1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115
|
import numpy as np
import pandas as pd
from pandas import offsets
class DatetimeStrftime:
timeout = 1500
params = [1000, 10000]
param_names = ["nobs"]
def setup(self, nobs):
d = "2018-11-29"
dt = "2018-11-26 11:18:27.0"
self.data = pd.DataFrame(
{
"dt": [np.datetime64(dt)] * nobs,
"d": [np.datetime64(d)] * nobs,
"r": [np.random.uniform()] * nobs,
}
)
def time_frame_date_to_str(self, nobs):
self.data["d"].astype(str)
def time_frame_date_formatting_default(self, nobs):
self.data["d"].dt.strftime(date_format=None)
def time_frame_date_formatting_default_explicit(self, nobs):
self.data["d"].dt.strftime(date_format="%Y-%m-%d")
def time_frame_date_formatting_custom(self, nobs):
self.data["d"].dt.strftime(date_format="%Y---%m---%d")
def time_frame_datetime_to_str(self, nobs):
self.data["dt"].astype(str)
def time_frame_datetime_formatting_default(self, nobs):
self.data["dt"].dt.strftime(date_format=None)
def time_frame_datetime_formatting_default_explicit_date_only(self, nobs):
self.data["dt"].dt.strftime(date_format="%Y-%m-%d")
def time_frame_datetime_formatting_default_explicit(self, nobs):
self.data["dt"].dt.strftime(date_format="%Y-%m-%d %H:%M:%S")
def time_frame_datetime_formatting_default_with_float(self, nobs):
self.data["dt"].dt.strftime(date_format="%Y-%m-%d %H:%M:%S.%f")
def time_frame_datetime_formatting_custom(self, nobs):
self.data["dt"].dt.strftime(date_format="%Y-%m-%d --- %H:%M:%S")
class PeriodStrftime:
timeout = 1500
params = ([1000, 10000], ["D", "h"])
param_names = ["nobs", "freq"]
def setup(self, nobs, freq):
self.data = pd.DataFrame(
{
"p": pd.period_range(start="2000-01-01", periods=nobs, freq=freq),
"r": [np.random.uniform()] * nobs,
}
)
self.data["i"] = self.data["p"]
self.data.set_index("i", inplace=True)
if freq == "D":
self.default_fmt = "%Y-%m-%d"
elif freq == "h":
self.default_fmt = "%Y-%m-%d %H:00"
def time_frame_period_to_str(self, nobs, freq):
self.data["p"].astype(str)
def time_frame_period_formatting_default(self, nobs, freq):
self.data["p"].dt.strftime(date_format=None)
def time_frame_period_formatting_default_explicit(self, nobs, freq):
self.data["p"].dt.strftime(date_format=self.default_fmt)
def time_frame_period_formatting_index_default(self, nobs, freq):
self.data.index.format()
def time_frame_period_formatting_index_default_explicit(self, nobs, freq):
self.data.index.format(self.default_fmt)
def time_frame_period_formatting_custom(self, nobs, freq):
self.data["p"].dt.strftime(date_format="%Y-%m-%d --- %H:%M:%S")
def time_frame_period_formatting_iso8601_strftime_Z(self, nobs, freq):
self.data["p"].dt.strftime(date_format="%Y-%m-%dT%H:%M:%SZ")
def time_frame_period_formatting_iso8601_strftime_offset(self, nobs, freq):
"""Not optimized yet as %z is not supported by `convert_strftime_format`"""
self.data["p"].dt.strftime(date_format="%Y-%m-%dT%H:%M:%S%z")
class BusinessHourStrftime:
timeout = 1500
params = [1000, 10000]
param_names = ["nobs"]
def setup(self, nobs):
self.data = pd.DataFrame(
{
"off": [offsets.BusinessHour()] * nobs,
}
)
def time_frame_offset_str(self, nobs):
self.data["off"].apply(str)
def time_frame_offset_repr(self, nobs):
self.data["off"].apply(repr)
|