1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
|
from timeit import repeat as timeit
import numpy as np
import seaborn as sns
from pandas import DataFrame
setup_common = """from pandas import DataFrame
import numpy as np
df = DataFrame(np.random.randn(%d, 3), columns=list('abc'))
%s"""
setup_with = "s = 'a + b * (c ** 2 + b ** 2 - a) / (a * c) ** 3'"
def bench_with(n, times=10, repeat=3, engine="numexpr"):
return (
np.array(
timeit(
f"df.eval(s, engine={repr(engine)})",
setup=setup_common % (n, setup_with),
repeat=repeat,
number=times,
)
)
/ times
)
setup_subset = "s = 'a <= b <= c ** 2 + b ** 2 - a and b > c'"
def bench_subset(n, times=20, repeat=3, engine="numexpr"):
return (
np.array(
timeit(
f"df.query(s, engine={repr(engine)})",
setup=setup_common % (n, setup_subset),
repeat=repeat,
number=times,
)
)
/ times
)
def bench(mn=3, mx=7, num=100, engines=("python", "numexpr"), verbose=False):
r = np.logspace(mn, mx, num=num).round().astype(int)
ev = DataFrame(np.empty((num, len(engines))), columns=engines)
qu = ev.copy(deep=True)
ev["size"] = qu["size"] = r
for engine in engines:
for i, n in enumerate(r):
if verbose & (i % 10 == 0):
print(f"engine: {repr(engine)}, i == {i:d}")
ev_times = bench_with(n, times=1, repeat=1, engine=engine)
ev.loc[i, engine] = np.mean(ev_times)
qu_times = bench_subset(n, times=1, repeat=1, engine=engine)
qu.loc[i, engine] = np.mean(qu_times)
return ev, qu
def plot_perf(df, engines, title, filename=None) -> None:
from matplotlib.pyplot import figure
sns.set()
sns.set_palette("Set2")
fig = figure(figsize=(4, 3), dpi=120)
ax = fig.add_subplot(111)
for engine in engines:
ax.loglog(df["size"], df[engine], label=engine, lw=2)
ax.set_xlabel("Number of Rows")
ax.set_ylabel("Time (s)")
ax.set_title(title)
ax.legend(loc="best")
ax.tick_params(top=False, right=False)
fig.tight_layout()
if filename is not None:
fig.savefig(filename)
if __name__ == "__main__":
import os
pandas_dir = os.path.dirname(
os.path.dirname(os.path.abspath(os.path.dirname(__file__)))
)
static_path = os.path.join(pandas_dir, "doc", "source", "_static")
join = lambda p: os.path.join(static_path, p)
fn = join("eval-query-perf-data.h5")
engines = "python", "numexpr"
ev, qu = bench(verbose=True) # only this one
plot_perf(ev, engines, "DataFrame.eval()", filename=join("eval-perf.png"))
plot_perf(qu, engines, "DataFrame.query()", filename=join("query-perf.png"))
|