1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512
|
.. _compare_with_sql:
{{ header }}
Comparison with SQL
********************
Since many potential pandas users have some familiarity with
`SQL <https://en.wikipedia.org/wiki/SQL>`_, this page is meant to provide some examples of how
various SQL operations would be performed using pandas.
.. include:: includes/introduction.rst
Most of the examples will utilize the ``tips`` dataset found within pandas tests. We'll read
the data into a DataFrame called ``tips`` and assume we have a database table of the same name and
structure.
.. ipython:: python
url = (
"https://raw.githubusercontent.com/pandas-dev"
"/pandas/main/pandas/tests/io/data/csv/tips.csv"
)
tips = pd.read_csv(url)
tips
Copies vs. in place operations
------------------------------
.. include:: includes/copies.rst
SELECT
------
In SQL, selection is done using a comma-separated list of columns you'd like to select (or a ``*``
to select all columns):
.. code-block:: sql
SELECT total_bill, tip, smoker, time
FROM tips;
With pandas, column selection is done by passing a list of column names to your DataFrame:
.. ipython:: python
tips[["total_bill", "tip", "smoker", "time"]]
Calling the DataFrame without the list of column names would display all columns (akin to SQL's
``*``).
In SQL, you can add a calculated column:
.. code-block:: sql
SELECT *, tip/total_bill as tip_rate
FROM tips;
With pandas, you can use the :meth:`DataFrame.assign` method of a DataFrame to append a new column:
.. ipython:: python
tips.assign(tip_rate=tips["tip"] / tips["total_bill"])
WHERE
-----
Filtering in SQL is done via a WHERE clause.
.. code-block:: sql
SELECT *
FROM tips
WHERE time = 'Dinner';
.. include:: includes/filtering.rst
Just like SQL's ``OR`` and ``AND``, multiple conditions can be passed to a DataFrame using ``|``
(``OR``) and ``&`` (``AND``).
Tips of more than $5 at Dinner meals:
.. code-block:: sql
SELECT *
FROM tips
WHERE time = 'Dinner' AND tip > 5.00;
.. ipython:: python
tips[(tips["time"] == "Dinner") & (tips["tip"] > 5.00)]
Tips by parties of at least 5 diners OR bill total was more than $45:
.. code-block:: sql
SELECT *
FROM tips
WHERE size >= 5 OR total_bill > 45;
.. ipython:: python
tips[(tips["size"] >= 5) | (tips["total_bill"] > 45)]
NULL checking is done using the :meth:`~pandas.Series.notna` and :meth:`~pandas.Series.isna`
methods.
.. ipython:: python
frame = pd.DataFrame(
{"col1": ["A", "B", np.nan, "C", "D"], "col2": ["F", np.nan, "G", "H", "I"]}
)
frame
Assume we have a table of the same structure as our DataFrame above. We can see only the records
where ``col2`` IS NULL with the following query:
.. code-block:: sql
SELECT *
FROM frame
WHERE col2 IS NULL;
.. ipython:: python
frame[frame["col2"].isna()]
Getting items where ``col1`` IS NOT NULL can be done with :meth:`~pandas.Series.notna`.
.. code-block:: sql
SELECT *
FROM frame
WHERE col1 IS NOT NULL;
.. ipython:: python
frame[frame["col1"].notna()]
GROUP BY
--------
In pandas, SQL's ``GROUP BY`` operations are performed using the similarly named
:meth:`~pandas.DataFrame.groupby` method. :meth:`~pandas.DataFrame.groupby` typically refers to a
process where we'd like to split a dataset into groups, apply some function (typically aggregation)
, and then combine the groups together.
A common SQL operation would be getting the count of records in each group throughout a dataset.
For instance, a query getting us the number of tips left by sex:
.. code-block:: sql
SELECT sex, count(*)
FROM tips
GROUP BY sex;
/*
Female 87
Male 157
*/
The pandas equivalent would be:
.. ipython:: python
tips.groupby("sex").size()
Notice that in the pandas code we used :meth:`.DataFrameGroupBy.size` and not
:meth:`.DataFrameGroupBy.count`. This is because
:meth:`.DataFrameGroupBy.count` applies the function to each column, returning
the number of ``NOT NULL`` records within each.
