1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573
|
import string
import numpy as np
from pandas import (
DataFrame,
Index,
MultiIndex,
Series,
array,
concat,
date_range,
merge,
merge_asof,
)
try:
from pandas import merge_ordered
except ImportError:
from pandas import ordered_merge as merge_ordered
class Concat:
params = [0, 1]
param_names = ["axis"]
def setup(self, axis):
N = 1000
s = Series(N, index=Index([f"i-{i}" for i in range(N)], dtype=object))
self.series = [s[i:-i] for i in range(1, 10)] * 50
self.small_frames = [DataFrame(np.random.randn(5, 4))] * 1000
df = DataFrame(
{"A": range(N)}, index=date_range("20130101", periods=N, freq="s")
)
self.empty_left = [DataFrame(), df]
self.empty_right = [df, DataFrame()]
self.mixed_ndims = [df, df.head(N // 2)]
def time_concat_series(self, axis):
concat(self.series, axis=axis, sort=False)
def time_concat_small_frames(self, axis):
concat(self.small_frames, axis=axis)
def time_concat_empty_right(self, axis):
concat(self.empty_right, axis=axis)
def time_concat_empty_left(self, axis):
concat(self.empty_left, axis=axis)
def time_concat_mixed_ndims(self, axis):
concat(self.mixed_ndims, axis=axis)
class ConcatDataFrames:
params = ([0, 1], [True, False])
param_names = ["axis", "ignore_index"]
def setup(self, axis, ignore_index):
frame_c = DataFrame(np.zeros((10000, 200), dtype=np.float32, order="C"))
self.frame_c = [frame_c] * 20
frame_f = DataFrame(np.zeros((10000, 200), dtype=np.float32, order="F"))
self.frame_f = [frame_f] * 20
def time_c_ordered(self, axis, ignore_index):
concat(self.frame_c, axis=axis, ignore_index=ignore_index)
def time_f_ordered(self, axis, ignore_index):
concat(self.frame_f, axis=axis, ignore_index=ignore_index)
class ConcatIndexDtype:
params = (
[
"datetime64[ns]",
"int64",
"Int64",
"int64[pyarrow]",
"string[python]",
"string[pyarrow]",
],
["monotonic", "non_monotonic", "has_na"],
[0, 1],
[True, False],
)
param_names = ["dtype", "structure", "axis", "sort"]
def setup(self, dtype, structure, axis, sort):
N = 10_000
if dtype == "datetime64[ns]":
vals = date_range("1970-01-01", periods=N)
elif dtype in ("int64", "Int64", "int64[pyarrow]"):
vals = np.arange(N, dtype=np.int64)
elif dtype in ("string[python]", "string[pyarrow]"):
vals = Index([f"i-{i}" for i in range(N)], dtype=object)
else:
raise NotImplementedError
idx = Index(vals, dtype=dtype)
if structure == "monotonic":
idx = idx.sort_values()
elif structure == "non_monotonic":
idx = idx[::-1]
elif structure == "has_na":
if not idx._can_hold_na:
raise NotImplementedError
idx = Index([None], dtype=dtype).append(idx)
else:
raise NotImplementedError
self.series = [Series(i, idx[:-i]) for i in range(1, 6)]
def time_concat_series(self, dtype, structure, axis, sort):
concat(self.series, axis=axis, sort=sort)
class Join:
params = [True, False]
param_names = ["sort"]
def setup(self, sort):
level1 = Index([f"i-{i}" for i in range(10)], dtype=object).values
level2 = Index([f"i-{i}" for i in range(1000)], dtype=object).values
codes1 = np.arange(10).repeat(1000)
codes2 = np.tile(np.arange(1000), 10)
index2 = MultiIndex(levels=[level1, level2], codes=[codes1, codes2])
self.df_multi = DataFrame(
np.random.randn(len(index2), 4), index=index2, columns=["A", "B", "C", "D"]
)
self.key1 = np.tile(level1.take(codes1), 10)
self.key2 = np.tile(level2.take(codes2), 10)
self.df = DataFrame(
{
"data1": np.random.randn(100000),
"data2": np.random.randn(100000),
"key1": self.key1,
"key2": self.key2,
}
)
self.df_key1 = DataFrame(
np.random.randn(len(level1), 4), index=level1, columns=["A", "B", "C", "D"]
