1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465
|
.. _compare_with_spreadsheets:
{{ header }}
Comparison with spreadsheets
****************************
Since many potential pandas users have some familiarity with spreadsheet programs like
`Excel <https://support.microsoft.com/en-us/excel>`_, this page is meant to provide some examples
of how various spreadsheet operations would be performed using pandas. This page will use
terminology and link to documentation for Excel, but much will be the same/similar in
`Google Sheets <https://support.google.com/a/users/answer/9282959>`_,
`LibreOffice Calc <https://help.libreoffice.org/latest/en-US/text/scalc/main0000.html?DbPAR=CALC>`_,
`Apple Numbers <https://www.apple.com/numbers/compatibility/>`_, and other
Excel-compatible spreadsheet software.
.. include:: includes/introduction.rst
Data structures
---------------
General terminology translation
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. csv-table::
:header: "pandas", "Excel"
:widths: 20, 20
``DataFrame``, worksheet
``Series``, column
``Index``, row headings
row, row
``NaN``, empty cell
``DataFrame``
~~~~~~~~~~~~~
A ``DataFrame`` in pandas is analogous to an Excel worksheet. While an Excel workbook can contain
multiple worksheets, pandas ``DataFrame``\s exist independently.
``Series``
~~~~~~~~~~
A ``Series`` is the data structure that represents one column of a ``DataFrame``. Working with a
``Series`` is analogous to referencing a column of a spreadsheet.
``Index``
~~~~~~~~~
Every ``DataFrame`` and ``Series`` has an ``Index``, which are labels on the *rows* of the data. In
pandas, if no index is specified, a :class:`~pandas.RangeIndex` is used by default (first row = 0,
second row = 1, and so on), analogous to row headings/numbers in spreadsheets.
In pandas, indexes can be set to one (or multiple) unique values, which is like having a column that
is used as the row identifier in a worksheet. Unlike most spreadsheets, these ``Index`` values can
actually be used to reference the rows. (Note that `this can be done in Excel with structured
references
<https://support.microsoft.com/en-us/office/using-structured-references-with-excel-tables-f5ed2452-2337-4f71-bed3-c8ae6d2b276e>`_.)
For example, in spreadsheets, you would reference the first row as ``A1:Z1``, while in pandas you
could use ``populations.loc['Chicago']``.
Index values are also persistent, so if you re-order the rows in a ``DataFrame``, the label for a
particular row don't change.
See the :ref:`indexing documentation<indexing>` for much more on how to use an ``Index``
effectively.
Copies vs. in place operations
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. include:: includes/copies.rst
Data input / output
-------------------
Constructing a DataFrame from values
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
In a spreadsheet, `values can be typed directly into cells <https://support.microsoft.com/en-us/office/enter-data-manually-in-worksheet-cells-c798181d-d75a-41b1-92ad-6c0800f80038>`_.
.. include:: includes/construct_dataframe.rst
Reading external data
~~~~~~~~~~~~~~~~~~~~~
Both `Excel <https://support.microsoft.com/en-us/office/import-data-from-data-sources-power-query-be4330b3-5356-486c-a168-b68e9e616f5a>`__
and :ref:`pandas <10min_tut_02_read_write>` can import data from various sources in various
formats.
CSV
'''
Let's load and display the `tips <https://github.com/pandas-dev/pandas/blob/main/pandas/tests/io/data/csv/tips.csv>`_
dataset from the pandas tests, which is a CSV file. In Excel, you would download and then
`open the CSV <https://support.microsoft.com/en-us/office/import-or-export-text-txt-or-csv-files-5250ac4c-663c-47ce-937b-339e391393ba>`_.
In pandas, you pass the URL or local path of the CSV file to :func:`~pandas.read_csv`:
.. ipython:: python
url = (
"https://raw.githubusercontent.com/pandas-dev"
"/pandas/main/pandas/tests/io/data/csv/tips.csv"
)
tips = pd.read_csv(url)
tips
Like `Excel's Text Import Wizard <https://support.microsoft.com/en-us/office/text-import-wizard-c5b02af6-fda1-4440-899f-f78bafe41857>`_,
``read_csv`` can take a number of parameters to specify how the data should be parsed. For
example, if the data was instead tab delimited, and did not have column names, the pandas command
would be:
.. code-block:: python
tips = pd.read_csv("tips.csv", sep="\t", header=None)
# alternatively, read_table is an alias to read_csv with tab delimiter
tips = pd.read_table("tips.csv", header=None)
Excel files
'''''''''''
Excel opens `various Excel file formats <https://support.microsoft.com/en-us/office/file-formats-that-are-supported-in-excel-0943ff2c-6014-4e8d-aaea-b83d51d46247>`_
by double-clicking them, or using `the Open menu <https://support.microsoft.com/en-us/office/open-files-from-the-file-menu-97f087d8-3136-4485-8e86-c5b12a8c4176>`_.
