1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567
|
.. _whatsnew_0100:
Version 0.10.0 (December 17, 2012)
----------------------------------
{{ header }}
This is a major release from 0.9.1 and includes many new features and
enhancements along with a large number of bug fixes. There are also a number of
important API changes that long-time pandas users should pay close attention
to.
File parsing new features
~~~~~~~~~~~~~~~~~~~~~~~~~
The delimited file parsing engine (the guts of ``read_csv`` and ``read_table``)
has been rewritten from the ground up and now uses a fraction the amount of
memory while parsing, while being 40% or more faster in most use cases (in some
cases much faster).
There are also many new features:
- Much-improved Unicode handling via the ``encoding`` option.
- Column filtering (``usecols``)
- Dtype specification (``dtype`` argument)
- Ability to specify strings to be recognized as True/False
- Ability to yield NumPy record arrays (``as_recarray``)
- High performance ``delim_whitespace`` option
- Decimal format (e.g. European format) specification
- Easier CSV dialect options: ``escapechar``, ``lineterminator``,
``quotechar``, etc.
- More robust handling of many exceptional kinds of files observed in the wild
API changes
~~~~~~~~~~~
**Deprecated DataFrame BINOP TimeSeries special case behavior**
The default behavior of binary operations between a DataFrame and a Series has
always been to align on the DataFrame's columns and broadcast down the rows,
**except** in the special case that the DataFrame contains time series. Since
there are now method for each binary operator enabling you to specify how you
want to broadcast, we are phasing out this special case (Zen of Python:
*Special cases aren't special enough to break the rules*). Here's what I'm
talking about:
.. ipython:: python
:okwarning:
import pandas as pd
df = pd.DataFrame(np.random.randn(6, 4), index=pd.date_range("1/1/2000", periods=6))
df
# deprecated now
df - df[0]
# Change your code to
df.sub(df[0], axis=0) # align on axis 0 (rows)
You will get a deprecation warning in the 0.10.x series, and the deprecated
functionality will be removed in 0.11 or later.
**Altered resample default behavior**
The default time series ``resample`` binning behavior of daily ``D`` and
*higher* frequencies has been changed to ``closed='left', label='left'``. Lower
nfrequencies are unaffected. The prior defaults were causing a great deal of
confusion for users, especially resampling data to daily frequency (which
labeled the aggregated group with the end of the interval: the next day).
.. code-block:: ipython
In [1]: dates = pd.date_range('1/1/2000', '1/5/2000', freq='4h')
In [2]: series = pd.Series(np.arange(len(dates)), index=dates)
In [3]: series
Out[3]:
2000-01-01 00:00:00 0
2000-01-01 04:00:00 1
2000-01-01 08:00:00 2
2000-01-01 12:00:00 3
2000-01-01 16:00:00 4
2000-01-01 20:00:00 5
2000-01-02 00:00:00 6
2000-01-02 04:00:00 7
2000-01-02 08:00:00 8
2000-01-02 12:00:00 9
2000-01-02 16:00:00 10
2000-01-02 20:00:00 11
2000-01-03 00:00:00 12
2000-01-03 04:00:00 13
2000-01-03 08:00:00 14
2000-01-03 12:00:00 15
2000-01-03 16:00:00 16
2000-01-03 20:00:00 17
2000-01-04 00:00:00 18
2000-01-04 04:00:00 19
2000-01-04 08:00:00 20
2000-01-04 12:00:00 21
2000-01-04 16:00:00 22
2000-01-04 20:00:00 23
2000-01-05 00:00:00 24
Freq: 4H, dtype: int64
In [4]: series.resample('D', how='sum')
Out[4]:
2000-01-01 15
2000-01-02 51
2000-01-03 87
2000-01-04 123
2000-01-05 24
Freq: D, dtype: int64
In [5]: # old behavior
In [6]: series.resample('D', how='sum', closed='right', label='right')
Out[6]:
2000-01-01 0
2000-01-02 21
2000-01-03 57
2000-01-04 93
2000-01-05 129
Freq: D, dtype: int64
- Infinity and negative infinity are no longer treated as NA by ``isnull`` and
``notnull``. That they ever were was a relic of early pandas. This behavior
can be re-enabled globally by the ``mode.use_inf_as_null`` option:
.. code-block:: ipython
In [6]: s = pd.Series([1.5, np.inf, 3.4, -np.inf])
In [7]: pd.isnull(s)
Out[7]:
0 False
1 False
2 False
3 False
Length: 4, dtype: bool
In [8]: s.fillna(0)
Out[8]:
0 1.500000
1 inf
2 3.400000
3 -inf
Length: 4, dtype: float64
In [9]: pd.set_option('use_inf_as_null', True)
In [10]: pd.isnull(s)
Out[10]:
0 False
1 True
2 False
3 True
Length: 4, dtype: bool
In [11]: s.fillna(0)
Out[11]:
0 1.5
1 0.0
2 3.4
3 0.0
Length: 4, dtype: float64
In [12]: pd.reset_option('use_inf_as_null')
- Methods with the ``inplace`` option now all return ``None`` instead of the
calling object. E.g. code written like ``df = df.fillna(0, inplace=True)``
may stop working. To fix, simply delete the unnecessary variable assignment.