)
self.df_key2 = DataFrame(
np.random.randn(len(level2), 4), index=level2, columns=["A", "B", "C", "D"]
)
shuf = np.arange(100000)
np.random.shuffle(shuf)
self.df_shuf = self.df.reindex(self.df.index[shuf])
def time_join_dataframe_index_multi(self, sort):
self.df.join(self.df_multi, on=["key1", "key2"], sort=sort)
def time_join_dataframe_index_single_key_bigger(self, sort):
self.df.join(self.df_key2, on="key2", sort=sort)
def time_join_dataframe_index_single_key_small(self, sort):
self.df.join(self.df_key1, on="key1", sort=sort)
def time_join_dataframe_index_shuffle_key_bigger_sort(self, sort):
self.df_shuf.join(self.df_key2, on="key2", sort=sort)
def time_join_dataframes_cross(self, sort):
self.df.loc[:2000].join(self.df_key1, how="cross", sort=sort)
class JoinIndex:
def setup(self):
N = 5000
self.left = DataFrame(
np.random.randint(1, N / 50, (N, 2)), columns=["jim", "joe"]
)
self.right = DataFrame(
np.random.randint(1, N / 50, (N, 2)), columns=["jolie", "jolia"]
).set_index("jolie")
def time_left_outer_join_index(self):
self.left.join(self.right, on="jim")
class JoinMultiindexSubset:
def setup(self):
N = 100_000
mi1 = MultiIndex.from_arrays([np.arange(N)] * 4, names=["a", "b", "c", "d"])
mi2 = MultiIndex.from_arrays([np.arange(N)] * 2, names=["a", "b"])
self.left = DataFrame({"col1": 1}, index=mi1)
self.right = DataFrame({"col2": 2}, index=mi2)
def time_join_multiindex_subset(self):
self.left.join(self.right)
class JoinEmpty:
def setup(self):
N = 100_000
self.df = DataFrame({"A": np.arange(N)})
self.df_empty = DataFrame(columns=["B", "C"], dtype="int64")
def time_inner_join_left_empty(self):
self.df_empty.join(self.df, how="inner")
def time_inner_join_right_empty(self):
self.df.join(self.df_empty, how="inner")
class JoinNonUnique:
# outer join of non-unique
# GH 6329
def setup(self):
date_index = date_range("01-Jan-2013", "23-Jan-2013", freq="min")
daily_dates = date_index.to_period("D").to_timestamp("s", "s")
self.fracofday = date_index.values - daily_dates.values
self.fracofday = self.fracofday.astype("timedelta64[ns]")
self.fracofday = self.fracofday.astype(np.float64) / 86_400_000_000_000
self.fracofday = Series(self.fracofday, daily_dates)
index = date_range(date_index.min(), date_index.max(), freq="D")
self.temp = Series(1.0, index)[self.fracofday.index]
def time_join_non_unique_equal(self):
self.fracofday * self.temp
class Merge:
params = [True, False]
param_names = ["sort"]
def setup(self, sort):
N = 10000
indices = Index([f"i-{i}" for i in range(N)], dtype=object).values
indices2 = Index([f"i-{i}" for i in range(N)], dtype=object).values
key = np.tile(indices[:8000], 10)
key2 = np.tile(indices2[:8000], 10)
self.left = DataFrame(
{"key": key, "key2": key2, "value": np.random.randn(80000)}
)
self.right = DataFrame(
{
"key": indices[2000:],
"key2": indices2[2000:],
"value2": np.random.randn(8000),
}
)
self.df = DataFrame(
{
"key1": np.tile(np.arange(500).repeat(10), 2),
"key2": np.tile(np.arange(250).repeat(10), 4),
"value": np.random.randn(10000),
}
)
self.df2 = DataFrame({"key1": np.arange(500), "value2": np.random.randn(500)})
self.df3 = self.df[:5000]
def time_merge_2intkey(self, sort):
merge(self.left, self.right, sort=sort)
def time_merge_dataframe_integer_2key(self, sort):
merge(self.df, self.df3, sort=sort)
def time_merge_dataframe_integer_key(self, sort):
merge(self.df, self.df2, on="key1", sort=sort)
def time_merge_dataframe_empty_right(self, sort):
merge(self.left, self.right.iloc[:0], sort=sort)
def time_merge_dataframe_empty_left(self, sort):
