1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421
|
from datetime import datetime
import numpy as np
from pandas import (
NA,
Index,
NaT,
Series,
date_range,
)
class SeriesConstructor:
def setup(self):
self.idx = date_range(
start=datetime(2015, 10, 26), end=datetime(2016, 1, 1), freq="50s"
)
self.data = dict(zip(self.idx, range(len(self.idx))))
self.array = np.array([1, 2, 3])
self.idx2 = Index(["a", "b", "c"])
def time_constructor_dict(self):
Series(data=self.data, index=self.idx)
def time_constructor_no_data(self):
Series(data=None, index=self.idx)
class ToFrame:
params = [["int64", "datetime64[ns]", "category", "Int64"], [None, "foo"]]
param_names = ["dtype", "name"]
def setup(self, dtype, name):
arr = np.arange(10**5)
ser = Series(arr, dtype=dtype)
self.ser = ser
def time_to_frame(self, dtype, name):
self.ser.to_frame(name)
class NSort:
params = ["first", "last", "all"]
param_names = ["keep"]
def setup(self, keep):
self.s = Series(np.random.randint(1, 10, 100000))
def time_nlargest(self, keep):
self.s.nlargest(3, keep=keep)
def time_nsmallest(self, keep):
self.s.nsmallest(3, keep=keep)
class Dropna:
params = ["int", "datetime"]
param_names = ["dtype"]
def setup(self, dtype):
N = 10**6
data = {
"int": np.random.randint(1, 10, N),
"datetime": date_range("2000-01-01", freq="s", periods=N),
}
self.s = Series(data[dtype])
if dtype == "datetime":
self.s[np.random.randint(1, N, 100)] = NaT
def time_dropna(self, dtype):
self.s.dropna()
class Fillna:
params = [
[
"datetime64[ns]",
"float32",
"float64",
"Float64",
"Int64",
"int64[pyarrow]",
"string",
"string[pyarrow]",
],
]
param_names = ["dtype"]
def setup(self, dtype):
N = 10**6
if dtype == "datetime64[ns]":
data = date_range("2000-01-01", freq="s", periods=N)
na_value = NaT
elif dtype in ("float64", "Float64"):
data = np.random.randn(N)
na_value = np.nan
elif dtype in ("Int64", "int64[pyarrow]"):
data = np.arange(N)
na_value = NA
elif dtype in ("string", "string[pyarrow]"):
data = np.array([str(i) * 5 for i in range(N)], dtype=object)
na_value = NA
else:
raise NotImplementedError
fill_value = data[0]
ser = Series(data, dtype=dtype)
ser[::2] = na_value
self.ser = ser
self.fill_value = fill_value
def time_fillna(self, dtype):
self.ser.fillna(value=self.fill_value)
def time_ffill(self, dtype):
self.ser.ffill()
def time_bfill(self, dtype):
self.ser.bfill()
class SearchSorted:
goal_time = 0.2
params = [
"int8",
"int16",
"int32",
"int64",
"uint8",
"uint16",
"uint32",
"uint64",
"float16",
"float32",
"float64",
"str",
]
param_names = ["dtype"]
def setup(self, dtype):
N = 10**5
data = np.array([1] * N + [2] * N + [3] * N).astype(dtype)
self.s = Series(data)
def time_searchsorted(self, dtype):
key = "2" if dtype == "str" else 2
self.s.searchsorted(key)
class Map:
params = (["dict", "Series", "lambda"], ["object", "category", "int"])
param_names = "mapper"
def setup(self, mapper, dtype):
map_size = 1000
map_data = Series(map_size - np.arange(map_size), dtype=dtype)
# construct mapper
if mapper == "Series":
self.map_data = map_data
elif mapper == "dict":
self.map_data = map_data.to_dict()
elif mapper == "lambda":
map_dict = map_data.to_dict()
self.map_data = lambda x: map_dict[x]
else:
raise NotImplementedError
self.s = Series(np.random.randint(0, map_size, 10000), dtype=dtype)
def time_map(self, mapper, *args, **kwargs):
self.s.map(self.map_data)
class Clip:
params = [50, 1000, 10**5]
param_names = ["n"]
def setup(self, n):
self.s = Series(np.random.randn(n))
def time_clip(self, n):
self.s.clip(0, 1)
class ClipDt:
def setup(self):
dr = date_range("20220101", periods=100_000, freq="s", tz="UTC")
self.clipper_dt = dr[0:1_000].repeat(100)
self.s = Series(dr)
def time_clip(self):
self.s.clip(upper=self.clipper_dt)
class ValueCounts:
params = [[10**3, 10**4, 10**5], ["int", "uint", "float", "object"]]
param_names = ["N", "dtype"]
def setup(self, N, dtype):
self.s = Series(np.random.randint(0, N, size=10 * N)).astype(dtype)
def time_value_counts(self, N, dtype):
self.s.value_counts()
class ValueCountsEA:
params = [[10**3, 10**4, 10**5], [True, False]]
param_names = ["N", "dropna"]
def setup(self, N, dropna):
self.s = Series(np.random.randint(0, N, size=10 * N), dtype="Int64")
self.s.loc[1] = NA
