1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095
|
.. _merging:
{{ header }}
.. ipython:: python
:suppress:
from matplotlib import pyplot as plt
import pandas.util._doctools as doctools
p = doctools.TablePlotter()
************************************
Merge, join, concatenate and compare
************************************
pandas provides various methods for combining and comparing :class:`Series` or
:class:`DataFrame`.
* :func:`~pandas.concat`: Merge multiple :class:`Series` or :class:`DataFrame` objects along a shared index or column
* :meth:`DataFrame.join`: Merge multiple :class:`DataFrame` objects along the columns
* :meth:`DataFrame.combine_first`: Update missing values with non-missing values in the same location
* :func:`~pandas.merge`: Combine two :class:`Series` or :class:`DataFrame` objects with SQL-style joining
* :func:`~pandas.merge_ordered`: Combine two :class:`Series` or :class:`DataFrame` objects along an ordered axis
* :func:`~pandas.merge_asof`: Combine two :class:`Series` or :class:`DataFrame` objects by near instead of exact matching keys
* :meth:`Series.compare` and :meth:`DataFrame.compare`: Show differences in values between two :class:`Series` or :class:`DataFrame` objects
.. _merging.concat:
:func:`~pandas.concat`
----------------------
The :func:`~pandas.concat` function concatenates an arbitrary amount of
:class:`Series` or :class:`DataFrame` objects along an axis while
performing optional set logic (union or intersection) of the indexes on
the other axes. Like ``numpy.concatenate``, :func:`~pandas.concat`
takes a list or dict of homogeneously-typed objects and concatenates them.
.. ipython:: python
df1 = pd.DataFrame(
{
"A": ["A0", "A1", "A2", "A3"],
"B": ["B0", "B1", "B2", "B3"],
"C": ["C0", "C1", "C2", "C3"],
"D": ["D0", "D1", "D2", "D3"],
},
index=[0, 1, 2, 3],
)
df2 = pd.DataFrame(
{
"A": ["A4", "A5", "A6", "A7"],
"B": ["B4", "B5", "B6", "B7"],
"C": ["C4", "C5", "C6", "C7"],
"D": ["D4", "D5", "D6", "D7"],
},
index=[4, 5, 6, 7],
)
df3 = pd.DataFrame(
{
"A": ["A8", "A9", "A10", "A11"],
"B": ["B8", "B9", "B10", "B11"],
"C": ["C8", "C9", "C10", "C11"],
"D": ["D8", "D9", "D10", "D11"],
},
index=[8, 9, 10, 11],
)
frames = [df1, df2, df3]
result = pd.concat(frames)
result
.. ipython:: python
:suppress:
@savefig merging_concat_basic.png
p.plot(frames, result, labels=["df1", "df2", "df3"], vertical=True);
plt.close("all");
.. note::
:func:`~pandas.concat` makes a full copy of the data, and iteratively
reusing :func:`~pandas.concat` can create unnecessary copies. Collect all
:class:`DataFrame` or :class:`Series` objects in a list before using
:func:`~pandas.concat`.
.. code-block:: python
frames = [process_your_file(f) for f in files]
result = pd.concat(frames)
.. note::
When concatenating :class:`DataFrame` with named axes, pandas will attempt to preserve
these index/column names whenever possible. In the case where all inputs share a
common name, this name will be assigned to the result. When the input names do
not all agree, the result will be unnamed. The same is true for :class:`MultiIndex`,
but the logic is applied separately on a level-by-level basis.
Joining logic of the resulting axis
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The ``join`` keyword specifies how to handle axis values that don't exist in the first
:class:`DataFrame`.
