1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476
|
.. _whatsnew_0110:
Version 0.11.0 (April 22, 2013)
-------------------------------
{{ header }}
This is a major release from 0.10.1 and includes many new features and
enhancements along with a large number of bug fixes. The methods of Selecting
Data have had quite a number of additions, and Dtype support is now full-fledged.
There are also a number of important API changes that long-time pandas users should
pay close attention to.
There is a new section in the documentation, :ref:`10 Minutes to Pandas <10min>`,
primarily geared to new users.
There is a new section in the documentation, :ref:`Cookbook <cookbook>`, a collection
of useful recipes in pandas (and that we want contributions!).
There are several libraries that are now :ref:`Recommended Dependencies <install.recommended_dependencies>`
Selection choices
~~~~~~~~~~~~~~~~~
Starting in 0.11.0, object selection has had a number of user-requested additions in
order to support more explicit location based indexing. pandas now supports
three types of multi-axis indexing.
- ``.loc`` is strictly label based, will raise ``KeyError`` when the items are not found, allowed inputs are:
- A single label, e.g. ``5`` or ``'a'``, (note that ``5`` is interpreted as a *label* of the index. This use is **not** an integer position along the index)
- A list or array of labels ``['a', 'b', 'c']``
- A slice object with labels ``'a':'f'``, (note that contrary to usual python slices, **both** the start and the stop are included!)
- A boolean array
See more at :ref:`Selection by Label <indexing.label>`
- ``.iloc`` is strictly integer position based (from ``0`` to ``length-1`` of the axis), will raise ``IndexError`` when the requested indices are out of bounds. Allowed inputs are:
- An integer e.g. ``5``
- A list or array of integers ``[4, 3, 0]``
- A slice object with ints ``1:7``
- A boolean array
See more at :ref:`Selection by Position <indexing.integer>`
- ``.ix`` supports mixed integer and label based access. It is primarily label based, but will fallback to integer positional access. ``.ix`` is the most general and will support
any of the inputs to ``.loc`` and ``.iloc``, as well as support for floating point label schemes. ``.ix`` is especially useful when dealing with mixed positional and label
based hierarchical indexes.
As using integer slices with ``.ix`` have different behavior depending on whether the slice
is interpreted as position based or label based, it's usually better to be
explicit and use ``.iloc`` or ``.loc``.
See more at :ref:`Advanced Indexing <advanced>` and :ref:`Advanced Hierarchical <advanced.advanced_hierarchical>`.
Selection deprecations
~~~~~~~~~~~~~~~~~~~~~~
Starting in version 0.11.0, these methods *may* be deprecated in future versions.
- ``irow``
- ``icol``
- ``iget_value``
See the section :ref:`Selection by Position <indexing.integer>` for substitutes.
Dtypes
~~~~~~
Numeric dtypes will propagate and can coexist in DataFrames. If a dtype is passed (either directly via the ``dtype`` keyword, a passed ``ndarray``, or a passed ``Series``, then it will be preserved in DataFrame operations. Furthermore, different numeric dtypes will **NOT** be combined. The following example will give you a taste.
.. ipython:: python
df1 = pd.DataFrame(np.random.randn(8, 1), columns=['A'], dtype='float32')
df1
df1.dtypes
df2 = pd.DataFrame({'A': pd.Series(np.random.randn(8), dtype='float16'),
'B': pd.Series(np.random.randn(8)),
'C': pd.Series(range(8), dtype='uint8')})
df2
df2.dtypes
# here you get some upcasting
df3 = df1.reindex_like(df2).fillna(value=0.0) + df2
df3
df3.dtypes
Dtype conversion
~~~~~~~~~~~~~~~~
This is lower-common-denominator upcasting, meaning you get the dtype which can accommodate all of the types
.. ipython:: python
df3.values.dtype
Conversion
.. ipython:: python
df3.astype('float32').dtypes
Mixed conversion
.. code-block:: ipython
In [12]: df3['D'] = '1.'
In [13]: df3['E'] = '1'
In [14]: df3.convert_objects(convert_numeric=True).dtypes
Out[14]:
A float32
B float64
C float64
D float64
E int64
dtype: object
# same, but specific dtype conversion
In [15]: df3['D'] = df3['D'].astype('float16')
In [16]: df3['E'] = df3['E'].astype('int32')
In [17]: df3.dtypes
Out[17]:
A float32
B float64
C float64
D float16
E int32
dtype: object
Forcing date coercion (and setting ``NaT`` when not datelike)
.. code-block:: ipython
In [18]: import datetime
In [19]: s = pd.Series([datetime.datetime(2001, 1, 1, 0, 0), 'foo', 1.0, 1,
....: pd.Timestamp('20010104'), '20010105'], dtype='O')
....:
In [20]: s.convert_objects(convert_dates='coerce')
Out[20]:
0 2001-01-01
1 NaT
2 NaT
3 NaT
4 2001-01-04
5 2001-01-05
dtype: datetime64[ns]
Dtype gotchas
~~~~~~~~~~~~~
**Platform gotchas**
Starting in 0.11.0, construction of DataFrame/Series will use default dtypes of ``int64`` and ``float64``,
*regardless of platform*. This is not an apparent change from earlier versions of pandas. If you specify
dtypes, they *WILL* be respected, however (:issue:`2837`)
The following will all result in ``int64`` dtypes
.. code-block:: ipython
In [21]: pd.DataFrame([1, 2], columns=['a']).dtypes
Out[21]:
a int64
dtype: object
In [22]: pd.DataFrame({'a': [1, 2]}).dtypes
Out[22]:
a int64
dtype: object
In [23]: pd.DataFrame({'a': 1}, index=range(2)).dtypes
Out[23]:
a int64
dtype: object
Keep in mind that ``DataFrame(np.array([1,2]))`` **WILL** result in ``int32`` on 32-bit platforms!