.. ipython:: python
tips.groupby("sex").count()
Alternatively, we could have applied the :meth:`.DataFrameGroupBy.count` method
to an individual column:
.. ipython:: python
tips.groupby("sex")["total_bill"].count()
Multiple functions can also be applied at once. For instance, say we'd like to see how tip amount
differs by day of the week - :meth:`.DataFrameGroupBy.agg` allows you to pass a dictionary
to your grouped DataFrame, indicating which functions to apply to specific columns.
.. code-block:: sql
SELECT day, AVG(tip), COUNT(*)
FROM tips
GROUP BY day;
/*
Fri 2.734737 19
Sat 2.993103 87
Sun 3.255132 76
Thu 2.771452 62
*/
.. ipython:: python
tips.groupby("day").agg({"tip": "mean", "day": "size"})
Grouping by more than one column is done by passing a list of columns to the
:meth:`~pandas.DataFrame.groupby` method.
.. code-block:: sql
SELECT smoker, day, COUNT(*), AVG(tip)
FROM tips
GROUP BY smoker, day;
/*
smoker day
No Fri 4 2.812500
Sat 45 3.102889
Sun 57 3.167895
Thu 45 2.673778
Yes Fri 15 2.714000
Sat 42 2.875476
Sun 19 3.516842
Thu 17 3.030000
*/
.. ipython:: python
tips.groupby(["smoker", "day"]).agg({"tip": ["size", "mean"]})
.. _compare_with_sql.join:
JOIN
----
``JOIN``\s can be performed with :meth:`~pandas.DataFrame.join` or :meth:`~pandas.merge`. By
default, :meth:`~pandas.DataFrame.join` will join the DataFrames on their indices. Each method has
parameters allowing you to specify the type of join to perform (``LEFT``, ``RIGHT``, ``INNER``,
``FULL``) or the columns to join on (column names or indices).
.. warning::
If both key columns contain rows where the key is a null value, those
rows will be matched against each other. This is different from usual SQL
join behaviour and can lead to unexpected results.
.. ipython:: python
df1 = pd.DataFrame({"key": ["A", "B", "C", "D"], "value": np.random.randn(4)})
df2 = pd.DataFrame({"key": ["B", "D", "D", "E"], "value": np.random.randn(4)})
Assume we have two database tables of the same name and structure as our DataFrames.
Now let's go over the various types of ``JOIN``\s.
INNER JOIN
~~~~~~~~~~
.. code-block:: sql
SELECT *
FROM df1
INNER JOIN df2
ON df1.key = df2.key;
.. ipython:: python
# merge performs an INNER JOIN by default
pd.merge(df1, df2, on="key")
:meth:`~pandas.merge` also offers parameters for cases when you'd like to join one DataFrame's
column with another DataFrame's index.
.. ipython:: python
indexed_df2 = df2.set_index("key")
pd.merge(df1, indexed_df2, left_on="key", right_index=True)
LEFT OUTER JOIN
~~~~~~~~~~~~~~~
Show all records from ``df1``.
.. code-block:: sql
SELECT *
FROM df1
LEFT OUTER JOIN df2
ON df1.key = df2.key;
.. ipython:: python
pd.merge(df1, df2, on="key", how="left")
RIGHT JOIN
~~~~~~~~~~
Show all records from ``df2``.
.. code-block:: sql
SELECT *
FROM df1
RIGHT OUTER JOIN df2
ON df1.key = df2.key;
.. ipython:: python
pd.merge(df1, df2, on="key", how="right")
FULL JOIN
~~~~~~~~~
pandas also allows for ``FULL JOIN``\s, which display both sides of the dataset, whether or not the
joined columns find a match. As of writing, ``FULL JOIN``\s are not supported in all RDBMS (MySQL).
Show all records from both tables.