``join='outer'`` takes the union of all axis values
.. ipython:: python
df4 = pd.DataFrame(
{
"B": ["B2", "B3", "B6", "B7"],
"D": ["D2", "D3", "D6", "D7"],
"F": ["F2", "F3", "F6", "F7"],
},
index=[2, 3, 6, 7],
)
result = pd.concat([df1, df4], axis=1)
result
.. ipython:: python
:suppress:
@savefig merging_concat_axis1.png
p.plot([df1, df4], result, labels=["df1", "df4"], vertical=False);
plt.close("all");
``join='inner'`` takes the intersection of the axis values
.. ipython:: python
result = pd.concat([df1, df4], axis=1, join="inner")
result
.. ipython:: python
:suppress:
@savefig merging_concat_axis1_inner.png
p.plot([df1, df4], result, labels=["df1", "df4"], vertical=False);
plt.close("all");
To perform an effective "left" join using the *exact index* from the original
:class:`DataFrame`, result can be reindexed.
.. ipython:: python
result = pd.concat([df1, df4], axis=1).reindex(df1.index)
result
.. ipython:: python
:suppress:
@savefig merging_concat_axis1_join_axes.png
p.plot([df1, df4], result, labels=["df1", "df4"], vertical=False);
plt.close("all");
.. _merging.ignore_index:
Ignoring indexes on the concatenation axis
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
For :class:`DataFrame` objects which don't have a meaningful index, the ``ignore_index``
ignores overlapping indexes.
.. ipython:: python
result = pd.concat([df1, df4], ignore_index=True, sort=False)
result
.. ipython:: python
:suppress:
@savefig merging_concat_ignore_index.png
p.plot([df1, df4], result, labels=["df1", "df4"], vertical=True);
plt.close("all");
.. _merging.mixed_ndims:
Concatenating :class:`Series` and :class:`DataFrame` together
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
You can concatenate a mix of :class:`Series` and :class:`DataFrame` objects. The
:class:`Series` will be transformed to :class:`DataFrame` with the column name as
the name of the :class:`Series`.
.. ipython:: python
s1 = pd.Series(["X0", "X1", "X2", "X3"], name="X")
result = pd.concat([df1, s1], axis=1)
result
.. ipython:: python
:suppress:
@savefig merging_concat_mixed_ndim.png
p.plot([df1, s1], result, labels=["df1", "s1"], vertical=False);
plt.close("all");
Unnamed :class:`Series` will be numbered consecutively.
.. ipython:: python
s2 = pd.Series(["_0", "_1", "_2", "_3"])
result = pd.concat([df1, s2, s2, s2], axis=1)
result
.. ipython:: python
:suppress:
@savefig merging_concat_unnamed_series.png
p.plot([df1, s2], result, labels=["df1", "s2"], vertical=False);
plt.close("all");
``ignore_index=True`` will drop all name references.
.. ipython:: python
result = pd.concat([df1, s1], axis=1, ignore_index=True)
result
.. ipython:: python
:suppress:
@savefig merging_concat_series_ignore_index.png
p.plot([df1, s1], result, labels=["df1", "s1"], vertical=False);
plt.close("all");
Resulting ``keys``
~~~~~~~~~~~~~~~~~~
The ``keys`` argument adds another axis level to the resulting index or column (creating
a :class:`MultiIndex`) associate specific keys with each original :class:`DataFrame`.
.. ipython:: python
result = pd.concat(frames, keys=["x", "y", "z"])
result
result.loc["y"]
.. ipython:: python
:suppress:
@savefig merging_concat_keys.png
p.plot(frames, result, labels=["df1", "df2", "df3"], vertical=True)
plt.close("all");
The ``keys`` argument cane override the column names
when creating a new :class:`DataFrame` based on existing :class:`Series`.
