File: reshaping.rst

package info (click to toggle)
pandas 2.2.3%2Bdfsg-9
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 66,784 kB
  • sloc: python: 422,228; ansic: 9,190; sh: 270; xml: 102; makefile: 83
file content (677 lines) | stat: -rw-r--r-- 20,743 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
.. _reshaping:

{{ header }}

**************************
Reshaping and pivot tables
**************************

.. _reshaping.reshaping:


pandas provides methods for manipulating a :class:`Series` and :class:`DataFrame` to alter the
representation of the data for further data processing or data summarization.

* :func:`~pandas.pivot` and :func:`~pandas.pivot_table`: Group unique values within one or more discrete categories.
* :meth:`~DataFrame.stack` and :meth:`~DataFrame.unstack`: Pivot a column or row level to the opposite axis respectively.
* :func:`~pandas.melt` and :func:`~pandas.wide_to_long`: Unpivot a wide :class:`DataFrame` to a long format.
* :func:`~pandas.get_dummies` and :func:`~pandas.from_dummies`: Conversions with indicator variables.
* :meth:`~Series.explode`: Convert a column of list-like values to individual rows.
* :func:`~pandas.crosstab`: Calculate a cross-tabulation of multiple 1 dimensional factor arrays.
* :func:`~pandas.cut`: Transform continuous variables to discrete, categorical values
* :func:`~pandas.factorize`: Encode 1 dimensional variables into integer labels.


:func:`~pandas.pivot` and :func:`~pandas.pivot_table`
-----------------------------------------------------

.. image:: ../_static/reshaping_pivot.png

:func:`~pandas.pivot`
~~~~~~~~~~~~~~~~~~~~~

Data is often stored in so-called "stacked" or "record" format. In a "record" or "wide" format,
typically there is one row for each subject. In the "stacked" or "long" format there are
multiple rows for each subject where applicable.

.. ipython:: python

   data = {
      "value": range(12),
      "variable": ["A"] * 3 + ["B"] * 3 + ["C"] * 3 + ["D"] * 3,
      "date": pd.to_datetime(["2020-01-03", "2020-01-04", "2020-01-05"] * 4)
   }
   df = pd.DataFrame(data)

To perform time series operations with each unique variable, a better
representation would be where the ``columns`` are the unique variables and an
``index`` of dates identifies individual observations. To reshape the data into
this form, we use the :meth:`DataFrame.pivot` method (also implemented as a
top level function :func:`~pandas.pivot`):

.. ipython:: python

   pivoted = df.pivot(index="date", columns="variable", values="value")
   pivoted

If the ``values`` argument is omitted, and the input :class:`DataFrame` has more than
one column of values which are not used as column or index inputs to :meth:`~DataFrame.pivot`,
then the resulting "pivoted" :class:`DataFrame` will have :ref:`hierarchical columns
<advanced.hierarchical>` whose topmost level indicates the respective value
column:

.. ipython:: python

   df["value2"] = df["value"] * 2
   pivoted = df.pivot(index="date", columns="variable")
   pivoted

You can then select subsets from the pivoted :class:`DataFrame`:

.. ipython:: python

   pivoted["value2"]

Note that this returns a view on the underlying data in the case where the data
are homogeneously-typed.

.. note::

   :func:`~pandas.pivot` can only handle unique rows specified by ``index`` and ``columns``.
   If you data contains duplicates, use :func:`~pandas.pivot_table`.


.. _reshaping.pivot:

:func:`~pandas.pivot_table`
~~~~~~~~~~~~~~~~~~~~~~~~~~~

While :meth:`~DataFrame.pivot` provides general purpose pivoting with various
data types, pandas also provides :func:`~pandas.pivot_table` or :meth:`~DataFrame.pivot_table`
for pivoting with aggregation of numeric data.

The function :func:`~pandas.pivot_table` can be used to create spreadsheet-style
pivot tables. See the :ref:`cookbook<cookbook.pivot>` for some advanced
strategies.