In pandas, you use :ref:`special methods for reading and writing from/to Excel files <io.excel>`.
Let's first :ref:`create a new Excel file <io.excel_writer>` based on the ``tips`` dataframe in the above example:
.. code-block:: python
tips.to_excel("./tips.xlsx")
Should you wish to subsequently access the data in the ``tips.xlsx`` file, you can read it into your module using
.. code-block:: python
tips_df = pd.read_excel("./tips.xlsx", index_col=0)
You have just read in an Excel file using pandas!
Limiting output
~~~~~~~~~~~~~~~
Spreadsheet programs will only show one screenful of data at a time and then allow you to scroll, so
there isn't really a need to limit output. In pandas, you'll need to put a little more thought into
controlling how your ``DataFrame``\s are displayed.
.. include:: includes/limit.rst
Exporting data
~~~~~~~~~~~~~~
By default, desktop spreadsheet software will save to its respective file format (``.xlsx``, ``.ods``, etc). You can, however, `save to other file formats <https://support.microsoft.com/en-us/office/save-a-workbook-in-another-file-format-6a16c862-4a36-48f9-a300-c2ca0065286e>`_.
:ref:`pandas can create Excel files <io.excel_writer>`, :ref:`CSV <io.store_in_csv>`, or :ref:`a number of other formats <io>`.
Data operations
---------------
Operations on columns
~~~~~~~~~~~~~~~~~~~~~
In spreadsheets, `formulas
<https://support.microsoft.com/en-us/office/overview-of-formulas-in-excel-ecfdc708-9162-49e8-b993-c311f47ca173>`_
are often created in individual cells and then `dragged
<https://support.microsoft.com/en-us/office/copy-a-formula-by-dragging-the-fill-handle-in-excel-for-mac-dd928259-622b-473f-9a33-83aa1a63e218>`_
into other cells to compute them for other columns. In pandas, you're able to do operations on whole
columns directly.
.. include:: includes/column_operations.rst
Note that we aren't having to tell it to do that subtraction cell-by-cell — pandas handles that for
us. See :ref:`how to create new columns derived from existing columns <10min_tut_05_columns>`.
Filtering
~~~~~~~~~
`In Excel, filtering is done through a graphical menu. <https://support.microsoft.com/en-us/office/filter-data-in-a-range-or-table-01832226-31b5-4568-8806-38c37dcc180e>`_
.. image:: ../../_static/spreadsheets/filter.png
:alt: Screenshot showing filtering of the total_bill column to values greater than 10
:align: center
.. include:: includes/filtering.rst
If/then logic
~~~~~~~~~~~~~
Let's say we want to make a ``bucket`` column with values of ``low`` and ``high``, based on whether
the ``total_bill`` is less or more than $10.
In spreadsheets, logical comparison can be done with `conditional formulas
<https://support.microsoft.com/en-us/office/create-conditional-formulas-ca916c57-abd8-4b44-997c-c309b7307831>`_.
We'd use a formula of ``=IF(A2 < 10, "low", "high")``, dragged to all cells in a new ``bucket``
column.
.. image:: ../../_static/spreadsheets/conditional.png
:alt: Screenshot showing the formula from above in a bucket column of the tips spreadsheet
:align: center
.. include:: includes/if_then.rst
Date functionality
~~~~~~~~~~~~~~~~~~
*This section will refer to "dates", but timestamps are handled similarly.*
We can think of date functionality in two parts: parsing, and output. In spreadsheets, date values
are generally parsed automatically, though there is a `DATEVALUE
<https://support.microsoft.com/en-us/office/datevalue-function-df8b07d4-7761-4a93-bc33-b7471bbff252>`_
function if you need it. In pandas, you need to explicitly convert plain text to datetime objects,
either :ref:`while reading from a CSV <io.read_csv_table.datetime>` or :ref:`once in a DataFrame
<10min_tut_09_timeseries.properties>`.