merge(self.left.iloc[:0], self.right, sort=sort)
def time_merge_dataframes_cross(self, sort):
merge(self.left.loc[:2000], self.right.loc[:2000], how="cross", sort=sort)
class MergeEA:
params = [
[
"Int64",
"Int32",
"Int16",
"UInt64",
"UInt32",
"UInt16",
"Float64",
"Float32",
],
[True, False],
]
param_names = ["dtype", "monotonic"]
def setup(self, dtype, monotonic):
N = 10_000
indices = np.arange(1, N)
key = np.tile(indices[:8000], 10)
self.left = DataFrame(
{"key": Series(key, dtype=dtype), "value": np.random.randn(80000)}
)
self.right = DataFrame(
{
"key": Series(indices[2000:], dtype=dtype),
"value2": np.random.randn(7999),
}
)
if monotonic:
self.left = self.left.sort_values("key")
self.right = self.right.sort_values("key")
def time_merge(self, dtype, monotonic):
merge(self.left, self.right)
class I8Merge:
params = ["inner", "outer", "left", "right"]
param_names = ["how"]
def setup(self, how):
low, high, n = -1000, 1000, 10**6
self.left = DataFrame(
np.random.randint(low, high, (n, 7)), columns=list("ABCDEFG")
)
self.left["left"] = self.left.sum(axis=1)
self.right = self.left.sample(frac=1).rename({"left": "right"}, axis=1)
self.right = self.right.reset_index(drop=True)
self.right["right"] *= -1
def time_i8merge(self, how):
merge(self.left, self.right, how=how)
class MergeDatetime:
params = [
[
("ns", "ns"),
("ms", "ms"),
("ns", "ms"),
],
[None, "Europe/Brussels"],
[True, False],
]
param_names = ["units", "tz", "monotonic"]
def setup(self, units, tz, monotonic):
unit_left, unit_right = units
N = 10_000
keys = Series(date_range("2012-01-01", freq="min", periods=N, tz=tz))
self.left = DataFrame(
{
"key": keys.sample(N * 10, replace=True).dt.as_unit(unit_left),
"value1": np.random.randn(N * 10),
}
)
self.right = DataFrame(
{
"key": keys[:8000].dt.as_unit(unit_right),
"value2": np.random.randn(8000),
}
)
if monotonic:
self.left = self.left.sort_values("key")
self.right = self.right.sort_values("key")
def time_merge(self, units, tz, monotonic):
merge(self.left, self.right)
class MergeCategoricals:
def setup(self):
self.left_object = DataFrame(
{
"X": np.random.choice(range(10), size=(10000,)),
"Y": np.random.choice(["one", "two", "three"], size=(10000,)),
}
)
self.right_object = DataFrame(
{
"X": np.random.choice(range(10), size=(10000,)),
"Z": np.random.choice(["jjj", "kkk", "sss"], size=(10000,)),
}
)
self.left_cat = self.left_object.assign(
Y=self.left_object["Y"].astype("category")
)
self.right_cat = self.right_object.assign(
Z=self.right_object["Z"].astype("category")
)
self.left_cat_col = self.left_object.astype({"X": "category"})
self.right_cat_col = self.right_object.astype({"X": "category"})
self.left_cat_idx = self.left_cat_col.set_index("X")
self.right_cat_idx = self.right_cat_col.set_index("X")
def time_merge_object(self):
merge(self.left_object, self.right_object, on="X")
def time_merge_cat(self):
merge(self.left_cat, self.right_cat, on="X")
def time_merge_on_cat_col(self):
merge(self.left_cat_col, self.right_cat_col, on="X")
def time_merge_on_cat_idx(self):
merge(self.left_cat_idx, self.right_cat_idx, on="X")
class MergeOrdered:
def setup(self):
groups = Index([f"i-{i}" for i in range(10)], dtype=object).values
self.left = DataFrame(
{
"group": groups.repeat(5000),
"key": np.tile(np.arange(0, 10000, 2), 10),
"lvalue": np.random.randn(50000),
}
)
self.right = DataFrame(
{"key": np.arange(10000), "rvalue": np.random.randn(10000)}
)
def time_merge_ordered(self):
merge_ordered(self.left, self.right, on="key", left_by="group")
class MergeAsof:
params = [["backward", "forward", "nearest"], [None, 5]]
param_names = ["direction", "tolerance"]
def setup(self, direction, tolerance):
one_count = 200000
two_count = 1000000
df1 = DataFrame(
{
"time": np.random.randint(0, one_count / 20, one_count),
"key": np.random.choice(list(string.ascii_uppercase), one_count),
"key2": np.random.randint(0, 25, one_count),
"value1": np.random.randn(one_count),
}
)
df2 = DataFrame(
{
"time": np.random.randint(0, two_count / 20, two_count),
"key": np.random.choice(list(string.ascii_uppercase), two_count),
"key2": np.random.randint(0, 25, two_count),
"value2": np.random.randn(two_count),
}
)
df1 = df1.sort_values("time")
df2 = df2.sort_values("time")
df1["time32"] = np.int32(df1.time)
df2["time32"] = np.int32(df2.time)
df1["timeu64"] = np.uint64(df1.time)
df2["timeu64"] = np.uint64(df2.time)
self.df1a = df1[["time", "value1"]]
self.df2a = df2[["time", "value2"]]
self.df1b = df1[["time", "key", "value1"]]
self.df2b = df2[["time", "key", "value2"]]
self.df1c = df1[["time", "key2", "value1"]]
self.df2c = df2[["time", "key2", "value2"]]
self.df1d = df1[["time32", "value1"]]
self.df2d = df2[["time32", "value2"]]
self.df1e = df1[["time", "key", "key2", "value1"]]
self.df2e = df2[["time", "key", "key2", "value2"]]
self.df1f = df1[["timeu64", "value1"]]
self.df2f = df2[["timeu64", "value2"]]
def time_on_int(self, direction, tolerance):
merge_asof(
self.df1a, self.df2a, on="time", direction=direction, tolerance=tolerance
)
def time_on_int32(self, direction, tolerance):
merge_asof(
self.df1d, self.df2d, on="time32", direction=direction, tolerance=tolerance
)
def time_on_uint64(self, direction, tolerance):
merge_asof(
self.df1f, self.df2f, on="timeu64", direction=direction, tolerance=tolerance
)
def time_by_object(self, direction, tolerance):
merge_asof(
self.df1b,
self.df2b,
on="time",
by="key",
direction=direction,
tolerance=tolerance,
)
def time_by_int(self, direction, tolerance):
merge_asof(
self.df1c,
self.df2c,
on="time",
by="key2",
direction=direction,
tolerance=tolerance,
)
def time_multiby(self, direction, tolerance):
merge_asof(
self.df1e,
self.df2e,
on="time",
by=["key", "key2"],
direction=direction,
tolerance=tolerance,
)
class MergeMultiIndex:
params = [
[
("int64", "int64"),
("datetime64[ns]", "int64"),
("Int64", "Int64"),
],
["left", "right", "inner", "outer"],
]
param_names = ["dtypes", "how"]
def setup(self, dtypes, how):
n = 100_000
offset = 50_000
mi1 = MultiIndex.from_arrays(
[
array(np.arange(n), dtype=dtypes[0]),
array(np.arange(n), dtype=dtypes[1]),
]
)
mi2 = MultiIndex.from_arrays(
[
array(np.arange(offset, n + offset), dtype=dtypes[0]),
array(np.arange(offset, n + offset), dtype=dtypes[1]),
]
)
self.df1 = DataFrame({"col1": 1}, index=mi1)
self.df2 = DataFrame({"col2": 2}, index=mi2)
def time_merge_sorted_multiindex(self, dtypes, how):
# copy to avoid MultiIndex._values caching
df1 = self.df1.copy()
df2 = self.df2.copy()
merge(df1, df2, how=how, left_index=True, right_index=True)
class Align:
def setup(self):
size = 5 * 10**5
rng = np.arange(0, 10**13, 10**7)
stamps = np.datetime64("now").view("i8") + rng
idx1 = np.sort(np.random.choice(stamps, size, replace=False))
idx2 = np.sort(np.random.choice(stamps, size, replace=False))
self.ts1 = Series(np.random.randn(size), idx1)
self.ts2 = Series(np.random.randn(size), idx2)
def time_series_align_int64_index(self):
self.ts1 + self.ts2
def time_series_align_left_monotonic(self):
self.ts1.align(self.ts2, join="left")
from .pandas_vb_common import setup # noqa: F401 isort:skip
|