.. ipython:: python

   import datetime

   df = pd.DataFrame(
       {
           "A": ["one", "one", "two", "three"] * 6,
           "B": ["A", "B", "C"] * 8,
           "C": ["foo", "foo", "foo", "bar", "bar", "bar"] * 4,
           "D": np.random.randn(24),
           "E": np.random.randn(24),
           "F": [datetime.datetime(2013, i, 1) for i in range(1, 13)]
           + [datetime.datetime(2013, i, 15) for i in range(1, 13)],
       }
   )
   df
   pd.pivot_table(df, values="D", index=["A", "B"], columns=["C"])
   pd.pivot_table(
       df, values=["D", "E"],
       index=["B"],
       columns=["A", "C"],
       aggfunc="sum",
   )
   pd.pivot_table(
       df, values="E",
       index=["B", "C"],
       columns=["A"],
       aggfunc=["sum", "mean"],
   )

The result is a :class:`DataFrame` potentially having a :class:`MultiIndex` on the
index or column. If the ``values`` column name is not given, the pivot table
will include all of the data in an additional level of hierarchy in the columns:

.. ipython:: python

   pd.pivot_table(df[["A", "B", "C", "D", "E"]], index=["A", "B"], columns=["C"])

Also, you can use :class:`Grouper` for ``index`` and ``columns`` keywords. For detail of :class:`Grouper`, see :ref:`Grouping with a Grouper specification <groupby.specify>`.

.. ipython:: python

   pd.pivot_table(df, values="D", index=pd.Grouper(freq="ME", key="F"), columns="C")

.. _reshaping.pivot.margins:

Adding margins
^^^^^^^^^^^^^^

Passing ``margins=True`` to :meth:`~DataFrame.pivot_table` will add a row and column with an
``All`` label with partial group aggregates across the categories on the
rows and columns:

.. ipython:: python

   table = df.pivot_table(
       index=["A", "B"],
       columns="C",
       values=["D", "E"],
       margins=True,
       aggfunc="std"
   )
   table

Additionally, you can call :meth:`DataFrame.stack` to display a pivoted DataFrame
as having a multi-level index:

.. ipython:: python

    table.stack(future_stack=True)

.. _reshaping.stacking:

:meth:`~DataFrame.stack` and :meth:`~DataFrame.unstack`
-------------------------------------------------------

.. image:: ../_static/reshaping_stack.png

Closely related to the :meth:`~DataFrame.pivot` method are the related
:meth:`~DataFrame.stack` and :meth:`~DataFrame.unstack` methods available on
:class:`Series` and :class:`DataFrame`. These methods are designed to work together with
:class:`MultiIndex` objects (see the section on :ref:`hierarchical indexing
<advanced.hierarchical>`).

* :meth:`~DataFrame.stack`: "pivot" a level of the (possibly hierarchical) column labels,
  returning a :class:`DataFrame` with an index with a new inner-most level of row
  labels.
* :meth:`~DataFrame.unstack`: (inverse operation of :meth:`~DataFrame.stack`) "pivot" a level of the
  (possibly hierarchical) row index to the column axis, producing a reshaped
  :class:`DataFrame` with a new inner-most level of column labels.

.. image:: ../_static/reshaping_unstack.png

.. ipython:: python

   tuples = [
      ["bar", "bar", "baz", "baz", "foo", "foo", "qux", "qux"],
      ["one", "two", "one", "two", "one", "two", "one", "two"],
   ]
   index = pd.MultiIndex.from_arrays(tuples, names=["first", "second"])
   df = pd.DataFrame(np.random.randn(8, 2), index=index, columns=["A", "B"])
   df2 = df[:4]
   df2

The :meth:`~DataFrame.stack` function "compresses" a level in the :class:`DataFrame` columns to
produce either:

* A :class:`Series`, in the case of a :class:`Index` in the columns.
* A :class:`DataFrame`, in the case of a :class:`MultiIndex` in the columns.

If the columns have a :class:`MultiIndex`, you can choose which level to stack. The
stacked level becomes the new lowest level in a :class:`MultiIndex` on the columns:

.. ipython:: python

   stacked = df2.stack(future_stack=True)
   stacked

With a "stacked" :class:`DataFrame` or :class:`Series` (having a :class:`MultiIndex` as the
``index``), the inverse operation of :meth:`~DataFrame.stack` is :meth:`~DataFrame.unstack`, which by default
unstacks the **last level**:

.. ipython:: python

   stacked.unstack()
   stacked.unstack(1)
   stacked.unstack(0)

.. _reshaping.unstack_by_name:

.. image:: ../_static/reshaping_unstack_1.png

If the indexes have names, you can use the level names instead of specifying
the level numbers:

.. ipython:: python

   stacked.unstack("second")


.. image:: ../_static/reshaping_unstack_0.png

Notice that the :meth:`~DataFrame.stack` and :meth:`~DataFrame.unstack` methods implicitly sort the index
levels involved. Hence a call to :meth:`~DataFrame.stack` and then :meth:`~DataFrame.unstack`, or vice versa,
will result in a **sorted** copy of the original :class:`DataFrame` or :class:`Series`:

