1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297
|
from datetime import timedelta
import dateutil
import numpy as np
from pandas import (
DataFrame,
Series,
date_range,
period_range,
timedelta_range,
)
from pandas.tseries.frequencies import infer_freq
try:
from pandas.plotting._matplotlib.converter import DatetimeConverter
except ImportError:
from pandas.tseries.converter import DatetimeConverter
class DatetimeIndex:
params = ["dst", "repeated", "tz_aware", "tz_local", "tz_naive"]
param_names = ["index_type"]
def setup(self, index_type):
N = 100000
dtidxes = {
"dst": date_range(
start="10/29/2000 1:00:00", end="10/29/2000 1:59:59", freq="s"
),
"repeated": date_range(start="2000", periods=N / 10, freq="s").repeat(10),
"tz_aware": date_range(start="2000", periods=N, freq="s", tz="US/Eastern"),
"tz_local": date_range(
start="2000", periods=N, freq="s", tz=dateutil.tz.tzlocal()
),
"tz_naive": date_range(start="2000", periods=N, freq="s"),
}
self.index = dtidxes[index_type]
def time_add_timedelta(self, index_type):
self.index + timedelta(minutes=2)
def time_normalize(self, index_type):
self.index.normalize()
def time_unique(self, index_type):
self.index.unique()
def time_to_time(self, index_type):
self.index.time
def time_get(self, index_type):
self.index[0]
def time_timeseries_is_month_start(self, index_type):
self.index.is_month_start
def time_to_date(self, index_type):
self.index.date
def time_to_pydatetime(self, index_type):
self.index.to_pydatetime()
def time_is_dates_only(self, index_type):
self.index._is_dates_only
class TzLocalize:
params = [None, "US/Eastern", "UTC", dateutil.tz.tzutc()]
param_names = "tz"
def setup(self, tz):
dst_rng = date_range(
start="10/29/2000 1:00:00", end="10/29/2000 1:59:59", freq="s"
)
self.index = date_range(start="10/29/2000", end="10/29/2000 00:59:59", freq="s")
self.index = self.index.append(dst_rng)
self.index = self.index.append(dst_rng)
self.index = self.index.append(
date_range(start="10/29/2000 2:00:00", end="10/29/2000 3:00:00", freq="s")
)
def time_infer_dst(self, tz):
self.index.tz_localize(tz, ambiguous="infer")
class ResetIndex:
params = [None, "US/Eastern"]
param_names = "tz"
def setup(self, tz):
idx = date_range(start="1/1/2000", periods=1000, freq="h", tz=tz)
self.df = DataFrame(np.random.randn(1000, 2), index=idx)
def time_reset_datetimeindex(self, tz):
self.df.reset_index()
class InferFreq:
# This depends mostly on code in _libs/, tseries/, and core.algos.unique
params = [None, "D", "B"]
param_names = ["freq"]
def setup(self, freq):
if freq is None:
self.idx = date_range(start="1/1/1700", freq="D", periods=10000)
self.idx._data._freq = None
else:
self.idx = date_range(start="1/1/1700", freq=freq, periods=10000)
def time_infer_freq(self, freq):
infer_freq(self.idx)
class TimeDatetimeConverter:
def setup(self):
N = 100000
self.rng = date_range(start="1/1/2000", periods=N, freq="min")
def time_convert(self):
DatetimeConverter.convert(self.rng, None, None)
class Iteration:
params = [date_range, period_range, timedelta_range]
param_names = ["time_index"]
def setup(self, time_index):
N = 10**6
if time_index is timedelta_range:
self.idx = time_index(start=0, freq="min", periods=N)
else:
self.idx = time_index(start="20140101", freq="min", periods=N)
self.exit = 10000
def time_iter(self, time_index):
for _ in self.idx:
pass
def time_iter_preexit(self, time_index):
for i, _ in enumerate(self.idx):
if i > self.exit:
break
class ResampleDataFrame:
params = ["max", "mean", "min"]
param_names = ["method"]
def setup(self, method):
rng = date_range(start="20130101", periods=100000, freq="50ms")
