File: period.py

package info (click to toggle)
pandas 2.2.3%2Bdfsg-9
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 66,784 kB
  • sloc: python: 422,228; ansic: 9,190; sh: 270; xml: 102; makefile: 83
file content (106 lines) | stat: -rw-r--r-- 2,908 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
"""
Period benchmarks with non-tslibs dependencies.  See
benchmarks.tslibs.period for benchmarks that rely only on tslibs.
"""
from pandas import (
    DataFrame,
    Period,
    PeriodIndex,
    Series,
    date_range,
    period_range,
)

from pandas.tseries.frequencies import to_offset


class PeriodIndexConstructor:
    params = [["D"], [True, False]]
    param_names = ["freq", "is_offset"]

    def setup(self, freq, is_offset):
        self.rng = date_range("1985", periods=1000)
        self.rng2 = date_range("1985", periods=1000).to_pydatetime()
        self.ints = list(range(2000, 3000))
        self.daily_ints = (
            date_range("1/1/2000", periods=1000, freq=freq).strftime("%Y%m%d").map(int)
        )
        if is_offset:
            self.freq = to_offset(freq)
        else:
            self.freq = freq

    def time_from_date_range(self, freq, is_offset):
        PeriodIndex(self.rng, freq=freq)

    def time_from_pydatetime(self, freq, is_offset):
        PeriodIndex(self.rng2, freq=freq)

    def time_from_ints(self, freq, is_offset):
        PeriodIndex(self.ints, freq=freq)

    def time_from_ints_daily(self, freq, is_offset):
        PeriodIndex(self.daily_ints, freq=freq)


class DataFramePeriodColumn:
    def setup(self):
        self.rng = period_range(start="1/1/1990", freq="s", periods=20000)
        self.df = DataFrame(index=range(len(self.rng)))

    def time_setitem_period_column(self):
        self.df["col"] = self.rng

    def time_set_index(self):
        # GH#21582 limited by comparisons of Period objects
        self.df["col2"] = self.rng
        self.df.set_index("col2", append=True)


class Algorithms:
    params = ["index", "series"]
    param_names = ["typ"]

    def setup(self, typ):
        data = [
            Period("2011-01", freq="M"),
            Period("2011-02", freq="M"),
            Period("2011-03", freq="M"),
            Period("2011-04", freq="M"),
        ]

        if typ == "index":
            self.vector = PeriodIndex(data * 1000, freq="M")
        elif typ == "series":
            self.vector = Series(data * 1000)

    def time_drop_duplicates(self, typ):
        self.vector.drop_duplicates()

    def time_value_counts(self, typ):
        self.vector.value_counts()


class Indexing:
    def setup(self):
        self.index = period_range(start="1985", periods=1000, freq="D")
        self.series = Series(range(1000), index=self.index)
        self.period = self.index[500]

    def time_get_loc(self):
        self.index.get_loc(self.period)

    def time_shallow_copy(self):
        self.index._view()

    def time_series_loc(self):
        self.series.loc[self.period]

    def time_align(self):
        DataFrame({"a": self.series, "b": self.series[:500]})

    def time_intersection(self):
        self.index[:750].intersection(self.index[250:])

    def time_unique(self):
        self.index.unique()