- ``pandas.merge`` no longer sorts the group keys (``sort=False``) by
default. This was done for performance reasons: the group-key sorting is
often one of the more expensive parts of the computation and is often
unnecessary.
- The default column names for a file with no header have been changed to the
integers ``0`` through ``N - 1``. This is to create consistency with the
DataFrame constructor with no columns specified. The v0.9.0 behavior (names
``X0``, ``X1``, ...) can be reproduced by specifying ``prefix='X'``:
.. code-block:: ipython
In [6]: import io
In [7]: data = """
...: a,b,c
...: 1,Yes,2
...: 3,No,4
...: """
...:
In [8]: print(data)
a,b,c
1,Yes,2
3,No,4
In [9]: pd.read_csv(io.StringIO(data), header=None)
Out[9]:
0 1 2
0 a b c
1 1 Yes 2
2 3 No 4
In [10]: pd.read_csv(io.StringIO(data), header=None, prefix="X")
Out[10]:
X0 X1 X2
0 a b c
1 1 Yes 2
2 3 No 4
- Values like ``'Yes'`` and ``'No'`` are not interpreted as boolean by default,
though this can be controlled by new ``true_values`` and ``false_values``
arguments:
.. code-block:: ipython
In [4]: print(data)
a,b,c
1,Yes,2
3,No,4
In [5]: pd.read_csv(io.StringIO(data))
Out[5]:
a b c
0 1 Yes 2
1 3 No 4
In [6]: pd.read_csv(io.StringIO(data), true_values=["Yes"], false_values=["No"])
Out[6]:
a b c
0 1 True 2
1 3 False 4
- The file parsers will not recognize non-string values arising from a
converter function as NA if passed in the ``na_values`` argument. It's better
to do post-processing using the ``replace`` function instead.
- Calling ``fillna`` on Series or DataFrame with no arguments is no longer
valid code. You must either specify a fill value or an interpolation method:
.. ipython:: python
:okwarning:
s = pd.Series([np.nan, 1.0, 2.0, np.nan, 4])
s
s.fillna(0)
s.fillna(method="pad")
Convenience methods ``ffill`` and ``bfill`` have been added:
.. ipython:: python
s.ffill()
- ``Series.apply`` will now operate on a returned value from the applied
function, that is itself a series, and possibly upcast the result to a
DataFrame
.. ipython:: python
def f(x):
return pd.Series([x, x ** 2], index=["x", "x^2"])
s = pd.Series(np.random.rand(5))
s
s.apply(f)
- New API functions for working with pandas options (:issue:`2097`):
- ``get_option`` / ``set_option`` - get/set the value of an option. Partial
names are accepted. - ``reset_option`` - reset one or more options to
their default value. Partial names are accepted. - ``describe_option`` -
print a description of one or more options. When called with no
arguments. print all registered options.
Note: ``set_printoptions``/ ``reset_printoptions`` are now deprecated (but
functioning), the print options now live under "display.XYZ". For example:
.. ipython:: python
pd.get_option("display.max_rows")
- to_string() methods now always return unicode strings (:issue:`2224`).