df = DataFrame(np.random.randn(100000, 2), index=rng)
self.resample = getattr(df.resample("1s"), method)
def time_method(self, method):
self.resample()
class ResampleSeries:
params = (["period", "datetime"], ["5min", "1D"], ["mean", "ohlc"])
param_names = ["index", "freq", "method"]
def setup(self, index, freq, method):
indexes = {
"period": period_range(start="1/1/2000", end="1/1/2001", freq="min"),
"datetime": date_range(start="1/1/2000", end="1/1/2001", freq="min"),
}
idx = indexes[index]
ts = Series(np.random.randn(len(idx)), index=idx)
self.resample = getattr(ts.resample(freq), method)
def time_resample(self, index, freq, method):
self.resample()
class ResampleDatetetime64:
# GH 7754
def setup(self):
rng3 = date_range(
start="2000-01-01 00:00:00", end="2000-01-01 10:00:00", freq="555000us"
)
self.dt_ts = Series(5, rng3, dtype="datetime64[ns]")
def time_resample(self):
self.dt_ts.resample("1S").last()
class AsOf:
params = ["DataFrame", "Series"]
param_names = ["constructor"]
def setup(self, constructor):
N = 10000
M = 10
rng = date_range(start="1/1/1990", periods=N, freq="53s")
data = {
"DataFrame": DataFrame(np.random.randn(N, M)),
"Series": Series(np.random.randn(N)),
}
self.ts = data[constructor]
self.ts.index = rng
self.ts2 = self.ts.copy()
self.ts2.iloc[250:5000] = np.nan
self.ts3 = self.ts.copy()
self.ts3.iloc[-5000:] = np.nan
self.dates = date_range(start="1/1/1990", periods=N * 10, freq="5s")
self.date = self.dates[0]
self.date_last = self.dates[-1]
self.date_early = self.date - timedelta(10)
# test speed of pre-computing NAs.
def time_asof(self, constructor):
self.ts.asof(self.dates)
# should be roughly the same as above.
def time_asof_nan(self, constructor):
self.ts2.asof(self.dates)
# test speed of the code path for a scalar index
# without *while* loop
def time_asof_single(self, constructor):
self.ts.asof(self.date)
# test speed of the code path for a scalar index
# before the start. should be the same as above.
def time_asof_single_early(self, constructor):
self.ts.asof(self.date_early)
# test the speed of the code path for a scalar index
# with a long *while* loop. should still be much
# faster than pre-computing all the NAs.
def time_asof_nan_single(self, constructor):
self.ts3.asof(self.date_last)
class SortIndex:
params = [True, False]
param_names = ["monotonic"]
def setup(self, monotonic):
N = 10**5
idx = date_range(start="1/1/2000", periods=N, freq="s")
self.s = Series(np.random.randn(N), index=idx)
if not monotonic:
self.s = self.s.sample(frac=1)
def time_sort_index(self, monotonic):
self.s.sort_index()
def time_get_slice(self, monotonic):
self.s[:10000]
class Lookup:
def setup(self):
N = 1500000
rng = date_range(start="1/1/2000", periods=N, freq="s")
self.ts = Series(1, index=rng)
self.lookup_val = rng[N // 2]
def time_lookup_and_cleanup(self):
self.ts[self.lookup_val]
self.ts.index._cleanup()
class DatetimeAccessor:
params = [None, "US/Eastern", "UTC", dateutil.tz.tzutc()]
param_names = "tz"
def setup(self, tz):
N = 100000
self.series = Series(date_range(start="1/1/2000", periods=N, freq="min", tz=tz))
def time_dt_accessor(self, tz):
self.series.dt
def time_dt_accessor_normalize(self, tz):
self.series.dt.normalize()
def time_dt_accessor_month_name(self, tz):
self.series.dt.month_name()
def time_dt_accessor_day_name(self, tz):
self.series.dt.day_name()
def time_dt_accessor_time(self, tz):
self.series.dt.time
def time_dt_accessor_date(self, tz):
self.series.dt.date
def time_dt_accessor_year(self, tz):
self.series.dt.year
from .pandas_vb_common import setup # noqa: F401 isort:skip
|