.. code-block:: sql
SELECT *
FROM df1
FULL OUTER JOIN df2
ON df1.key = df2.key;
.. ipython:: python
pd.merge(df1, df2, on="key", how="outer")
UNION
-----
``UNION ALL`` can be performed using :meth:`~pandas.concat`.
.. ipython:: python
df1 = pd.DataFrame(
{"city": ["Chicago", "San Francisco", "New York City"], "rank": range(1, 4)}
)
df2 = pd.DataFrame(
{"city": ["Chicago", "Boston", "Los Angeles"], "rank": [1, 4, 5]}
)
.. code-block:: sql
SELECT city, rank
FROM df1
UNION ALL
SELECT city, rank
FROM df2;
/*
city rank
Chicago 1
San Francisco 2
New York City 3
Chicago 1
Boston 4
Los Angeles 5
*/
.. ipython:: python
pd.concat([df1, df2])
SQL's ``UNION`` is similar to ``UNION ALL``, however ``UNION`` will remove duplicate rows.
.. code-block:: sql
SELECT city, rank
FROM df1
UNION
SELECT city, rank
FROM df2;
-- notice that there is only one Chicago record this time
/*
city rank
Chicago 1
San Francisco 2
New York City 3
Boston 4
Los Angeles 5
*/
In pandas, you can use :meth:`~pandas.concat` in conjunction with
:meth:`~pandas.DataFrame.drop_duplicates`.
.. ipython:: python
pd.concat([df1, df2]).drop_duplicates()
LIMIT
-----
.. code-block:: sql
SELECT * FROM tips
LIMIT 10;
.. ipython:: python
tips.head(10)
pandas equivalents for some SQL analytic and aggregate functions
----------------------------------------------------------------
Top n rows with offset
~~~~~~~~~~~~~~~~~~~~~~
.. code-block:: sql
-- MySQL
SELECT * FROM tips
ORDER BY tip DESC
LIMIT 10 OFFSET 5;
.. ipython:: python
tips.nlargest(10 + 5, columns="tip").tail(10)
Top n rows per group
~~~~~~~~~~~~~~~~~~~~
.. code-block:: sql
-- Oracle's ROW_NUMBER() analytic function
SELECT * FROM (
SELECT
t.*,
ROW_NUMBER() OVER(PARTITION BY day ORDER BY total_bill DESC) AS rn
FROM tips t
)
WHERE rn < 3
ORDER BY day, rn;
.. ipython:: python
(
tips.assign(
rn=tips.sort_values(["total_bill"], ascending=False)
.groupby(["day"])
.cumcount()
+ 1
)
.query("rn < 3")
.sort_values(["day", "rn"])
)
the same using ``rank(method='first')`` function
.. ipython:: python
(
tips.assign(
rnk=tips.groupby(["day"])["total_bill"].rank(
method="first", ascending=False
)
)
.query("rnk < 3")
.sort_values(["day", "rnk"])
)
.. code-block:: sql
-- Oracle's RANK() analytic function
SELECT * FROM (
SELECT
t.*,
RANK() OVER(PARTITION BY sex ORDER BY tip) AS rnk
FROM tips t
WHERE tip < 2
)
WHERE rnk < 3
ORDER BY sex, rnk;
Let's find tips with (rank < 3) per gender group for (tips < 2).
Notice that when using ``rank(method='min')`` function
``rnk_min`` remains the same for the same ``tip``
(as Oracle's ``RANK()`` function)
.. ipython:: python
(
tips[tips["tip"] < 2]
.assign(rnk_min=tips.groupby(["sex"])["tip"].rank(method="min"))
.query("rnk_min < 3")
.sort_values(["sex", "rnk_min"])
)
UPDATE
------
.. code-block:: sql
UPDATE tips
SET tip = tip*2
WHERE tip < 2;
.. ipython:: python
tips.loc[tips["tip"] < 2, "tip"] *= 2
DELETE
------
.. code-block:: sql
DELETE FROM tips
WHERE tip > 9;
In pandas we select the rows that should remain instead of deleting them:
.. ipython:: python
tips = tips.loc[tips["tip"] <= 9]
|