Once parsed, spreadsheets display the dates in a default format, though `the format can be changed
<https://support.microsoft.com/en-us/office/format-a-date-the-way-you-want-8e10019e-d5d8-47a1-ba95-db95123d273e>`_.
In pandas, you'll generally want to keep dates as ``datetime`` objects while you're doing
calculations with them. Outputting *parts* of dates (such as the year) is done through `date
functions
<https://support.microsoft.com/en-us/office/date-and-time-functions-reference-fd1b5961-c1ae-4677-be58-074152f97b81>`_
in spreadsheets, and :ref:`datetime properties <10min_tut_09_timeseries.properties>` in pandas.
Given ``date1`` and ``date2`` in columns ``A`` and ``B`` of a spreadsheet, you might have these
formulas:
.. list-table::
:header-rows: 1
:widths: auto
* - column
- formula
* - ``date1_year``
- ``=YEAR(A2)``
* - ``date2_month``
- ``=MONTH(B2)``
* - ``date1_next``
- ``=DATE(YEAR(A2),MONTH(A2)+1,1)``
* - ``months_between``
- ``=DATEDIF(A2,B2,"M")``
The equivalent pandas operations are shown below.
.. include:: includes/time_date.rst
See :ref:`timeseries` for more details.
Selection of columns
~~~~~~~~~~~~~~~~~~~~
In spreadsheets, you can select columns you want by:
- `Hiding columns <https://support.microsoft.com/en-us/office/hide-or-show-rows-or-columns-659c2cad-802e-44ee-a614-dde8443579f8>`_
- `Deleting columns <https://support.microsoft.com/en-us/office/insert-or-delete-rows-and-columns-6f40e6e4-85af-45e0-b39d-65dd504a3246>`_
- `Referencing a range <https://support.microsoft.com/en-us/office/create-or-change-a-cell-reference-c7b8b95d-c594-4488-947e-c835903cebaa>`_ from one worksheet into another
Since spreadsheet columns are typically `named in a header row
<https://support.microsoft.com/en-us/office/turn-excel-table-headers-on-or-off-c91d1742-312c-4480-820f-cf4b534c8b3b>`_,
renaming a column is simply a matter of changing the text in that first cell.
.. include:: includes/column_selection.rst
Sorting by values
~~~~~~~~~~~~~~~~~
Sorting in spreadsheets is accomplished via `the sort dialog <https://support.microsoft.com/en-us/office/sort-data-in-a-range-or-table-62d0b95d-2a90-4610-a6ae-2e545c4a4654>`_.
.. image:: ../../_static/spreadsheets/sort.png
:alt: Screenshot of dialog from Excel showing sorting by the sex then total_bill columns
:align: center
.. include:: includes/sorting.rst
String processing
-----------------
Finding length of string
~~~~~~~~~~~~~~~~~~~~~~~~
In spreadsheets, the number of characters in text can be found with the `LEN
<https://support.microsoft.com/en-us/office/len-lenb-functions-29236f94-cedc-429d-affd-b5e33d2c67cb>`_
function. This can be used with the `TRIM
<https://support.microsoft.com/en-us/office/trim-function-410388fa-c5df-49c6-b16c-9e5630b479f9>`_
function to remove extra whitespace.
::
=LEN(TRIM(A2))
.. include:: includes/length.rst
Note this will still include multiple spaces within the string, so isn't 100% equivalent.
Finding position of substring
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The `FIND
<https://support.microsoft.com/en-us/office/find-findb-functions-c7912941-af2a-4bdf-a553-d0d89b0a0628>`_
spreadsheet function returns the position of a substring, with the first character being ``1``.
.. image:: ../../_static/spreadsheets/sort.png
:alt: Screenshot of FIND formula being used in Excel
:align: center
.. include:: includes/find_substring.rst
Extracting substring by position
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Spreadsheets have a `MID
<https://support.microsoft.com/en-us/office/mid-midb-functions-d5f9e25c-d7d6-472e-b568-4ecb12433028>`_
formula for extracting a substring from a given position. To get the first character::
=MID(A2,1,1)
.. include:: includes/extract_substring.rst
Extracting nth word
~~~~~~~~~~~~~~~~~~~
In Excel, you might use the `Text to Columns Wizard
<https://support.microsoft.com/en-us/office/split-text-into-different-columns-with-the-convert-text-to-columns-wizard-30b14928-5550-41f5-97ca-7a3e9c363ed7>`_
for splitting text and retrieving a specific column. (Note `it's possible to do so through a formula
as well <https://exceljet.net/formula/extract-nth-word-from-text-string>`_.)