.. ipython:: python

   index = pd.MultiIndex.from_product([[2, 1], ["a", "b"]])
   df = pd.DataFrame(np.random.randn(4), index=index, columns=["A"])
   df
   all(df.unstack().stack(future_stack=True) == df.sort_index())

.. _reshaping.stack_multiple:

Multiple levels
~~~~~~~~~~~~~~~

You may also stack or unstack more than one level at a time by passing a list
of levels, in which case the end result is as if each level in the list were
processed individually.

.. ipython:: python

    columns = pd.MultiIndex.from_tuples(
        [
            ("A", "cat", "long"),
            ("B", "cat", "long"),
            ("A", "dog", "short"),
            ("B", "dog", "short"),
        ],
        names=["exp", "animal", "hair_length"],
    )
    df = pd.DataFrame(np.random.randn(4, 4), columns=columns)
    df

    df.stack(level=["animal", "hair_length"], future_stack=True)

The list of levels can contain either level names or level numbers but
not a mixture of the two.

.. ipython:: python

    # df.stack(level=['animal', 'hair_length'], future_stack=True)
    # from above is equivalent to:
    df.stack(level=[1, 2], future_stack=True)

Missing data
~~~~~~~~~~~~

Unstacking can result in missing values if subgroups do not have the same
set of labels. By default, missing values will be replaced with the default
fill value for that data type.

.. ipython:: python

   columns = pd.MultiIndex.from_tuples(
       [
           ("A", "cat"),
           ("B", "dog"),
           ("B", "cat"),
           ("A", "dog"),
       ],
       names=["exp", "animal"],
   )
   index = pd.MultiIndex.from_product(
       [("bar", "baz", "foo", "qux"), ("one", "two")], names=["first", "second"]
   )
   df = pd.DataFrame(np.random.randn(8, 4), index=index, columns=columns)
   df3 = df.iloc[[0, 1, 4, 7], [1, 2]]
   df3
   df3.unstack()

The missing value can be filled with a specific value with the ``fill_value`` argument.

.. ipython:: python

   df3.unstack(fill_value=-1e9)

.. _reshaping.melt:

:func:`~pandas.melt` and :func:`~pandas.wide_to_long`
-----------------------------------------------------

.. image:: ../_static/reshaping_melt.png

The top-level :func:`~pandas.melt` function and the corresponding :meth:`DataFrame.melt`
are useful to massage a :class:`DataFrame` into a format where one or more columns
are *identifier variables*, while all other columns, considered *measured
variables*, are "unpivoted" to the row axis, leaving just two non-identifier
columns, "variable" and "value". The names of those columns can be customized
by supplying the ``var_name`` and ``value_name`` parameters.

.. ipython:: python

   cheese = pd.DataFrame(
       {
           "first": ["John", "Mary"],
           "last": ["Doe", "Bo"],
           "height": [5.5, 6.0],
           "weight": [130, 150],
       }
   )
   cheese
   cheese.melt(id_vars=["first", "last"])
   cheese.melt(id_vars=["first", "last"], var_name="quantity")

When transforming a DataFrame using :func:`~pandas.melt`, the index will be ignored.
The original index values can be kept by setting the ``ignore_index=False`` parameter to ``False`` (default is ``True``).
``ignore_index=False`` will however duplicate index values.

.. ipython:: python

   index = pd.MultiIndex.from_tuples([("person", "A"), ("person", "B")])
   cheese = pd.DataFrame(
       {
           "first": ["John", "Mary"],
           "last": ["Doe", "Bo"],
           "height": [5.5, 6.0],
           "weight": [130, 150],
       },
       index=index,
   )
   cheese
   cheese.melt(id_vars=["first", "last"])
   cheese.melt(id_vars=["first", "last"], ignore_index=False)

:func:`~pandas.wide_to_long` is similar to :func:`~pandas.melt` with more customization for
column matching.

.. ipython:: python

  dft = pd.DataFrame(
      {
          "A1970": {0: "a", 1: "b", 2: "c"},
          "A1980": {0: "d", 1: "e", 2: "f"},
          "B1970": {0: 2.5, 1: 1.2, 2: 0.7},
          "B1980": {0: 3.2, 1: 1.3, 2: 0.1},
          "X": dict(zip(range(3), np.random.randn(3))),
      }
  )
  dft["id"] = dft.index
  dft
  pd.wide_to_long(dft, ["A", "B"], i="id", j="year")

.. _reshaping.dummies:

:func:`~pandas.get_dummies` and :func:`~pandas.from_dummies`
------------------------------------------------------------

To convert categorical variables of a :class:`Series` into a "dummy" or "indicator",
:func:`~pandas.get_dummies` creates a new :class:`DataFrame` with columns of the unique
variables and the values representing the presence of those variables per row.

