1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338
|
from itertools import product
import string
import numpy as np
import pandas as pd
from pandas import (
DataFrame,
MultiIndex,
date_range,
melt,
wide_to_long,
)
from pandas.api.types import CategoricalDtype
class Melt:
params = ["float64", "Float64"]
param_names = ["dtype"]
def setup(self, dtype):
self.df = DataFrame(
np.random.randn(100_000, 3), columns=["A", "B", "C"], dtype=dtype
)
self.df["id1"] = pd.Series(np.random.randint(0, 10, 10000))
self.df["id2"] = pd.Series(np.random.randint(100, 1000, 10000))
def time_melt_dataframe(self, dtype):
melt(self.df, id_vars=["id1", "id2"])
class Pivot:
def setup(self):
N = 10000
index = date_range("1/1/2000", periods=N, freq="h")
data = {
"value": np.random.randn(N * 50),
"variable": np.arange(50).repeat(N),
"date": np.tile(index.values, 50),
}
self.df = DataFrame(data)
def time_reshape_pivot_time_series(self):
self.df.pivot(index="date", columns="variable", values="value")
class SimpleReshape:
def setup(self):
arrays = [np.arange(100).repeat(100), np.roll(np.tile(np.arange(100), 100), 25)]
index = MultiIndex.from_arrays(arrays)
self.df = DataFrame(np.random.randn(10000, 4), index=index)
self.udf = self.df.unstack(1)
def time_stack(self):
self.udf.stack()
def time_unstack(self):
self.df.unstack(1)
class ReshapeExtensionDtype:
params = ["datetime64[ns, US/Pacific]", "Period[s]"]
param_names = ["dtype"]
def setup(self, dtype):
lev = pd.Index(list("ABCDEFGHIJ"))
ri = pd.Index(range(1000))
mi = MultiIndex.from_product([lev, ri], names=["foo", "bar"])
index = date_range("2016-01-01", periods=10000, freq="s", tz="US/Pacific")
if dtype == "Period[s]":
index = index.tz_localize(None).to_period("s")
ser = pd.Series(index, index=mi)
df = ser.unstack("bar")
# roundtrips -> df.stack().equals(ser)
self.ser = ser
self.df = df
def time_stack(self, dtype):
self.df.stack()
def time_unstack_fast(self, dtype):
# last level -> doesn't have to make copies
self.ser.unstack("bar")
def time_unstack_slow(self, dtype):
# first level -> must make copies
self.ser.unstack("foo")
def time_transpose(self, dtype):
self.df.T
class ReshapeMaskedArrayDtype(ReshapeExtensionDtype):
params = ["Int64", "Float64"]
param_names = ["dtype"]
def setup(self, dtype):
lev = pd.Index(list("ABCDEFGHIJ"))
ri = pd.Index(range(1000))
mi = MultiIndex.from_product([lev, ri], names=["foo", "bar"])
values = np.random.randn(10_000).astype(int)
ser = pd.Series(values, dtype=dtype, index=mi)
df = ser.unstack("bar")
# roundtrips -> df.stack().equals(ser)
self.ser = ser
self.df = df
class Unstack:
params = ["int", "category"]
def setup(self, dtype):
m = 100
n = 1000
levels = np.arange(m)
index = MultiIndex.from_product([levels] * 2)
columns = np.arange(n)
if dtype == "int":
values = np.arange(m * m * n).reshape(m * m, n)
self.df = DataFrame(values, index, columns)
else:
# the category branch is ~20x slower than int. So we
# cut down the size a bit. Now it's only ~3x slower.
n = 50
columns = columns[:n]
indices = np.random.randint(0, 52, size=(m * m, n))
values = np.take(list(string.ascii_letters), indices)
values = [pd.Categorical(v) for v in values.T]
self.df = DataFrame(dict(enumerate(values)), index, columns)
self.df2 = self.df.iloc[:-1]
def time_full_product(self, dtype):
self.df.unstack()
def time_without_last_row(self, dtype):
self.df2.unstack()
class SparseIndex:
def setup(self):
NUM_ROWS = 1000
self.df = DataFrame(
{
"A": np.random.randint(50, size=NUM_ROWS),
"B": np.random.randint(50, size=NUM_ROWS),
"C": np.random.randint(-10, 10, size=NUM_ROWS),
"D": np.random.randint(-10, 10, size=NUM_ROWS),
"E": np.random.randint(10, size=NUM_ROWS),
"F": np.random.randn(NUM_ROWS),
}
)
self.df = self.df.set_index(["A", "B", "C", "D", "E"])
def time_unstack(self):
self.df.unstack()
class WideToLong:
def setup(self):
nyrs = 20
nidvars = 20
N = 5000
self.letters = list("ABCD")
yrvars = [
letter + str(num)
for letter, num in product(self.letters, range(1, nyrs + 1))
]
columns = [str(i) for i in range(nidvars)] + yrvars
self.df = DataFrame(np.random.randn(N, nidvars + len(yrvars)), columns=columns)
self.df["id"] = self.df.index
def time_wide_to_long_big(self):
wide_to_long(self.df, self.letters, i="id", j="year")
class PivotTable:
def setup(self):
N = 100000
fac1 = np.array(["A", "B", "C"], dtype="O")
fac2 = np.array(["one", "two"], dtype="O")
ind1 = np.random.randint(0, 3, size=N)
ind2 = np.random.randint(0, 2, size=N)
self.df = DataFrame(
{
"key1": fac1.take(ind1),
"key2": fac2.take(ind2),
"key3": fac2.take(ind2),
"value1": np.random.randn(N),
"value2": np.random.randn(N),
"value3": np.random.randn(N),
}
)
self.df2 = DataFrame(
{"col1": list("abcde"), "col2": list("fghij"), "col3": [1, 2, 3, 4, 5]}
)
self.df2.col1 = self.df2.col1.astype("category")
self.df2.col2 = self.df2.col2.astype("category")
def time_pivot_table(self):
self.df.pivot_table(index="key1", columns=["key2", "key3"])
def time_pivot_table_agg(self):
self.df.pivot_table(
index="key1", columns=["key2", "key3"], aggfunc=["sum", "mean"]
)
def time_pivot_table_margins(self):
self.df.pivot_table(index="key1", columns=["key2", "key3"], margins=True)
def time_pivot_table_categorical(self):
self.df2.pivot_table(
index="col1", values="col3", columns="col2", aggfunc="sum", fill_value=0
)
def time_pivot_table_categorical_observed(self):
self.df2.pivot_table(
index="col1",
values="col3",
columns="col2",
aggfunc="sum",
fill_value=0,
observed=True,
)
def time_pivot_table_margins_only_column(self):
self.df.pivot_table(columns=["key1", "key2", "key3"], margins=True)
class Crosstab:
def setup(self):
N = 100000
fac1 = np.array(["A", "B", "C"], dtype="O")
fac2 = np.array(["one", "two"], dtype="O")
self.ind1 = np.random.randint(0, 3, size=N)
self.ind2 = np.random.randint(0, 2, size=N)
self.vec1 = fac1.take(self.ind1)
self.vec2 = fac2.take(self.ind2)
def time_crosstab(self):
pd.crosstab(self.vec1, self.vec2)
def time_crosstab_values(self):
pd.crosstab(self.vec1, self.vec2, values=self.ind1, aggfunc="sum")
def time_crosstab_normalize(self):
pd.crosstab(self.vec1, self.vec2, normalize=True)
def time_crosstab_normalize_margins(self):
pd.crosstab(self.vec1, self.vec2, normalize=True, margins=True)
class GetDummies:
def setup(self):
categories = list(string.ascii_letters[:12])
s = pd.Series(
np.random.choice(categories, size=1000000),
dtype=CategoricalDtype(categories),
)
self.s = s
def time_get_dummies_1d(self):
pd.get_dummies(self.s, sparse=False)
def time_get_dummies_1d_sparse(self):
pd.get_dummies(self.s, sparse=True)
class Cut:
params = [[4, 10, 1000]]
param_names = ["bins"]
def setup(self, bins):
N = 10**5
self.int_series = pd.Series(np.arange(N).repeat(5))
self.float_series = pd.Series(np.random.randn(N).repeat(5))
self.timedelta_series = pd.Series(
np.random.randint(N, size=N), dtype="timedelta64[ns]"
)
self.datetime_series = pd.Series(
np.random.randint(N, size=N), dtype="datetime64[ns]"
)
self.interval_bins = pd.IntervalIndex.from_breaks(np.linspace(0, N, bins))
def time_cut_int(self, bins):
pd.cut(self.int_series, bins)
def time_cut_float(self, bins):
pd.cut(self.float_series, bins)
def time_cut_timedelta(self, bins):
pd.cut(self.timedelta_series, bins)
def time_cut_datetime(self, bins):
pd.cut(self.datetime_series, bins)
def time_qcut_int(self, bins):
pd.qcut(self.int_series, bins)
def time_qcut_float(self, bins):
pd.qcut(self.float_series, bins)
def time_qcut_timedelta(self, bins):
pd.qcut(self.timedelta_series, bins)
def time_qcut_datetime(self, bins):
pd.qcut(self.datetime_series, bins)
def time_cut_interval(self, bins):
# GH 27668
pd.cut(self.int_series, self.interval_bins)
def peakmem_cut_interval(self, bins):
# GH 27668
pd.cut(self.int_series, self.interval_bins)
class Explode:
param_names = ["n_rows", "max_list_length"]
params = [[100, 1000, 10000], [3, 5, 10]]
def setup(self, n_rows, max_list_length):
data = [np.arange(np.random.randint(max_list_length)) for _ in range(n_rows)]
self.series = pd.Series(data)
def time_explode(self, n_rows, max_list_length):
self.series.explode()
from .pandas_vb_common import setup # noqa: F401 isort:skip
|