New features
~~~~~~~~~~~~
Wide DataFrame printing
~~~~~~~~~~~~~~~~~~~~~~~
Instead of printing the summary information, pandas now splits the string
representation across multiple rows by default:
.. ipython:: python
wide_frame = pd.DataFrame(np.random.randn(5, 16))
wide_frame
The old behavior of printing out summary information can be achieved via the
'expand_frame_repr' print option:
.. ipython:: python
pd.set_option("expand_frame_repr", False)
wide_frame
.. ipython:: python
:suppress:
pd.reset_option("expand_frame_repr")
The width of each line can be changed via 'line_width' (80 by default):
.. code-block:: python
pd.set_option("line_width", 40)
wide_frame
Updated PyTables support
~~~~~~~~~~~~~~~~~~~~~~~~
:ref:`Docs <io.hdf5>` for PyTables ``Table`` format & several enhancements to the api. Here is a taste of what to expect.
.. code-block:: ipython
In [41]: store = pd.HDFStore('store.h5')
In [42]: df = pd.DataFrame(np.random.randn(8, 3),
....: index=pd.date_range('1/1/2000', periods=8),
....: columns=['A', 'B', 'C'])
In [43]: df
Out[43]:
A B C
2000-01-01 -2.036047 0.000830 -0.955697
2000-01-02 -0.898872 -0.725411 0.059904
2000-01-03 -0.449644 1.082900 -1.221265
2000-01-04 0.361078 1.330704 0.855932
2000-01-05 -1.216718 1.488887 0.018993
2000-01-06 -0.877046 0.045976 0.437274
2000-01-07 -0.567182 -0.888657 -0.556383
2000-01-08 0.655457 1.117949 -2.782376
[8 rows x 3 columns]
# appending data frames
In [44]: df1 = df[0:4]
In [45]: df2 = df[4:]
In [46]: store.append('df', df1)
In [47]: store.append('df', df2)
In [48]: store
Out[48]:
<class 'pandas.io.pytables.HDFStore'>
File path: store.h5
/df frame_table (typ->appendable,nrows->8,ncols->3,indexers->[index])
# selecting the entire store
In [49]: store.select('df')
Out[49]:
A B C
2000-01-01 -2.036047 0.000830 -0.955697
2000-01-02 -0.898872 -0.725411 0.059904
2000-01-03 -0.449644 1.082900 -1.221265
2000-01-04 0.361078 1.330704 0.855932
2000-01-05 -1.216718 1.488887 0.018993
2000-01-06 -0.877046 0.045976 0.437274
2000-01-07 -0.567182 -0.888657 -0.556383
2000-01-08 0.655457 1.117949 -2.782376
[8 rows x 3 columns]
.. code-block:: ipython
In [50]: wp = pd.Panel(np.random.randn(2, 5, 4), items=['Item1', 'Item2'],
....: major_axis=pd.date_range('1/1/2000', periods=5),
....: minor_axis=['A', 'B', 'C', 'D'])
In [51]: wp
Out[51]:
<class 'pandas.core.panel.Panel'>
Dimensions: 2 (items) x 5 (major_axis) x 4 (minor_axis)
Items axis: Item1 to Item2
Major_axis axis: 2000-01-01 00:00:00 to 2000-01-05 00:00:00
Minor_axis axis: A to D
# storing a panel
In [52]: store.append('wp', wp)
# selecting via A QUERY
In [53]: store.select('wp', [pd.Term('major_axis>20000102'),
....: pd.Term('minor_axis', '=', ['A', 'B'])])
....:
Out[53]:
<class 'pandas.core.panel.Panel'>
Dimensions: 2 (items) x 3 (major_axis) x 2 (minor_axis)
Items axis: Item1 to Item2
Major_axis axis: 2000-01-03 00:00:00 to 2000-01-05 00:00:00
Minor_axis axis: A to B
# removing data from tables
In [54]: store.remove('wp', pd.Term('major_axis>20000103'))
Out[54]: 8
In [55]: store.select('wp')
Out[55]:
<class 'pandas.core.panel.Panel'>
Dimensions: 2 (items) x 3 (major_axis) x 4 (minor_axis)
Items axis: Item1 to Item2
Major_axis axis: 2000-01-01 00:00:00 to 2000-01-03 00:00:00
Minor_axis axis: A to D
# deleting a store
In [56]: del store['df']
In [57]: store
Out[57]:
<class 'pandas.io.pytables.HDFStore'>
File path: store.h5
/wp wide_table (typ->appendable,nrows->12,ncols->2,indexers->[major_axis,minor_axis])
**Enhancements**
- added ability to hierarchical keys
.. code-block:: ipython
In [58]: store.put('foo/bar/bah', df)
In [59]: store.append('food/orange', df)
In [60]: store.append('food/apple', df)
In [61]: store
Out[61]:
<class 'pandas.io.pytables.HDFStore'>
File path: store.h5
/foo/bar/bah frame (shape->[8,3])
/food/apple frame_table (typ->appendable,nrows->8,ncols->3,indexers->[index])
/food/orange frame_table (typ->appendable,nrows->8,ncols->3,indexers->[index])
/wp wide_table (typ->appendable,nrows->12,ncols->2,indexers->[major_axis,minor_axis])
# remove all nodes under this level
In [62]: store.remove('food')
In [63]: store
Out[63]:
<class 'pandas.io.pytables.HDFStore'>
File path: store.h5
/foo/bar/bah frame (shape->[8,3])
/wp wide_table (typ->appendable,nrows->12,ncols->2,indexers->[major_axis,minor_axis])
- added mixed-dtype support!