.. ipython:: python
s3 = pd.Series([0, 1, 2, 3], name="foo")
s4 = pd.Series([0, 1, 2, 3])
s5 = pd.Series([0, 1, 4, 5])
pd.concat([s3, s4, s5], axis=1)
pd.concat([s3, s4, s5], axis=1, keys=["red", "blue", "yellow"])
You can also pass a dict to :func:`concat` in which case the dict keys will be used
for the ``keys`` argument unless other ``keys`` argument is specified:
.. ipython:: python
pieces = {"x": df1, "y": df2, "z": df3}
result = pd.concat(pieces)
result
.. ipython:: python
:suppress:
@savefig merging_concat_dict.png
p.plot([df1, df2, df3], result, labels=["df1", "df2", "df3"], vertical=True);
plt.close("all");
.. ipython:: python
result = pd.concat(pieces, keys=["z", "y"])
result
.. ipython:: python
:suppress:
@savefig merging_concat_dict_keys.png
p.plot([df1, df2, df3], result, labels=["df1", "df2", "df3"], vertical=True);
plt.close("all");
The :class:`MultiIndex` created has levels that are constructed from the passed keys and
the index of the :class:`DataFrame` pieces:
.. ipython:: python
result.index.levels
``levels`` argument allows specifying resulting levels associated with the ``keys``
.. ipython:: python
result = pd.concat(
pieces, keys=["x", "y", "z"], levels=[["z", "y", "x", "w"]], names=["group_key"]
)
result
.. ipython:: python
:suppress:
@savefig merging_concat_dict_keys_names.png
p.plot([df1, df2, df3], result, labels=["df1", "df2", "df3"], vertical=True);
plt.close("all");
.. ipython:: python
result.index.levels
.. _merging.append.row:
Appending rows to a :class:`DataFrame`
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
If you have a :class:`Series` that you want to append as a single row to a :class:`DataFrame`, you can convert the row into a
:class:`DataFrame` and use :func:`concat`
.. ipython:: python
s2 = pd.Series(["X0", "X1", "X2", "X3"], index=["A", "B", "C", "D"])
result = pd.concat([df1, s2.to_frame().T], ignore_index=True)
result
.. ipython:: python
:suppress:
@savefig merging_append_series_as_row.png
p.plot([df1, s2], result, labels=["df1", "s2"], vertical=True);
plt.close("all");
.. _merging.join:
:func:`~pandas.merge`
---------------------
:func:`~pandas.merge` performs join operations similar to relational databases like SQL.
Users who are familiar with SQL but new to pandas can reference a
:ref:`comparison with SQL<compare_with_sql.join>`.
Merge types
~~~~~~~~~~~
:func:`~pandas.merge` implements common SQL style joining operations.
* **one-to-one**: joining two :class:`DataFrame` objects on
their indexes which must contain unique values.
* **many-to-one**: joining a unique index to one or
more columns in a different :class:`DataFrame`.
* **many-to-many** : joining columns on columns.
.. note::
When joining columns on columns, potentially a many-to-many join, any
indexes on the passed :class:`DataFrame` objects **will be discarded**.
For a **many-to-many** join, if a key combination appears
more than once in both tables, the :class:`DataFrame` will have the **Cartesian
product** of the associated data.
.. ipython:: python
left = pd.DataFrame(
{
"key": ["K0", "K1", "K2", "K3"],
"A": ["A0", "A1", "A2", "A3"],
"B": ["B0", "B1", "B2", "B3"],
}
)
right = pd.DataFrame(
{
"key": ["K0", "K1", "K2", "K3"],
"C": ["C0", "C1", "C2", "C3"],
"D": ["D0", "D1", "D2", "D3"],
}
)
result = pd.merge(left, right, on="key")
result
.. ipython:: python
:suppress:
@savefig merging_merge_on_key.png
p.plot([left, right], result, labels=["left", "right"], vertical=False);
plt.close("all");
The ``how`` argument to :func:`~pandas.merge` specifies which keys are
included in the resulting table. If a key combination **does not appear** in
either the left or right tables, the values in the joined table will be
``NA``. Here is a summary of the ``how`` options and their SQL equivalent names:
