1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380
|
.. _10min_tut_07_reshape:
{{ header }}
.. ipython:: python
import pandas as pd
.. raw:: html
<div class="card gs-data">
<div class="card-header gs-data-header">
<div class="gs-data-title">
Data used for this tutorial:
</div>
</div>
<ul class="list-group list-group-flush">
<li class="list-group-item gs-data-list">
.. include:: includes/titanic.rst
.. ipython:: python
titanic = pd.read_csv("data/titanic.csv")
titanic.head()
.. raw:: html
</li>
<li class="list-group-item gs-data-list">
<div data-bs-toggle="collapse" href="#collapsedata2" role="button" aria-expanded="false" aria-controls="collapsedata2">
<span class="badge bg-secondary">Air quality data</span>
</div>
<div class="collapse" id="collapsedata2">
<div class="card-body">
<p class="card-text">
This tutorial uses air quality data about :math:`NO_2` and Particulate matter less than 2.5
micrometers, made available by
`OpenAQ <https://openaq.org>`__ and using the
`py-openaq <http://dhhagan.github.io/py-openaq/index.html>`__ package.
The ``air_quality_long.csv`` data set provides :math:`NO_2` and
:math:`PM_{25}` values for the measurement stations *FR04014*, *BETR801*
and *London Westminster* in respectively Paris, Antwerp and London.
The air-quality data set has the following columns:
- city: city where the sensor is used, either Paris, Antwerp or London
- country: country where the sensor is used, either FR, BE or GB
- location: the id of the sensor, either *FR04014*, *BETR801* or
*London Westminster*
- parameter: the parameter measured by the sensor, either :math:`NO_2`
or Particulate matter
- value: the measured value
- unit: the unit of the measured parameter, in this case ‘µg/m³’
and the index of the ``DataFrame`` is ``datetime``, the datetime of the
measurement.
.. note::
The air-quality data is provided in a so-called *long format*
data representation with each observation on a separate row and each
variable a separate column of the data table. The long/narrow format is
also known as the `tidy data
format <https://www.jstatsoft.org/article/view/v059i10>`__.
.. raw:: html
</p>
<a href="https://github.com/pandas-dev/pandas/tree/main/doc/data/air_quality_long.csv" class="btn btn-dark btn-sm">To raw data</a>
</div>
</div>
.. ipython:: python
air_quality = pd.read_csv(
"data/air_quality_long.csv", index_col="date.utc", parse_dates=True
)
air_quality.head()
.. raw:: html
</li>
</ul>
</div>
How to reshape the layout of tables
-----------------------------------
Sort table rows
~~~~~~~~~~~~~~~
.. raw:: html
<ul class="task-bullet">
<li>
I want to sort the Titanic data according to the age of the passengers.
.. ipython:: python
titanic.sort_values(by="Age").head()
.. raw:: html
</li>
</ul>
.. raw:: html
<ul class="task-bullet">
<li>
I want to sort the Titanic data according to the cabin class and age in descending order.
.. ipython:: python
titanic.sort_values(by=['Pclass', 'Age'], ascending=False).head()
With :meth:`DataFrame.sort_values`, the rows in the table are sorted according to the
defined column(s). The index will follow the row order.
.. raw:: html
</li>
</ul>
.. raw:: html
<div class="d-flex flex-row gs-torefguide">
<span class="badge badge-info">To user guide</span>
More details about sorting of tables is provided in the user guide section on :ref:`sorting data <basics.sorting>`.
.. raw:: html
</div>
Long to wide table format
~~~~~~~~~~~~~~~~~~~~~~~~~
Let’s use a small subset of the air quality data set. We focus on
:math:`NO_2` data and only use the first two measurements of each
location (i.e. the head of each group). The subset of data will be
called ``no2_subset``.
.. ipython:: python
# filter for no2 data only
no2 = air_quality[air_quality["parameter"] == "no2"]
.. ipython:: python
# use 2 measurements (head) for each location (groupby)
no2_subset = no2.sort_index().groupby(["location"]).head(2)
no2_subset
.. image:: ../../_static/schemas/07_pivot.svg
:align: center
.. raw:: html
<ul class="task-bullet">
<li>
I want the values for the three stations as separate columns next to each other.
.. ipython:: python
no2_subset.pivot(columns="location", values="value")
The :meth:`~pandas.pivot` function is purely reshaping of the data: a single value
for each index/column combination is required.
.. raw:: html
</li>
</ul>
As pandas supports plotting of multiple columns (see :ref:`plotting tutorial <10min_tut_04_plotting>`) out of the box, the conversion from
*long* to *wide* table format enables the plotting of the different time
series at the same time:
.. ipython:: python
no2.head()
.. ipython:: python
@savefig 7_reshape_columns.png
no2.pivot(columns="location", values="value").plot()
.. note::
When the ``index`` parameter is not defined, the existing
index (row labels) is used.
