
def time_infer_quarter(self):
to_datetime(self.s)
class ToDatetimeFormat:
def setup(self):
N = 100000
self.s = Series(["19MAY11", "19MAY11:00:00:00"] * N)
self.s2 = self.s.str.replace(":\\S+$", "", regex=True)
self.same_offset = ["10/11/2018 00:00:00.045-07:00"] * N
self.diff_offset = [
f"10/11/2018 00:00:00.045-0{offset}:00" for offset in range(10)
] * (N // 10)
def time_exact(self):
to_datetime(self.s2, format="%d%b%y")
def time_no_exact(self):
to_datetime(self.s, format="%d%b%y", exact=False)
def time_same_offset(self):
to_datetime(self.same_offset, format="%m/%d/%Y %H:%M:%S.%f%z")
def time_different_offset(self):
to_datetime(self.diff_offset, format="%m/%d/%Y %H:%M:%S.%f%z")
def time_same_offset_to_utc(self):
to_datetime(self.same_offset, format="%m/%d/%Y %H:%M:%S.%f%z", utc=True)
def time_different_offset_to_utc(self):
to_datetime(self.diff_offset, format="%m/%d/%Y %H:%M:%S.%f%z", utc=True)
class ToDatetimeCache:
params = [True, False]
param_names = ["cache"]
def setup(self, cache):
N = 10000
self.unique_numeric_seconds = list(range(N))
self.dup_numeric_seconds = [1000] * N
self.dup_string_dates = ["2000-02-11"] * N
self.dup_string_with_tz = ["2000-02-11 15:00:00-0800"] * N
def time_unique_seconds_and_unit(self, cache):
to_datetime(self.unique_numeric_seconds, unit="s", cache=cache)
def time_dup_seconds_and_unit(self, cache):
to_datetime(self.dup_numeric_seconds, unit="s", cache=cache)
def time_dup_string_dates(self, cache):
to_datetime(self.dup_string_dates, cache=cache)
def time_dup_string_dates_and_format(self, cache):
to_datetime(self.dup_string_dates, format="%Y-%m-%d", cache=cache)
def time_dup_string_tzoffset_dates(self, cache):
to_datetime(self.dup_string_with_tz, cache=cache)
# GH 43901
class ToDatetimeInferDatetimeFormat:
def setup(self):
rng = date_range(start="1/1/2000", periods=100000, freq="h")
self.strings = rng.strftime("%Y-%m-%d %H:%M:%S").tolist()
def time_infer_datetime_format(self):
to_datetime(self.strings, infer_datetime_format=True)
class ToTimedelta:
def setup(self):
self.ints = np.random.randint(0, 60, size=10000)
self.str_days = []
self.str_seconds = []
for i in self.ints:
self.str_days.append(f"{i} days")
self.str_seconds.append(f"00:00:{i:02d}")
def time_convert_int(self):
to_timedelta(self.ints, unit="s")
def time_convert_string_days(self):
to_timedelta(self.str_days)
def time_convert_string_seconds(self):
to_timedelta(self.str_seconds)
class ToTimedeltaErrors:
params = ["coerce", "ignore"]
param_names = ["errors"]
def setup(self, errors):
ints = np.random.randint(0, 60, size=10000)
self.arr = [f"{i} days" for i in ints]
self.arr[-1] = "apple"
def time_convert(self, errors):
to_timedelta(self.arr, errors=errors)
from .pandas_vb_common import setup # noqa: F401 isort:skip
|