.. csv-table::
:header: "Merge method", "SQL Join Name", "Description"
:widths: 20, 20, 60
``left``, ``LEFT OUTER JOIN``, Use keys from left frame only
``right``, ``RIGHT OUTER JOIN``, Use keys from right frame only
``outer``, ``FULL OUTER JOIN``, Use union of keys from both frames
``inner``, ``INNER JOIN``, Use intersection of keys from both frames
``cross``, ``CROSS JOIN``, Create the cartesian product of rows of both frames
.. ipython:: python
left = pd.DataFrame(
{
"key1": ["K0", "K0", "K1", "K2"],
"key2": ["K0", "K1", "K0", "K1"],
"A": ["A0", "A1", "A2", "A3"],
"B": ["B0", "B1", "B2", "B3"],
}
)
right = pd.DataFrame(
{
"key1": ["K0", "K1", "K1", "K2"],
"key2": ["K0", "K0", "K0", "K0"],
"C": ["C0", "C1", "C2", "C3"],
"D": ["D0", "D1", "D2", "D3"],
}
)
result = pd.merge(left, right, how="left", on=["key1", "key2"])
result
.. ipython:: python
:suppress:
@savefig merging_merge_on_key_left.png
p.plot([left, right], result, labels=["left", "right"], vertical=False);
plt.close("all");
.. ipython:: python
result = pd.merge(left, right, how="right", on=["key1", "key2"])
result
.. ipython:: python
:suppress:
@savefig merging_merge_on_key_right.png
p.plot([left, right], result, labels=["left", "right"], vertical=False);
.. ipython:: python
result = pd.merge(left, right, how="outer", on=["key1", "key2"])
result
.. ipython:: python
:suppress:
@savefig merging_merge_on_key_outer.png
p.plot([left, right], result, labels=["left", "right"], vertical=False);
plt.close("all");
.. ipython:: python
result = pd.merge(left, right, how="inner", on=["key1", "key2"])
result
.. ipython:: python
:suppress:
@savefig merging_merge_on_key_inner.png
p.plot([left, right], result, labels=["left", "right"], vertical=False);
plt.close("all");
.. ipython:: python
result = pd.merge(left, right, how="cross")
result
.. ipython:: python
:suppress:
@savefig merging_merge_cross.png
p.plot([left, right], result, labels=["left", "right"], vertical=False);
plt.close("all");
You can :class:`Series` and a :class:`DataFrame` with a :class:`MultiIndex` if the names of
the :class:`MultiIndex` correspond to the columns from the :class:`DataFrame`. Transform
the :class:`Series` to a :class:`DataFrame` using :meth:`Series.reset_index` before merging
.. ipython:: python
df = pd.DataFrame({"Let": ["A", "B", "C"], "Num": [1, 2, 3]})
df
ser = pd.Series(
["a", "b", "c", "d", "e", "f"],
index=pd.MultiIndex.from_arrays(
[["A", "B", "C"] * 2, [1, 2, 3, 4, 5, 6]], names=["Let", "Num"]
),
)
ser
pd.merge(df, ser.reset_index(), on=["Let", "Num"])
Performing an outer join with duplicate join keys in :class:`DataFrame`
.. ipython:: python
left = pd.DataFrame({"A": [1, 2], "B": [2, 2]})
right = pd.DataFrame({"A": [4, 5, 6], "B": [2, 2, 2]})
result = pd.merge(left, right, on="B", how="outer")
result
.. ipython:: python
:suppress:
@savefig merging_merge_on_key_dup.png
p.plot([left, right], result, labels=["left", "right"], vertical=False);
plt.close("all");
.. warning::
Merging on duplicate keys significantly increase the dimensions of the result
and can cause a memory overflow.
.. _merging.validation:
Merge key uniqueness
~~~~~~~~~~~~~~~~~~~~
The ``validate`` argument checks whether the uniqueness of merge keys.
Key uniqueness is checked before merge operations and can protect against memory overflows
and unexpected key duplication.
.. ipython:: python
:okexcept:
left = pd.DataFrame({"A": [1, 2], "B": [1, 2]})
right = pd.DataFrame({"A": [4, 5, 6], "B": [2, 2, 2]})
result = pd.merge(left, right, on="B", how="outer", validate="one_to_one")
If the user is aware of the duplicates in the right :class:`DataFrame` but wants to
ensure there are no duplicates in the left :class:`DataFrame`, one can use the
``validate='one_to_many'`` argument instead, which will not raise an exception.
