1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
|
Description: Use fixed seeds for reproducible pseudorandomness
Author: Rebecca N. Palmer <rebecca_palmer@zoho.com>
Forwarded: no
--- a/doc/source/getting_started/comparison/comparison_with_r.rst
+++ b/doc/source/getting_started/comparison/comparison_with_r.rst
@@ -237,6 +237,7 @@ In pandas we may use :meth:`~pandas.pivo
import random
import string
+ random.seed(123456) # for reproducibility
baseball = pd.DataFrame(
{
--- a/doc/source/user_guide/advanced.rst
+++ b/doc/source/user_guide/advanced.rst
@@ -590,6 +590,7 @@ they need to be sorted. As with any inde
import random
+ random.seed(123456) # for reproducibility
random.shuffle(tuples)
s = pd.Series(np.random.randn(8), index=pd.MultiIndex.from_tuples(tuples))
s
--- a/doc/source/user_guide/visualization.rst
+++ b/doc/source/user_guide/visualization.rst
@@ -1086,6 +1086,7 @@ are what constitutes the bootstrap plot.
:suppress:
np.random.seed(123456)
+ random.seed(123456) # for reproducibility - bootstrap_plot uses random.sample
.. ipython:: python
--- a/pandas/plotting/_core.py
+++ b/pandas/plotting/_core.py
@@ -604,6 +604,7 @@ def boxplot_frame_groupby(
.. plot::
:context: close-figs
+ >>> np.random.seed(1234)
>>> import itertools
>>> tuples = [t for t in itertools.product(range(1000), range(4))]
>>> index = pd.MultiIndex.from_tuples(tuples, names=['lvl0', 'lvl1'])
@@ -1328,6 +1329,7 @@ class PlotAccessor(PandasObject):
.. plot::
:context: close-figs
+ >>> np.random.seed(1234)
>>> data = np.random.randn(25, 4)
>>> df = pd.DataFrame(data, columns=list('ABCD'))
>>> ax = df.plot.box()
@@ -1392,6 +1394,7 @@ class PlotAccessor(PandasObject):
.. plot::
:context: close-figs
+ >>> np.random.seed(1234)
>>> df = pd.DataFrame(np.random.randint(1, 7, 6000), columns=['one'])
>>> df['two'] = df['one'] + np.random.randint(1, 7, 6000)
>>> ax = df.plot.hist(bins=12, alpha=0.5)
@@ -1811,6 +1814,7 @@ class PlotAccessor(PandasObject):
.. plot::
:context: close-figs
+ >>> np.random.seed(1234)
>>> n = 10000
>>> df = pd.DataFrame({'x': np.random.randn(n),
... 'y': np.random.randn(n)})
--- a/pandas/plotting/_misc.py
+++ b/pandas/plotting/_misc.py
@@ -438,6 +438,8 @@ def bootstrap_plot(
.. plot::
:context: close-figs
+ >>> np.random.seed(1234)
+ >>> random.seed(1234) # for reproducibility
>>> s = pd.Series(np.random.uniform(size=100))
>>> pd.plotting.bootstrap_plot(s) # doctest: +SKIP
<Figure size 640x480 with 6 Axes>
@@ -597,6 +599,7 @@ def autocorrelation_plot(series: Series,
.. plot::
:context: close-figs
+ >>> np.random.seed(1234)
>>> spacing = np.linspace(-9 * np.pi, 9 * np.pi, num=1000)
>>> s = pd.Series(0.7 * np.random.rand(1000) + 0.3 * np.sin(spacing))
>>> pd.plotting.autocorrelation_plot(s) # doctest: +SKIP
--- a/doc/source/user_guide/style.ipynb
+++ b/doc/source/user_guide/style.ipynb
@@ -78,8 +78,37 @@
"source": [
"import pandas as pd\n",
"import numpy as np\n",
- "import matplotlib as mpl\n",
- "\n",
+ "import matplotlib as mpl\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "nbsphinx": "hidden"
+ },
+ "outputs": [],
+ "source": [
+ "# For reproducibility - this doesn't respect uuid_len or positionally-passed uuid but the places here that use that coincidentally bypass this anyway\n",
+ "from pandas.io.formats.style import Styler\n",
+ "next_uuid = 1000\n",
+ "class StylerReproducible(Styler):\n",
+ " def __init__(self, *args, uuid=None, **kwargs):\n",
+ " global next_uuid\n",
+ " if uuid is None:\n",
+ " uuid = str(next_uuid)\n",
+ " next_uuid = next_uuid + 1\n",
+ " super().__init__(*args, uuid=uuid, **kwargs)\n",
+ "Styler = StylerReproducible\n",
+ "pd.DataFrame.style = property(lambda self: StylerReproducible(self))\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
"df = pd.DataFrame({\n",
" \"strings\": [\"Adam\", \"Mike\"],\n",
" \"ints\": [1, 3],\n",
@@ -104,6 +133,7 @@
"metadata": {},
"outputs": [],
"source": [
+ "np.random.seed(25) # for reproducibility\n",
"weather_df = pd.DataFrame(np.random.rand(10,2)*5, \n",
" index=pd.date_range(start=\"2021-01-01\", periods=10),\n",
" columns=[\"Tokyo\", \"Beijing\"])\n",
@@ -1394,7 +1424,6 @@
"outputs": [],
"source": [
"# Hide the construction of the display chart from the user\n",
- "import pandas as pd\n",
"from IPython.display import HTML\n",
"\n",
"# Test series\n",
@@ -1926,6 +1955,18 @@
]
},
{
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "nbsphinx": "hidden"
+ },
+ "outputs": [],
+ "source": [
+ "# For reproducibility\n",
+ "Styler = StylerReproducible\n"
+ ]
+ },
+ {
"cell_type": "markdown",
"metadata": {},
"source": [
@@ -2126,7 +2167,8 @@
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.5"
- }
+ },
+ "record_timing": false
},
"nbformat": 4,
"nbformat_minor": 1
|