File: developer.rst

package info (click to toggle)
pandas 2.2.3%2Bdfsg-9
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 66,784 kB
  • sloc: python: 422,228; ansic: 9,190; sh: 270; xml: 102; makefile: 83
file content (187 lines) | stat: -rw-r--r-- 5,845 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
.. _developer:

{{ header }}

.. currentmodule:: pandas

*********
Developer
*********

This section will focus on downstream applications of pandas.

.. _apache.parquet:

Storing pandas DataFrame objects in Apache Parquet format
---------------------------------------------------------

The `Apache Parquet <https://github.com/apache/parquet-format>`__ format
provides key-value metadata at the file and column level, stored in the footer
of the Parquet file:

.. code-block:: shell

  5: optional list<KeyValue> key_value_metadata

where ``KeyValue`` is

.. code-block:: shell

   struct KeyValue {
     1: required string key
     2: optional string value
   }

So that a ``pandas.DataFrame`` can be faithfully reconstructed, we store a
``pandas`` metadata key in the ``FileMetaData`` with the value stored as :

.. code-block:: text

   {'index_columns': [<descr0>, <descr1>, ...],
    'column_indexes': [<ci0>, <ci1>, ..., <ciN>],
    'columns': [<c0>, <c1>, ...],
    'pandas_version': $VERSION,
    'creator': {
      'library': $LIBRARY,
      'version': $LIBRARY_VERSION
    }}

The "descriptor" values ``<descr0>`` in the ``'index_columns'`` field are
strings (referring to a column) or dictionaries with values as described below.

The ``<c0>``/``<ci0>`` and so forth are dictionaries containing the metadata
for each column, *including the index columns*. This has JSON form:

.. code-block:: text

   {'name': column_name,
    'field_name': parquet_column_name,
    'pandas_type': pandas_type,
    'numpy_type': numpy_type,
    'metadata': metadata}

See below for the detailed specification for these.

Index metadata descriptors
~~~~~~~~~~~~~~~~~~~~~~~~~~

``RangeIndex`` can be stored as metadata only, not requiring serialization. The
descriptor format for these as is follows:

.. code-block:: python

   index = pd.RangeIndex(0, 10, 2)
   {
       "kind": "range",
       "name": index.name,
       "start": index.start,
       "stop": index.stop,
       "step": index.step,
   }

Other index types must be serialized as data columns along with the other
DataFrame columns. The metadata for these is a string indicating the name of
the field in the data columns, for example ``'__index_level_0__'``.

If an index has a non-None ``name`` attribute, and there is no other column
with a name matching that value, then the ``index.name`` value can be used as
the descriptor. Otherwise (for unnamed indexes and ones with names colliding
with other column names) a disambiguating name with pattern matching
``__index_level_\d+__`` should be used. In cases of named indexes as data
columns, ``name`` attribute is always stored in the column descriptors as
above.

Column metadata
~~~~~~~~~~~~~~~

``pandas_type`` is the logical type of the column, and is one of:

* Boolean: ``'bool'``
* Integers: ``'int8', 'int16', 'int32', 'int64', 'uint8', 'uint16', 'uint32', 'uint64'``
* Floats: ``'float16', 'float32', 'float64'``
* Date and Time Types: ``'datetime', 'datetimetz'``, ``'timedelta'``
* String: ``'unicode', 'bytes'``
* Categorical: ``'categorical'``
* Other Python objects: ``'object'``

The ``numpy_type`` is the physical storage type of the column, which is the
result of ``str(dtype)`` for the underlying NumPy array that holds the data. So
for ``datetimetz`` this is ``datetime64[ns]`` and for categorical, it may be
any of the supported integer categorical types.

The ``metadata`` field is ``None`` except for:

* ``datetimetz``: ``{'timezone': zone, 'unit': 'ns'}``, e.g. ``{'timezone',
  'America/New_York', 'unit': 'ns'}``. The ``'unit'`` is optional, and if
  omitted it is assumed to be nanoseconds.
* ``categorical``: ``{'num_categories': K, 'ordered': is_ordered, 'type': $TYPE}``

    * Here ``'type'`` is optional, and can be a nested pandas type specification
      here (but not categorical)

* ``unicode``: ``{'encoding': encoding}``

    * The encoding is optional, and if not present is UTF-8

* ``object``: ``{'encoding': encoding}``. Objects can be serialized and stored
  in ``BYTE_ARRAY`` Parquet columns. The encoding can be one of:

    * ``'pickle'``
    * ``'bson'``
    * ``'json'``

* ``timedelta``: ``{'unit': 'ns'}``. The ``'unit'`` is optional, and if omitted
  it is assumed to be nanoseconds. This metadata is optional altogether

For types other than these, the ``'metadata'`` key can be
omitted. Implementations can assume ``None`` if the key is not present.

As an example of fully-formed metadata:

.. code-block:: text

   {'index_columns': ['__index_level_0__'],
    'column_indexes': [
        {'name': None,
         'field_name': 'None',
         'pandas_type': 'unicode',
         'numpy_type': 'object',
         'metadata': {'encoding': 'UTF-8'}}
    ],
    'columns': [
        {'name': 'c0',
         'field_name': 'c0',
         'pandas_type': 'int8',
         'numpy_type': 'int8',
         'metadata': None},
        {'name': 'c1',
         'field_name': 'c1',
         'pandas_type': 'bytes',
         'numpy_type': 'object',
         'metadata': None},
        {'name': 'c2',
         'field_name': 'c2',
         'pandas_type': 'categorical',
         'numpy_type': 'int16',
         'metadata': {'num_categories': 1000, 'ordered': False}},
        {'name': 'c3',
         'field_name': 'c3',
         'pandas_type': 'datetimetz',
         'numpy_type': 'datetime64[ns]',
         'metadata': {'timezone': 'America/Los_Angeles'}},
        {'name': 'c4',
         'field_name': 'c4',
         'pandas_type': 'object',
         'numpy_type': 'object',
         'metadata': {'encoding': 'pickle'}},
        {'name': None,
         'field_name': '__index_level_0__',
         'pandas_type': 'int64',
         'numpy_type': 'int64',
         'metadata': None}
    ],
    'pandas_version': '1.4.0',
    'creator': {
      'library': 'pyarrow',
      'version': '0.13.0'
    }}