.. ipython:: python
pd.merge(left, right, on="B", how="outer", validate="one_to_many")
.. _merging.indicator:
Merge result indicator
~~~~~~~~~~~~~~~~~~~~~~
:func:`~pandas.merge` accepts the argument ``indicator``. If ``True``, a
Categorical-type column called ``_merge`` will be added to the output object
that takes on values:
=================================== ================
Observation Origin ``_merge`` value
=================================== ================
Merge key only in ``'left'`` frame ``left_only``
Merge key only in ``'right'`` frame ``right_only``
Merge key in both frames ``both``
=================================== ================
.. ipython:: python
df1 = pd.DataFrame({"col1": [0, 1], "col_left": ["a", "b"]})
df2 = pd.DataFrame({"col1": [1, 2, 2], "col_right": [2, 2, 2]})
pd.merge(df1, df2, on="col1", how="outer", indicator=True)
A string argument to ``indicator`` will use the value as the name for the indicator column.
.. ipython:: python
pd.merge(df1, df2, on="col1", how="outer", indicator="indicator_column")
Overlapping value columns
~~~~~~~~~~~~~~~~~~~~~~~~~
The merge ``suffixes`` argument takes a tuple of list of strings to append to
overlapping column names in the input :class:`DataFrame` to disambiguate the result
columns:
.. ipython:: python
left = pd.DataFrame({"k": ["K0", "K1", "K2"], "v": [1, 2, 3]})
right = pd.DataFrame({"k": ["K0", "K0", "K3"], "v": [4, 5, 6]})
result = pd.merge(left, right, on="k")
result
.. ipython:: python
:suppress:
@savefig merging_merge_overlapped.png
p.plot([left, right], result, labels=["left", "right"], vertical=False);
plt.close("all");
.. ipython:: python
result = pd.merge(left, right, on="k", suffixes=("_l", "_r"))
result
.. ipython:: python
:suppress:
@savefig merging_merge_overlapped_suffix.png
p.plot([left, right], result, labels=["left", "right"], vertical=False);
plt.close("all");
:meth:`DataFrame.join`
----------------------
:meth:`DataFrame.join` combines the columns of multiple,
potentially differently-indexed :class:`DataFrame` into a single result
:class:`DataFrame`.
.. ipython:: python
left = pd.DataFrame(
{"A": ["A0", "A1", "A2"], "B": ["B0", "B1", "B2"]}, index=["K0", "K1", "K2"]
)
right = pd.DataFrame(
{"C": ["C0", "C2", "C3"], "D": ["D0", "D2", "D3"]}, index=["K0", "K2", "K3"]
)
result = left.join(right)
result
.. ipython:: python
:suppress:
@savefig merging_join.png
p.plot([left, right], result, labels=["left", "right"], vertical=False);
plt.close("all");
.. ipython:: python
result = left.join(right, how="outer")
result
.. ipython:: python
:suppress:
@savefig merging_join_outer.png
p.plot([left, right], result, labels=["left", "right"], vertical=False);
plt.close("all");
.. ipython:: python
result = left.join(right, how="inner")
result
.. ipython:: python
:suppress:
@savefig merging_join_inner.png
p.plot([left, right], result, labels=["left", "right"], vertical=False);
plt.close("all");
:meth:`DataFrame.join` takes an optional ``on`` argument which may be a column
or multiple column names that the passed :class:`DataFrame` is to be
aligned.