.. code-block:: ipython
In [64]: df['string'] = 'string'
In [65]: df['int'] = 1
In [66]: store.append('df', df)
In [67]: df1 = store.select('df')
In [68]: df1
Out[68]:
A B C string int
2000-01-01 -2.036047 0.000830 -0.955697 string 1
2000-01-02 -0.898872 -0.725411 0.059904 string 1
2000-01-03 -0.449644 1.082900 -1.221265 string 1
2000-01-04 0.361078 1.330704 0.855932 string 1
2000-01-05 -1.216718 1.488887 0.018993 string 1
2000-01-06 -0.877046 0.045976 0.437274 string 1
2000-01-07 -0.567182 -0.888657 -0.556383 string 1
2000-01-08 0.655457 1.117949 -2.782376 string 1
[8 rows x 5 columns]
In [69]: df1.get_dtype_counts()
Out[69]:
float64 3
int64 1
object 1
dtype: int64
- performance improvements on table writing
- support for arbitrarily indexed dimensions
- ``SparseSeries`` now has a ``density`` property (:issue:`2384`)
- enable ``Series.str.strip/lstrip/rstrip`` methods to take an input argument
to strip arbitrary characters (:issue:`2411`)
- implement ``value_vars`` in ``melt`` to limit values to certain columns
and add ``melt`` to pandas namespace (:issue:`2412`)
**Bug Fixes**
- added ``Term`` method of specifying where conditions (:issue:`1996`).
- ``del store['df']`` now call ``store.remove('df')`` for store deletion
- deleting of consecutive rows is much faster than before
- ``min_itemsize`` parameter can be specified in table creation to force a
minimum size for indexing columns (the previous implementation would set the
column size based on the first append)
- indexing support via ``create_table_index`` (requires PyTables >= 2.3)
(:issue:`698`).
- appending on a store would fail if the table was not first created via ``put``
- fixed issue with missing attributes after loading a pickled dataframe (GH2431)
- minor change to select and remove: require a table ONLY if where is also
provided (and not None)
**Compatibility**
0.10 of ``HDFStore`` is backwards compatible for reading tables created in a prior version of pandas,
however, query terms using the prior (undocumented) methodology are unsupported. You must read in the entire
file and write it out using the new format to take advantage of the updates.
N dimensional panels (experimental)
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Adding experimental support for Panel4D and factory functions to create n-dimensional named panels.
Here is a taste of what to expect.
.. code-block:: ipython
In [58]: p4d = Panel4D(np.random.randn(2, 2, 5, 4),
....: labels=['Label1','Label2'],
....: items=['Item1', 'Item2'],
....: major_axis=date_range('1/1/2000', periods=5),
....: minor_axis=['A', 'B', 'C', 'D'])
....:
In [59]: p4d
Out[59]:
<class 'pandas.core.panelnd.Panel4D'>
Dimensions: 2 (labels) x 2 (items) x 5 (major_axis) x 4 (minor_axis)
Labels axis: Label1 to Label2
Items axis: Item1 to Item2
Major_axis axis: 2000-01-01 00:00:00 to 2000-01-05 00:00:00
Minor_axis axis: A to D
See the :ref:`full release notes
<release>` or issue tracker
on GitHub for a complete list.
.. _whatsnew_0.10.0.contributors:
Contributors
~~~~~~~~~~~~
.. contributors:: v0.9.0..v0.10.0
|