.. ipython:: python

   df = pd.DataFrame({"key": list("bbacab"), "data1": range(6)})

   pd.get_dummies(df["key"])
   df["key"].str.get_dummies()

``prefix`` adds a prefix to the the column names which is useful for merging the result
with the original :class:`DataFrame`:

.. ipython:: python

   dummies = pd.get_dummies(df["key"], prefix="key")
   dummies

   df[["data1"]].join(dummies)

This function is often used along with discretization functions like :func:`~pandas.cut`:

.. ipython:: python

   values = np.random.randn(10)
   values

   bins = [0, 0.2, 0.4, 0.6, 0.8, 1]

   pd.get_dummies(pd.cut(values, bins))


:func:`get_dummies` also accepts a :class:`DataFrame`. By default, ``object``, ``string``,
or ``categorical`` type columns are encoded as dummy variables with other columns unaltered.

.. ipython:: python

    df = pd.DataFrame({"A": ["a", "b", "a"], "B": ["c", "c", "b"], "C": [1, 2, 3]})
    pd.get_dummies(df)

Specifying the ``columns`` keyword will encode a column of any type.

.. ipython:: python

    pd.get_dummies(df, columns=["A"])

As with the :class:`Series` version, you can pass values for the ``prefix`` and
``prefix_sep``. By default the column name is used as the prefix and ``_`` as
the prefix separator. You can specify ``prefix`` and ``prefix_sep`` in 3 ways:

* string: Use the same value for ``prefix`` or ``prefix_sep`` for each column
  to be encoded.
* list: Must be the same length as the number of columns being encoded.
* dict: Mapping column name to prefix.

.. ipython:: python

    simple = pd.get_dummies(df, prefix="new_prefix")
    simple
    from_list = pd.get_dummies(df, prefix=["from_A", "from_B"])
    from_list
    from_dict = pd.get_dummies(df, prefix={"B": "from_B", "A": "from_A"})
    from_dict

To avoid collinearity when feeding the result to statistical models,
specify ``drop_first=True``.

.. ipython:: python

    s = pd.Series(list("abcaa"))

    pd.get_dummies(s)

    pd.get_dummies(s, drop_first=True)

When a column contains only one level, it will be omitted in the result.

.. ipython:: python

    df = pd.DataFrame({"A": list("aaaaa"), "B": list("ababc")})

    pd.get_dummies(df)

    pd.get_dummies(df, drop_first=True)

The values can be cast to a different type using the ``dtype`` argument.

.. ipython:: python

    df = pd.DataFrame({"A": list("abc"), "B": [1.1, 2.2, 3.3]})

    pd.get_dummies(df, dtype=np.float32).dtypes

.. versionadded:: 1.5.0

:func:`~pandas.from_dummies` converts the output of :func:`~pandas.get_dummies` back into
a :class:`Series` of categorical values from indicator values.

.. ipython:: python

   df = pd.DataFrame({"prefix_a": [0, 1, 0], "prefix_b": [1, 0, 1]})
   df

   pd.from_dummies(df, sep="_")

Dummy coded data only requires ``k - 1`` categories to be included, in this case
the last category is the default category. The default category can be modified with
``default_category``.

.. ipython:: python

   df = pd.DataFrame({"prefix_a": [0, 1, 0]})
   df

   pd.from_dummies(df, sep="_", default_category="b")

.. _reshaping.explode:

:meth:`~Series.explode`
-----------------------

For a :class:`DataFrame` column with nested, list-like values, :meth:`~Series.explode` will transform
each list-like value to a separate row. The resulting :class:`Index` will be duplicated corresponding
to the index label from the original row:

.. ipython:: python

   keys = ["panda1", "panda2", "panda3"]
   values = [["eats", "shoots"], ["shoots", "leaves"], ["eats", "leaves"]]
   df = pd.DataFrame({"keys": keys, "values": values})
   df
   df["values"].explode()

:class:`DataFrame.explode` can also explode the column in the :class:`DataFrame`.

.. ipython:: python

   df.explode("values")

:meth:`Series.explode` will replace empty lists with a missing value indicator and preserve scalar entries.

