1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
|
import numpy as np
import scipy.sparse
import pandas as pd
from pandas import (
MultiIndex,
Series,
date_range,
)
from pandas.arrays import SparseArray
def make_array(size, dense_proportion, fill_value, dtype):
dense_size = int(size * dense_proportion)
arr = np.full(size, fill_value, dtype)
indexer = np.random.choice(np.arange(size), dense_size, replace=False)
arr[indexer] = np.random.choice(np.arange(100, dtype=dtype), dense_size)
return arr
class SparseSeriesToFrame:
def setup(self):
K = 50
N = 50001
rng = date_range("1/1/2000", periods=N, freq="min")
self.series = {}
for i in range(1, K):
data = np.random.randn(N)[:-i]
idx = rng[:-i]
data[100:] = np.nan
self.series[i] = Series(SparseArray(data), index=idx)
def time_series_to_frame(self):
pd.DataFrame(self.series)
class SparseArrayConstructor:
params = ([0.1, 0.01], [0, np.nan], [np.int64, np.float64, object])
param_names = ["dense_proportion", "fill_value", "dtype"]
def setup(self, dense_proportion, fill_value, dtype):
N = 10**6
self.array = make_array(N, dense_proportion, fill_value, dtype)
def time_sparse_array(self, dense_proportion, fill_value, dtype):
SparseArray(self.array, fill_value=fill_value, dtype=dtype)
class SparseDataFrameConstructor:
def setup(self):
N = 1000
self.sparse = scipy.sparse.rand(N, N, 0.005)
def time_from_scipy(self):
pd.DataFrame.sparse.from_spmatrix(self.sparse)
class FromCoo:
def setup(self):
self.matrix = scipy.sparse.coo_matrix(
([3.0, 1.0, 2.0], ([1, 0, 0], [0, 2, 3])), shape=(100, 100)
)
def time_sparse_series_from_coo(self):
Series.sparse.from_coo(self.matrix)
class ToCoo:
params = [True, False]
param_names = ["sort_labels"]
def setup(self, sort_labels):
s = Series([np.nan] * 10000)
s[0] = 3.0
s[100] = -1.0
s[999] = 12.1
s_mult_lvl = s.set_axis(MultiIndex.from_product([range(10)] * 4))
self.ss_mult_lvl = s_mult_lvl.astype("Sparse")
s_two_lvl = s.set_axis(MultiIndex.from_product([range(100)] * 2))
self.ss_two_lvl = s_two_lvl.astype("Sparse")
def time_sparse_series_to_coo(self, sort_labels):
self.ss_mult_lvl.sparse.to_coo(
row_levels=[0, 1], column_levels=[2, 3], sort_labels=sort_labels
)
def time_sparse_series_to_coo_single_level(self, sort_labels):
self.ss_two_lvl.sparse.to_coo(sort_labels=sort_labels)
class ToCooFrame:
def setup(self):
N = 10000
k = 10
arr = np.zeros((N, k), dtype=float)
arr[0, 0] = 3.0
arr[12, 7] = -1.0
arr[0, 9] = 11.2
self.df = pd.DataFrame(arr, dtype=pd.SparseDtype("float", fill_value=0.0))
def time_to_coo(self):
self.df.sparse.to_coo()
class Arithmetic:
params = ([0.1, 0.01], [0, np.nan])
param_names = ["dense_proportion", "fill_value"]
def setup(self, dense_proportion, fill_value):
N = 10**6
arr1 = make_array(N, dense_proportion, fill_value, np.int64)
self.array1 = SparseArray(arr1, fill_value=fill_value)
arr2 = make_array(N, dense_proportion, fill_value, np.int64)
self.array2 = SparseArray(arr2, fill_value=fill_value)
def time_make_union(self, dense_proportion, fill_value):
self.array1.sp_index.make_union(self.array2.sp_index)
def time_intersect(self, dense_proportion, fill_value):
self.array1.sp_index.intersect(self.array2.sp_index)
def time_add(self, dense_proportion, fill_value):
self.array1 + self.array2
def time_divide(self, dense_proportion, fill_value):
self.array1 / self.array2
class ArithmeticBlock:
params = [np.nan, 0]
param_names = ["fill_value"]
def setup(self, fill_value):
N = 10**6
self.arr1 = self.make_block_array(
length=N, num_blocks=1000, block_size=10, fill_value=fill_value
)
self.arr2 = self.make_block_array(
length=N, num_blocks=1000, block_size=10, fill_value=fill_value
)
def make_block_array(self, length, num_blocks, block_size, fill_value):
arr = np.full(length, fill_value)
indices = np.random.choice(
np.arange(0, length, block_size), num_blocks, replace=False
)
for ind in indices:
arr[ind : ind + block_size] = np.random.randint(0, 100, block_size)
return SparseArray(arr, fill_value=fill_value)
def time_make_union(self, fill_value):
self.arr1.sp_index.make_union(self.arr2.sp_index)
def time_intersect(self, fill_value):
self.arr2.sp_index.intersect(self.arr2.sp_index)
def time_addition(self, fill_value):
self.arr1 + self.arr2
def time_division(self, fill_value):
self.arr1 / self.arr2
class MinMax:
params = (["min", "max"], [0.0, np.nan])
param_names = ["func", "fill_value"]
def setup(self, func, fill_value):
N = 1_000_000
arr = make_array(N, 1e-5, fill_value, np.float64)
self.sp_arr = SparseArray(arr, fill_value=fill_value)
def time_min_max(self, func, fill_value):
getattr(self.sp_arr, func)()
class Take:
params = ([np.array([0]), np.arange(100_000), np.full(100_000, -1)], [True, False])
param_names = ["indices", "allow_fill"]
def setup(self, indices, allow_fill):
N = 1_000_000
fill_value = 0.0
arr = make_array(N, 1e-5, fill_value, np.float64)
self.sp_arr = SparseArray(arr, fill_value=fill_value)
def time_take(self, indices, allow_fill):
self.sp_arr.take(indices, allow_fill=allow_fill)
class GetItem:
def setup(self):
N = 1_000_000
d = 1e-5
arr = make_array(N, d, np.nan, np.float64)
self.sp_arr = SparseArray(arr)
def time_integer_indexing(self):
self.sp_arr[78]
def time_slice(self):
self.sp_arr[1:]
class GetItemMask:
params = [True, False, np.nan]
param_names = ["fill_value"]
def setup(self, fill_value):
N = 1_000_000
d = 1e-5
arr = make_array(N, d, np.nan, np.float64)
self.sp_arr = SparseArray(arr)
b_arr = np.full(shape=N, fill_value=fill_value, dtype=np.bool_)
fv_inds = np.unique(
np.random.randint(low=0, high=N - 1, size=int(N * d), dtype=np.int32)
)
b_arr[fv_inds] = True if pd.isna(fill_value) else not fill_value
self.sp_b_arr = SparseArray(b_arr, dtype=np.bool_, fill_value=fill_value)
def time_mask(self, fill_value):
self.sp_arr[self.sp_b_arr]
from .pandas_vb_common import setup # noqa: F401 isort:skip
|