1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312
|
import sys
import numpy as np
from pandas import (
DataFrame,
Index,
concat,
date_range,
json_normalize,
read_json,
timedelta_range,
)
from ..pandas_vb_common import BaseIO
class ReadJSON(BaseIO):
fname = "__test__.json"
params = (["split", "index", "records"], ["int", "datetime"])
param_names = ["orient", "index"]
def setup(self, orient, index):
N = 100000
indexes = {
"int": np.arange(N),
"datetime": date_range("20000101", periods=N, freq="h"),
}
df = DataFrame(
np.random.randn(N, 5),
columns=[f"float_{i}" for i in range(5)],
index=indexes[index],
)
df.to_json(self.fname, orient=orient)
def time_read_json(self, orient, index):
read_json(self.fname, orient=orient)
class ReadJSONLines(BaseIO):
fname = "__test_lines__.json"
params = ["int", "datetime"]
param_names = ["index"]
def setup(self, index):
N = 100000
indexes = {
"int": np.arange(N),
"datetime": date_range("20000101", periods=N, freq="h"),
}
df = DataFrame(
np.random.randn(N, 5),
columns=[f"float_{i}" for i in range(5)],
index=indexes[index],
)
df.to_json(self.fname, orient="records", lines=True)
def time_read_json_lines(self, index):
read_json(self.fname, orient="records", lines=True)
def time_read_json_lines_concat(self, index):
concat(read_json(self.fname, orient="records", lines=True, chunksize=25000))
def time_read_json_lines_nrows(self, index):
read_json(self.fname, orient="records", lines=True, nrows=25000)
def peakmem_read_json_lines(self, index):
read_json(self.fname, orient="records", lines=True)
def peakmem_read_json_lines_concat(self, index):
concat(read_json(self.fname, orient="records", lines=True, chunksize=25000))
def peakmem_read_json_lines_nrows(self, index):
read_json(self.fname, orient="records", lines=True, nrows=15000)
class NormalizeJSON(BaseIO):
fname = "__test__.json"
params = [
["split", "columns", "index", "values", "records"],
["df", "df_date_idx", "df_td_int_ts", "df_int_floats", "df_int_float_str"],
]
param_names = ["orient", "frame"]
def setup(self, orient, frame):
data = {
"hello": ["thisisatest", 999898, "mixed types"],
"nest1": {"nest2": {"nest3": "nest3_value", "nest3_int": 3445}},
"nest1_list": {"nest2": ["blah", 32423, 546456.876, 92030234]},
"hello2": "string",
}
self.data = [data for i in range(10000)]
def time_normalize_json(self, orient, frame):
json_normalize(self.data)
class ToJSON(BaseIO):
fname = "__test__.json"
params = [
["split", "columns", "index", "values", "records"],
["df", "df_date_idx", "df_td_int_ts", "df_int_floats", "df_int_float_str"],
]
param_names = ["orient", "frame"]
def setup(self, orient, frame):
N = 10**5
ncols = 5
index = date_range("20000101", periods=N, freq="h")
timedeltas = timedelta_range(start=1, periods=N, freq="s")
datetimes = date_range(start=1, periods=N, freq="s")
ints = np.random.randint(100000000, size=N)
longints = sys.maxsize * np.random.randint(100000000, size=N)
floats = np.random.randn(N)
strings = Index([f"i-{i}" for i in range(N)], dtype=object)
self.df = DataFrame(np.random.randn(N, ncols), index=np.arange(N))
self.df_date_idx = DataFrame(np.random.randn(N, ncols), index=index)
self.df_td_int_ts = DataFrame(
{
"td_1": timedeltas,
"td_2": timedeltas,
"int_1": ints,
"int_2": ints,
"ts_1": datetimes,
"ts_2": datetimes,
},
index=index,
)
self.df_int_floats = DataFrame(
{
"int_1": ints,
"int_2": ints,
"int_3": ints,
"float_1": floats,
"float_2": floats,
"float_3": floats,
},
index=index,
)
self.df_int_float_str = DataFrame(
{
"int_1": ints,
"int_2": ints,
"float_1": floats,
"float_2": floats,
"str_1": strings,
"str_2": strings,
},
index=index,
)
self.df_longint_float_str = DataFrame(
{
"longint_1": longints,