.. ipython:: python

   s = pd.Series([[1, 2, 3], "foo", [], ["a", "b"]])
   s
   s.explode()

A comma-separated string value can be split into individual values in a list and then exploded to a new row.

.. ipython:: python

    df = pd.DataFrame([{"var1": "a,b,c", "var2": 1}, {"var1": "d,e,f", "var2": 2}])
    df.assign(var1=df.var1.str.split(",")).explode("var1")

.. _reshaping.crosstabulations:

:func:`~pandas.crosstab`
------------------------

Use :func:`~pandas.crosstab` to compute a cross-tabulation of two (or more)
factors. By default :func:`~pandas.crosstab` computes a frequency table of the factors
unless an array of values and an aggregation function are passed.

Any :class:`Series` passed will have their name attributes used unless row or column
names for the cross-tabulation are specified

.. ipython:: python

    a = np.array(["foo", "foo", "bar", "bar", "foo", "foo"], dtype=object)
    b = np.array(["one", "one", "two", "one", "two", "one"], dtype=object)
    c = np.array(["dull", "dull", "shiny", "dull", "dull", "shiny"], dtype=object)
    pd.crosstab(a, [b, c], rownames=["a"], colnames=["b", "c"])


If :func:`~pandas.crosstab` receives only two :class:`Series`, it will provide a frequency table.

.. ipython:: python

    df = pd.DataFrame(
        {"A": [1, 2, 2, 2, 2], "B": [3, 3, 4, 4, 4], "C": [1, 1, np.nan, 1, 1]}
    )
    df

    pd.crosstab(df["A"], df["B"])

:func:`~pandas.crosstab` can also summarize to :class:`Categorical` data.

.. ipython:: python

    foo = pd.Categorical(["a", "b"], categories=["a", "b", "c"])
    bar = pd.Categorical(["d", "e"], categories=["d", "e", "f"])
    pd.crosstab(foo, bar)

For :class:`Categorical` data, to include **all** of data categories even if the actual data does
not contain any instances of a particular category, use ``dropna=False``.

.. ipython:: python

    pd.crosstab(foo, bar, dropna=False)

Normalization
~~~~~~~~~~~~~

Frequency tables can also be normalized to show percentages rather than counts
using the ``normalize`` argument:

.. ipython:: python

   pd.crosstab(df["A"], df["B"], normalize=True)

``normalize`` can also normalize values within each row or within each column:

.. ipython:: python

   pd.crosstab(df["A"], df["B"], normalize="columns")

:func:`~pandas.crosstab` can also accept a third :class:`Series` and an aggregation function
(``aggfunc``) that will be applied to the values of the third :class:`Series` within
each group defined by the first two :class:`Series`:

.. ipython:: python

   pd.crosstab(df["A"], df["B"], values=df["C"], aggfunc="sum")

Adding margins
~~~~~~~~~~~~~~

``margins=True`` will add a row and column with an ``All`` label with partial group aggregates
across the categories on the rows and columns:

.. ipython:: python

   pd.crosstab(
       df["A"], df["B"], values=df["C"], aggfunc="sum", normalize=True, margins=True
   )

.. _reshaping.tile:
.. _reshaping.tile.cut:

:func:`~pandas.cut`
-------------------

The :func:`~pandas.cut` function computes groupings for the values of the input
array and is often used to transform continuous variables to discrete or
categorical variables:


An integer ``bins`` will form equal-width bins.

.. ipython:: python

   ages = np.array([10, 15, 13, 12, 23, 25, 28, 59, 60])

   pd.cut(ages, bins=3)

A list of ordered bin edges will assign an interval for each variable.

.. ipython:: python

   pd.cut(ages, bins=[0, 18, 35, 70])

If the ``bins`` keyword is an :class:`IntervalIndex`, then these will be
used to bin the passed data.

.. ipython:: python

   pd.cut(ages, bins=pd.IntervalIndex.from_breaks([0, 40, 70]))

.. _reshaping.factorize:

:func:`~pandas.factorize`
-------------------------

:func:`~pandas.factorize` encodes 1 dimensional values into integer labels. Missing values
are encoded as ``-1``.

.. ipython:: python

   x = pd.Series(["A", "A", np.nan, "B", 3.14, np.inf])
   x
   labels, uniques = pd.factorize(x)
   labels
   uniques

:class:`Categorical` will similarly encode 1 dimensional values for further
categorical operations

.. ipython:: python

   pd.Categorical(x)