.. ipython:: python
left = pd.DataFrame(
{
"A": ["A0", "A1", "A2", "A3"],
"B": ["B0", "B1", "B2", "B3"],
"key": ["K0", "K1", "K0", "K1"],
}
)
right = pd.DataFrame({"C": ["C0", "C1"], "D": ["D0", "D1"]}, index=["K0", "K1"])
result = left.join(right, on="key")
result
.. ipython:: python
:suppress:
@savefig merging_join_key_columns.png
p.plot([left, right], result, labels=["left", "right"], vertical=False);
plt.close("all");
.. ipython:: python
result = pd.merge(
left, right, left_on="key", right_index=True, how="left", sort=False
)
result
.. ipython:: python
:suppress:
@savefig merging_merge_key_columns.png
p.plot([left, right], result, labels=["left", "right"], vertical=False);
plt.close("all");
.. _merging.multikey_join:
To join on multiple keys, the passed :class:`DataFrame` must have a :class:`MultiIndex`:
.. ipython:: python
left = pd.DataFrame(
{
"A": ["A0", "A1", "A2", "A3"],
"B": ["B0", "B1", "B2", "B3"],
"key1": ["K0", "K0", "K1", "K2"],
"key2": ["K0", "K1", "K0", "K1"],
}
)
index = pd.MultiIndex.from_tuples(
[("K0", "K0"), ("K1", "K0"), ("K2", "K0"), ("K2", "K1")]
)
right = pd.DataFrame(
{"C": ["C0", "C1", "C2", "C3"], "D": ["D0", "D1", "D2", "D3"]}, index=index
)
result = left.join(right, on=["key1", "key2"])
result
.. ipython:: python
:suppress:
@savefig merging_join_multikeys.png
p.plot([left, right], result, labels=["left", "right"], vertical=False);
plt.close("all");
.. _merging.df_inner_join:
The default for :class:`DataFrame.join` is to perform a left join
which uses only the keys found in the
calling :class:`DataFrame`. Other join types can be specified with ``how``.
.. ipython:: python
result = left.join(right, on=["key1", "key2"], how="inner")
result
.. ipython:: python
:suppress:
@savefig merging_join_multikeys_inner.png
p.plot([left, right], result, labels=["left", "right"], vertical=False);
plt.close("all");
.. _merging.join_on_mi:
Joining a single Index to a MultiIndex
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
You can join a :class:`DataFrame` with a :class:`Index` to a :class:`DataFrame` with a :class:`MultiIndex` on a level.
The ``name`` of the :class:`Index` with match the level name of the :class:`MultiIndex`.
.. ipython:: python
left = pd.DataFrame(
{"A": ["A0", "A1", "A2"], "B": ["B0", "B1", "B2"]},
index=pd.Index(["K0", "K1", "K2"], name="key"),
)
index = pd.MultiIndex.from_tuples(
[("K0", "Y0"), ("K1", "Y1"), ("K2", "Y2"), ("K2", "Y3")],
names=["key", "Y"],
)
right = pd.DataFrame(
{"C": ["C0", "C1", "C2", "C3"], "D": ["D0", "D1", "D2", "D3"]},
index=index,
)
result = left.join(right, how="inner")
result
.. ipython:: python
:suppress:
@savefig merging_join_multiindex_inner.png
p.plot([left, right], result, labels=["left", "right"], vertical=False);
plt.close("all");
.. _merging.join_with_two_multi_indexes:
Joining with two :class:`MultiIndex`
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The :class:`MultiIndex` of the input argument must be completely used
in the join and is a subset of the indices in the left argument.
.. ipython:: python
leftindex = pd.MultiIndex.from_product(
[list("abc"), list("xy"), [1, 2]], names=["abc", "xy", "num"]
)
left = pd.DataFrame({"v1": range(12)}, index=leftindex)
left
rightindex = pd.MultiIndex.from_product(
[list("abc"), list("xy")], names=["abc", "xy"]
)
right = pd.DataFrame({"v2": [100 * i for i in range(1, 7)]}, index=rightindex)
right
left.join(right, on=["abc", "xy"], how="inner")
.. ipython:: python
leftindex = pd.MultiIndex.from_tuples(
[("K0", "X0"), ("K0", "X1"), ("K1", "X2")], names=["key", "X"]
)
left = pd.DataFrame(
{"A": ["A0", "A1", "A2"], "B": ["B0", "B1", "B2"]}, index=leftindex
)
rightindex = pd.MultiIndex.from_tuples(
[("K0", "Y0"), ("K1", "Y1"), ("K2", "Y2"), ("K2", "Y3")], names=["key", "Y"]
)
right = pd.DataFrame(
{"C": ["C0", "C1", "C2", "C3"], "D": ["D0", "D1", "D2", "D3"]}, index=rightindex
)
result = pd.merge(
left.reset_index(), right.reset_index(), on=["key"], how="inner"
).set_index(["key", "X", "Y"])
result
.. ipython:: python
:suppress:
@savefig merging_merge_two_multiindex.png
p.plot([left, right], result, labels=["left", "right"], vertical=False);
plt.close("all");
.. _merging.merge_on_columns_and_levels:
Merging on a combination of columns and index levels
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Strings passed as the ``on``, ``left_on``, and ``right_on`` parameters
may refer to either column names or index level names. This enables merging
:class:`DataFrame` instances on a combination of index levels and columns without
resetting indexes.