.. include:: includes/nth_word.rst
Changing case
~~~~~~~~~~~~~
Spreadsheets provide `UPPER, LOWER, and PROPER functions
<https://support.microsoft.com/en-us/office/change-the-case-of-text-01481046-0fa7-4f3b-a693-496795a7a44d>`_
for converting text to upper, lower, and title case, respectively.
.. include:: includes/case.rst
Merging
-------
.. include:: includes/merge_setup.rst
In Excel, there are `merging of tables can be done through a VLOOKUP
<https://support.microsoft.com/en-us/office/how-can-i-merge-two-or-more-tables-c80a9fce-c1ab-4425-bb96-497dd906d656>`_.
.. image:: ../../_static/spreadsheets/vlookup.png
:alt: Screenshot showing a VLOOKUP formula between two tables in Excel, with some values being filled in and others with "#N/A"
:align: center
.. include:: includes/merge.rst
``merge`` has a number of advantages over ``VLOOKUP``:
* The lookup value doesn't need to be the first column of the lookup table
* If multiple rows are matched, there will be one row for each match, instead of just the first
* It will include all columns from the lookup table, instead of just a single specified column
* It supports :ref:`more complex join operations <merging.join>`
Other considerations
--------------------
Fill Handle
~~~~~~~~~~~
Create a series of numbers following a set pattern in a certain set of cells. In
a spreadsheet, this would be done by shift+drag after entering the first number or by
entering the first two or three values and then dragging.
This can be achieved by creating a series and assigning it to the desired cells.
.. ipython:: python
df = pd.DataFrame({"AAA": [1] * 8, "BBB": list(range(0, 8))})
df
series = list(range(1, 5))
series
df.loc[2:5, "AAA"] = series
df
Drop Duplicates
~~~~~~~~~~~~~~~
Excel has built-in functionality for `removing duplicate values <https://support.microsoft.com/en-us/office/find-and-remove-duplicates-00e35bea-b46a-4d5d-b28e-66a552dc138d>`_.
This is supported in pandas via :meth:`~DataFrame.drop_duplicates`.
.. ipython:: python
df = pd.DataFrame(
{
"class": ["A", "A", "A", "B", "C", "D"],
"student_count": [42, 35, 42, 50, 47, 45],
"all_pass": ["Yes", "Yes", "Yes", "No", "No", "Yes"],
}
)
df.drop_duplicates()
df.drop_duplicates(["class", "student_count"])
Pivot Tables
~~~~~~~~~~~~
`PivotTables <https://support.microsoft.com/en-us/office/create-a-pivottable-to-analyze-worksheet-data-a9a84538-bfe9-40a9-a8e9-f99134456576>`_
from spreadsheets can be replicated in pandas through :ref:`reshaping`. Using the ``tips`` dataset again,
let's find the average gratuity by size of the party and sex of the server.
In Excel, we use the following configuration for the PivotTable:
.. image:: ../../_static/spreadsheets/pivot.png
:alt: Screenshot showing a PivotTable in Excel, using sex as the column, size as the rows, then average tip as the values
:align: center
The equivalent in pandas:
.. ipython:: python
pd.pivot_table(
tips, values="tip", index=["size"], columns=["sex"], aggfunc=np.average
)
Adding a row
~~~~~~~~~~~~
Assuming we are using a :class:`~pandas.RangeIndex` (numbered ``0``, ``1``, etc.), we can use :func:`concat` to add a row to the bottom of a ``DataFrame``.
.. ipython:: python
df
new_row = pd.DataFrame([["E", 51, True]],
columns=["class", "student_count", "all_pass"])
pd.concat([df, new_row])
Find and Replace
~~~~~~~~~~~~~~~~
`Excel's Find dialog <https://support.microsoft.com/en-us/office/find-or-replace-text-and-numbers-on-a-worksheet-0e304ca5-ecef-4808-b90f-fdb42f892e90>`_
takes you to cells that match, one by one. In pandas, this operation is generally done for an
entire column or ``DataFrame`` at once through :ref:`conditional expressions <10min_tut_03_subset.rows_and_columns>`.
.. ipython:: python
tips
tips == "Sun"
tips["day"].str.contains("S")
pandas' :meth:`~DataFrame.replace` is comparable to Excel's ``Replace All``.
.. ipython:: python
tips.replace("Thu", "Thursday")
|