"longint_2": longints,
"float_1": floats,
"float_2": floats,
"str_1": strings,
"str_2": strings,
},
index=index,
)
def time_to_json(self, orient, frame):
getattr(self, frame).to_json(self.fname, orient=orient)
def peakmem_to_json(self, orient, frame):
getattr(self, frame).to_json(self.fname, orient=orient)
class ToJSONWide(ToJSON):
def setup(self, orient, frame):
super().setup(orient, frame)
base_df = getattr(self, frame).copy()
df_wide = concat([base_df.iloc[:100]] * 1000, ignore_index=True, axis=1)
self.df_wide = df_wide
def time_to_json_wide(self, orient, frame):
self.df_wide.to_json(self.fname, orient=orient)
def peakmem_to_json_wide(self, orient, frame):
self.df_wide.to_json(self.fname, orient=orient)
class ToJSONISO(BaseIO):
fname = "__test__.json"
params = [["split", "columns", "index", "values", "records"]]
param_names = ["orient"]
def setup(self, orient):
N = 10**5
index = date_range("20000101", periods=N, freq="h")
timedeltas = timedelta_range(start=1, periods=N, freq="s")
datetimes = date_range(start=1, periods=N, freq="s")
self.df = DataFrame(
{
"td_1": timedeltas,
"td_2": timedeltas,
"ts_1": datetimes,
"ts_2": datetimes,
},
index=index,
)
def time_iso_format(self, orient):
self.df.to_json(orient=orient, date_format="iso")
class ToJSONLines(BaseIO):
fname = "__test__.json"
def setup(self):
N = 10**5
ncols = 5
index = date_range("20000101", periods=N, freq="h")
timedeltas = timedelta_range(start=1, periods=N, freq="s")
datetimes = date_range(start=1, periods=N, freq="s")
ints = np.random.randint(100000000, size=N)
longints = sys.maxsize * np.random.randint(100000000, size=N)
floats = np.random.randn(N)
strings = Index([f"i-{i}" for i in range(N)], dtype=object)
self.df = DataFrame(np.random.randn(N, ncols), index=np.arange(N))
self.df_date_idx = DataFrame(np.random.randn(N, ncols), index=index)
self.df_td_int_ts = DataFrame(
{
"td_1": timedeltas,
"td_2": timedeltas,
"int_1": ints,
"int_2": ints,
"ts_1": datetimes,
"ts_2": datetimes,
},
index=index,
)
self.df_int_floats = DataFrame(
{
"int_1": ints,
"int_2": ints,
"int_3": ints,
"float_1": floats,
"float_2": floats,
"float_3": floats,
},
index=index,
)
self.df_int_float_str = DataFrame(
{
"int_1": ints,
"int_2": ints,
"float_1": floats,
"float_2": floats,
"str_1": strings,
"str_2": strings,
},
index=index,
)
self.df_longint_float_str = DataFrame(
{
"longint_1": longints,
"longint_2": longints,
"float_1": floats,
"float_2": floats,
"str_1": strings,
"str_2": strings,
},
index=index,
)
def time_floats_with_int_idex_lines(self):
self.df.to_json(self.fname, orient="records", lines=True)
def time_floats_with_dt_index_lines(self):
self.df_date_idx.to_json(self.fname, orient="records", lines=True)
def time_delta_int_tstamp_lines(self):
self.df_td_int_ts.to_json(self.fname, orient="records", lines=True)
def time_float_int_lines(self):
self.df_int_floats.to_json(self.fname, orient="records", lines=True)
def time_float_int_str_lines(self):
self.df_int_float_str.to_json(self.fname, orient="records", lines=True)
def time_float_longint_str_lines(self):
self.df_longint_float_str.to_json(self.fname, orient="records", lines=True)
class ToJSONMem:
def setup_cache(self):
df = DataFrame([[1]])
df2 = DataFrame(range(8), date_range("1/1/2000", periods=8, freq="min"))
frames = {"int": df, "float": df.astype(float), "datetime": df2}
return frames
def peakmem_int(self, frames):
df = frames["int"]
for _ in range(100_000):
df.to_json()
def peakmem_float(self, frames):
df = frames["float"]
for _ in range(100_000):
df.to_json()
def peakmem_time(self, frames):
df = frames["datetime"]
for _ in range(10_000):
df.to_json(orient="table")
from ..pandas_vb_common import setup # noqa: F401 isort:skip
|