.. ipython:: python
left_index = pd.Index(["K0", "K0", "K1", "K2"], name="key1")
left = pd.DataFrame(
{
"A": ["A0", "A1", "A2", "A3"],
"B": ["B0", "B1", "B2", "B3"],
"key2": ["K0", "K1", "K0", "K1"],
},
index=left_index,
)
right_index = pd.Index(["K0", "K1", "K2", "K2"], name="key1")
right = pd.DataFrame(
{
"C": ["C0", "C1", "C2", "C3"],
"D": ["D0", "D1", "D2", "D3"],
"key2": ["K0", "K0", "K0", "K1"],
},
index=right_index,
)
result = left.merge(right, on=["key1", "key2"])
result
.. ipython:: python
:suppress:
@savefig merge_on_index_and_column.png
p.plot([left, right], result, labels=["left", "right"], vertical=False);
plt.close("all");
.. note::
When :class:`DataFrame` are joined on a string that matches an index level in both
arguments, the index level is preserved as an index level in the resulting
:class:`DataFrame`.
.. note::
When :class:`DataFrame` are joined using only some of the levels of a :class:`MultiIndex`,
the extra levels will be dropped from the resulting join. To
preserve those levels, use :meth:`DataFrame.reset_index` on those level
names to move those levels to columns prior to the join.
.. _merging.multiple_join:
Joining multiple :class:`DataFrame`
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
A list or tuple of ``:class:`DataFrame``` can also be passed to :meth:`~DataFrame.join`
to join them together on their indexes.
.. ipython:: python
right2 = pd.DataFrame({"v": [7, 8, 9]}, index=["K1", "K1", "K2"])
result = left.join([right, right2])
.. ipython:: python
:suppress:
@savefig merging_join_multi_df.png
p.plot(
[left, right, right2],
result,
labels=["left", "right", "right2"],
vertical=False,
);
plt.close("all");
.. _merging.combine_first.update:
:meth:`DataFrame.combine_first`
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
:meth:`DataFrame.combine_first` update missing values from one :class:`DataFrame`
with the non-missing values in another :class:`DataFrame` in the corresponding
location.
.. ipython:: python
df1 = pd.DataFrame(
[[np.nan, 3.0, 5.0], [-4.6, np.nan, np.nan], [np.nan, 7.0, np.nan]]
)
df2 = pd.DataFrame([[-42.6, np.nan, -8.2], [-5.0, 1.6, 4]], index=[1, 2])
result = df1.combine_first(df2)
result
.. ipython:: python
:suppress:
@savefig merging_combine_first.png
p.plot([df1, df2], result, labels=["df1", "df2"], vertical=False);
plt.close("all");
.. _merging.merge_ordered:
:func:`merge_ordered`
---------------------
:func:`merge_ordered` combines order data such as numeric or time series data
with optional filling of missing data with ``fill_method``.