def time_value_counts(self, N, dropna):
self.s.value_counts(dropna=dropna)
class ValueCountsObjectDropNAFalse:
params = [10**3, 10**4, 10**5]
param_names = ["N"]
def setup(self, N):
self.s = Series(np.random.randint(0, N, size=10 * N)).astype("object")
def time_value_counts(self, N):
self.s.value_counts(dropna=False)
class Mode:
params = [[10**3, 10**4, 10**5], ["int", "uint", "float", "object"]]
param_names = ["N", "dtype"]
def setup(self, N, dtype):
self.s = Series(np.random.randint(0, N, size=10 * N)).astype(dtype)
def time_mode(self, N, dtype):
self.s.mode()
class ModeObjectDropNAFalse:
params = [10**3, 10**4, 10**5]
param_names = ["N"]
def setup(self, N):
self.s = Series(np.random.randint(0, N, size=10 * N)).astype("object")
def time_mode(self, N):
self.s.mode(dropna=False)
class Dir:
def setup(self):
self.s = Series(index=Index([f"i-{i}" for i in range(10000)], dtype=object))
def time_dir_strings(self):
dir(self.s)
class SeriesGetattr:
# https://github.com/pandas-dev/pandas/issues/19764
def setup(self):
self.s = Series(1, index=date_range("2012-01-01", freq="s", periods=10**6))
def time_series_datetimeindex_repr(self):
getattr(self.s, "a", None)
class All:
params = [[10**3, 10**6], ["fast", "slow"], ["bool", "boolean"]]
param_names = ["N", "case", "dtype"]
def setup(self, N, case, dtype):
val = case != "fast"
self.s = Series([val] * N, dtype=dtype)
def time_all(self, N, case, dtype):
self.s.all()
class Any:
params = [[10**3, 10**6], ["fast", "slow"], ["bool", "boolean"]]
param_names = ["N", "case", "dtype"]
def setup(self, N, case, dtype):
val = case == "fast"
self.s = Series([val] * N, dtype=dtype)
def time_any(self, N, case, dtype):
self.s.any()
class NanOps:
params = [
[
"var",
"mean",
"median",
"max",
"min",
"sum",
"std",
"sem",
"argmax",
"skew",
"kurt",
"prod",
],
[10**3, 10**6],
["int8", "int32", "int64", "float64", "Int64", "boolean"],
]
param_names = ["func", "N", "dtype"]
def setup(self, func, N, dtype):
if func == "argmax" and dtype in {"Int64", "boolean"}:
# Skip argmax for nullable int since this doesn't work yet (GH-24382)
raise NotImplementedError
self.s = Series(np.ones(N), dtype=dtype)
self.func = getattr(self.s, func)
def time_func(self, func, N, dtype):
self.func()
class Rank:
param_names = ["dtype"]
params = [
["int", "uint", "float", "object"],
]
def setup(self, dtype):
self.s = Series(np.random.randint(0, 1000, size=100000), dtype=dtype)
def time_rank(self, dtype):
self.s.rank()
class Iter:
param_names = ["dtype"]
params = [
"bool",
"boolean",
"int64",
"Int64",
"float64",
"Float64",
"datetime64[ns]",
]
def setup(self, dtype):
N = 10**5
if dtype in ["bool", "boolean"]:
data = np.repeat([True, False], N // 2)
elif dtype in ["int64", "Int64"]:
data = np.arange(N)
elif dtype in ["float64", "Float64"]:
data = np.random.randn(N)
elif dtype == "datetime64[ns]":
data = date_range("2000-01-01", freq="s", periods=N)
else:
raise NotImplementedError
self.s = Series(data, dtype=dtype)
def time_iter(self, dtype):
for v in self.s:
pass
class ToNumpy:
def setup(self):
N = 1_000_000
self.ser = Series(
np.random.randn(
N,
)
)
def time_to_numpy(self):
self.ser.to_numpy()
def time_to_numpy_double_copy(self):
self.ser.to_numpy(dtype="float64", copy=True)
def time_to_numpy_copy(self):
self.ser.to_numpy(copy=True)
def time_to_numpy_float_with_nan(self):
self.ser.to_numpy(dtype="float64", na_value=np.nan)
class Replace:
param_names = ["num_to_replace"]
params = [100, 1000]
def setup(self, num_to_replace):
N = 1_000_000
self.arr = np.random.randn(N)
self.arr1 = self.arr.copy()
np.random.shuffle(self.arr1)
self.ser = Series(self.arr)
self.to_replace_list = np.random.choice(self.arr, num_to_replace)
self.values_list = np.random.choice(self.arr1, num_to_replace)
self.replace_dict = dict(zip(self.to_replace_list, self.values_list))
def time_replace_dict(self, num_to_replace):
self.ser.replace(self.replace_dict)
def peakmem_replace_dict(self, num_to_replace):
self.ser.replace(self.replace_dict)
def time_replace_list(self, num_to_replace):
self.ser.replace(self.to_replace_list, self.values_list)
def peakmem_replace_list(self, num_to_replace):
self.ser.replace(self.to_replace_list, self.values_list)
from .pandas_vb_common import setup # noqa: F401 isort:skip
|