.. raw:: html
<div class="d-flex flex-row gs-torefguide">
<span class="badge badge-info">To user guide</span>
For more information about :meth:`~DataFrame.pivot`, see the user guide section on :ref:`pivoting DataFrame objects <reshaping.reshaping>`.
.. raw:: html
</div>
Pivot table
~~~~~~~~~~~
.. image:: ../../_static/schemas/07_pivot_table.svg
:align: center
.. raw:: html
<ul class="task-bullet">
<li>
I want the mean concentrations for :math:`NO_2` and :math:`PM_{2.5}` in each of the stations in table form.
.. ipython:: python
air_quality.pivot_table(
values="value", index="location", columns="parameter", aggfunc="mean"
)
In the case of :meth:`~DataFrame.pivot`, the data is only rearranged. When multiple
values need to be aggregated (in this specific case, the values on
different time steps), :meth:`~DataFrame.pivot_table` can be used, providing an
aggregation function (e.g. mean) on how to combine these values.
.. raw:: html
</li>
</ul>
Pivot table is a well known concept in spreadsheet software. When
interested in the row/column margins (subtotals) for each variable, set
the ``margins`` parameter to ``True``:
.. ipython:: python
air_quality.pivot_table(
values="value",
index="location",
columns="parameter",
aggfunc="mean",
margins=True,
)
.. raw:: html
<div class="d-flex flex-row gs-torefguide">
<span class="badge badge-info">To user guide</span>
For more information about :meth:`~DataFrame.pivot_table`, see the user guide section on :ref:`pivot tables <reshaping.pivot>`.
.. raw:: html
</div>
.. note::
In case you are wondering, :meth:`~DataFrame.pivot_table` is indeed directly linked
to :meth:`~DataFrame.groupby`. The same result can be derived by grouping on both
``parameter`` and ``location``:
::
air_quality.groupby(["parameter", "location"])[["value"]].mean()
.. raw:: html
<div class="d-flex flex-row gs-torefguide">
<span class="badge badge-info">To user guide</span>
.. raw:: html
</div>
Wide to long format
~~~~~~~~~~~~~~~~~~~
Starting again from the wide format table created in the previous
section, we add a new index to the ``DataFrame`` with :meth:`~DataFrame.reset_index`.
.. ipython:: python
no2_pivoted = no2.pivot(columns="location", values="value").reset_index()
no2_pivoted.head()
.. image:: ../../_static/schemas/07_melt.svg
:align: center
.. raw:: html
<ul class="task-bullet">
<li>
I want to collect all air quality :math:`NO_2` measurements in a single column (long format).
.. ipython:: python
no_2 = no2_pivoted.melt(id_vars="date.utc")
no_2.head()
The :func:`pandas.melt` method on a ``DataFrame`` converts the data table from wide
format to long format. The column headers become the variable names in a
newly created column.
.. raw:: html
</li>
</ul>
The solution is the short version on how to apply :func:`pandas.melt`. The method
will *melt* all columns NOT mentioned in ``id_vars`` together into two
columns: A column with the column header names and a column with the
values itself. The latter column gets by default the name ``value``.
The parameters passed to :func:`pandas.melt` can be defined in more detail:
.. ipython:: python
no_2 = no2_pivoted.melt(
id_vars="date.utc",
value_vars=["BETR801", "FR04014", "London Westminster"],
value_name="NO_2",
var_name="id_location",
)
no_2.head()
The additional parameters have the following effects:
- ``value_vars`` defines which columns to *melt* together
- ``value_name`` provides a custom column name for the values column
instead of the default column name ``value``
- ``var_name`` provides a custom column name for the column collecting
the column header names. Otherwise it takes the index name or a
default ``variable``
Hence, the arguments ``value_name`` and ``var_name`` are just
user-defined names for the two generated columns. The columns to melt
are defined by ``id_vars`` and ``value_vars``.
.. raw:: html
<div class="d-flex flex-row gs-torefguide">
<span class="badge badge-info">To user guide</span>
Conversion from wide to long format with :func:`pandas.melt` is explained in the user guide section on :ref:`reshaping by melt <reshaping.melt>`.
.. raw:: html
</div>
.. raw:: html
<div class="shadow gs-callout gs-callout-remember">
<h4>REMEMBER</h4>
- Sorting by one or more columns is supported by ``sort_values``.
- The ``pivot`` function is purely restructuring of the data,
``pivot_table`` supports aggregations.
- The reverse of ``pivot`` (long to wide format) is ``melt`` (wide to
long format).
.. raw:: html
</div>
.. raw:: html
<div class="d-flex flex-row gs-torefguide">
<span class="badge badge-info">To user guide</span>
A full overview is available in the user guide on the pages about :ref:`reshaping and pivoting <reshaping>`.
.. raw:: html
</div>
|