.. ipython:: python
left = pd.DataFrame(
{"k": ["K0", "K1", "K1", "K2"], "lv": [1, 2, 3, 4], "s": ["a", "b", "c", "d"]}
)
right = pd.DataFrame({"k": ["K1", "K2", "K4"], "rv": [1, 2, 3]})
pd.merge_ordered(left, right, fill_method="ffill", left_by="s")
.. _merging.merge_asof:
:func:`merge_asof`
---------------------
:func:`merge_asof` is similar to an ordered left-join except that mactches are on the
nearest key rather than equal keys. For each row in the ``left`` :class:`DataFrame`,
the last row in the ``right`` :class:`DataFrame` are selected where the ``on`` key is less
than the left's key. Both :class:`DataFrame` must be sorted by the key.
Optionally an :func:`merge_asof` can perform a group-wise merge by matching the
``by`` key in addition to the nearest match on the ``on`` key.
.. ipython:: python
trades = pd.DataFrame(
{
"time": pd.to_datetime(
[
"20160525 13:30:00.023",
"20160525 13:30:00.038",
"20160525 13:30:00.048",
"20160525 13:30:00.048",
"20160525 13:30:00.048",
]
),
"ticker": ["MSFT", "MSFT", "GOOG", "GOOG", "AAPL"],
"price": [51.95, 51.95, 720.77, 720.92, 98.00],
"quantity": [75, 155, 100, 100, 100],
},
columns=["time", "ticker", "price", "quantity"],
)
quotes = pd.DataFrame(
{
"time": pd.to_datetime(
[
"20160525 13:30:00.023",
"20160525 13:30:00.023",
"20160525 13:30:00.030",
"20160525 13:30:00.041",
"20160525 13:30:00.048",
"20160525 13:30:00.049",
"20160525 13:30:00.072",
"20160525 13:30:00.075",
]
),
"ticker": ["GOOG", "MSFT", "MSFT", "MSFT", "GOOG", "AAPL", "GOOG", "MSFT"],
"bid": [720.50, 51.95, 51.97, 51.99, 720.50, 97.99, 720.50, 52.01],
"ask": [720.93, 51.96, 51.98, 52.00, 720.93, 98.01, 720.88, 52.03],
},
columns=["time", "ticker", "bid", "ask"],
)
trades
quotes
pd.merge_asof(trades, quotes, on="time", by="ticker")
:func:`merge_asof` within ``2ms`` between the quote time and the trade time.
.. ipython:: python
pd.merge_asof(trades, quotes, on="time", by="ticker", tolerance=pd.Timedelta("2ms"))
:func:`merge_asof` within ``10ms`` between the quote time and the trade time and
exclude exact matches on time. Note that though we exclude the exact matches
(of the quotes), prior quotes **do** propagate to that point in time.
.. ipython:: python
pd.merge_asof(
trades,
quotes,
on="time",
by="ticker",
tolerance=pd.Timedelta("10ms"),
allow_exact_matches=False,
)
.. _merging.compare:
:meth:`~Series.compare`
-----------------------
The :meth:`Series.compare` and :meth:`DataFrame.compare` methods allow you to
compare two :class:`DataFrame` or :class:`Series`, respectively, and summarize their differences.
.. ipython:: python
df = pd.DataFrame(
{
"col1": ["a", "a", "b", "b", "a"],
"col2": [1.0, 2.0, 3.0, np.nan, 5.0],
"col3": [1.0, 2.0, 3.0, 4.0, 5.0],
},
columns=["col1", "col2", "col3"],
)
df
df2 = df.copy()
df2.loc[0, "col1"] = "c"
df2.loc[2, "col3"] = 4.0
df2
df.compare(df2)
By default, if two corresponding values are equal, they will be shown as ``NaN``.
Furthermore, if all values in an entire row / column, the row / column will be
omitted from the result. The remaining differences will be aligned on columns.
Stack the differences on rows.
.. ipython:: python
df.compare(df2, align_axis=0)
Keep all original rows and columns with ``keep_shape=True``
.. ipython:: python
df.compare(df2, keep_shape=True)
Keep all the original values even if they are equal.
.. ipython:: python
df.compare(df2, keep_shape=True, keep_equal=True)
|