**Upcasting gotchas**
Performing indexing operations on integer type data can easily upcast the data.
The dtype of the input data will be preserved in cases where ``nans`` are not introduced.
.. code-block:: ipython
In [24]: dfi = df3.astype('int32')
In [25]: dfi['D'] = dfi['D'].astype('int64')
In [26]: dfi
Out[26]:
A B C D E
0 0 0 0 1 1
1 -2 0 1 1 1
2 -2 0 2 1 1
3 0 -1 3 1 1
4 1 0 4 1 1
5 0 0 5 1 1
6 0 -1 6 1 1
7 0 0 7 1 1
In [27]: dfi.dtypes
Out[27]:
A int32
B int32
C int32
D int64
E int32
dtype: object
In [28]: casted = dfi[dfi > 0]
In [29]: casted
Out[29]:
A B C D E
0 NaN NaN NaN 1 1
1 NaN NaN 1.0 1 1
2 NaN NaN 2.0 1 1
3 NaN NaN 3.0 1 1
4 1.0 NaN 4.0 1 1
5 NaN NaN 5.0 1 1
6 NaN NaN 6.0 1 1
7 NaN NaN 7.0 1 1
In [30]: casted.dtypes
Out[30]:
A float64
B float64
C float64
D int64
E int32
dtype: object
While float dtypes are unchanged.
.. code-block:: ipython
In [31]: df4 = df3.copy()
In [32]: df4['A'] = df4['A'].astype('float32')
In [33]: df4.dtypes
Out[33]:
A float32
B float64
C float64
D float16
E int32
dtype: object
In [34]: casted = df4[df4 > 0]
In [35]: casted
Out[35]:
A B C D E
0 NaN NaN NaN 1.0 1
1 NaN 0.567020 1.0 1.0 1
2 NaN 0.276232 2.0 1.0 1
3 NaN NaN 3.0 1.0 1
4 1.933792 NaN 4.0 1.0 1
5 NaN 0.113648 5.0 1.0 1
6 NaN NaN 6.0 1.0 1
7 NaN 0.524988 7.0 1.0 1
In [36]: casted.dtypes
Out[36]:
A float32
B float64
C float64
D float16
E int32
dtype: object
Datetimes conversion
~~~~~~~~~~~~~~~~~~~~
Datetime64[ns] columns in a DataFrame (or a Series) allow the use of ``np.nan`` to indicate a nan value,
in addition to the traditional ``NaT``, or not-a-time. This allows convenient nan setting in a generic way.
Furthermore ``datetime64[ns]`` columns are created by default, when passed datetimelike objects (*this change was introduced in 0.10.1*)
(:issue:`2809`, :issue:`2810`)
.. ipython:: python
df = pd.DataFrame(np.random.randn(6, 2), pd.date_range('20010102', periods=6),
columns=['A', ' B'])
df['timestamp'] = pd.Timestamp('20010103')
df
# datetime64[ns] out of the box
df.dtypes.value_counts()
# use the traditional nan, which is mapped to NaT internally
df.loc[df.index[2:4], ['A', 'timestamp']] = np.nan
df
Astype conversion on ``datetime64[ns]`` to ``object``, implicitly converts ``NaT`` to ``np.nan``
.. ipython:: python
import datetime
s = pd.Series([datetime.datetime(2001, 1, 2, 0, 0) for i in range(3)])
s.dtype
s[1] = np.nan
s
s.dtype
s = s.astype('O')
s
s.dtype
API changes
~~~~~~~~~~~
- Added to_series() method to indices, to facilitate the creation of indexers
(:issue:`3275`)
- ``HDFStore``
- added the method ``select_column`` to select a single column from a table as a Series.
- deprecated the ``unique`` method, can be replicated by ``select_column(key,column).unique()``
- ``min_itemsize`` parameter to ``append`` will now automatically create data_columns for passed keys
Enhancements
~~~~~~~~~~~~
- Improved performance of df.to_csv() by up to 10x in some cases. (:issue:`3059`)
- Numexpr is now a :ref:`Recommended Dependencies <install.recommended_dependencies>`, to accelerate certain
types of numerical and boolean operations
- Bottleneck is now a :ref:`Recommended Dependencies <install.recommended_dependencies>`, to accelerate certain
types of ``nan`` operations
- ``HDFStore``
- support ``read_hdf/to_hdf`` API similar to ``read_csv/to_csv``
.. ipython:: python
df = pd.DataFrame({'A': range(5), 'B': range(5)})
df.to_hdf('store.h5', key='table', append=True)
pd.read_hdf('store.h5', 'table', where=['index > 2'])
.. ipython:: python
:suppress:
:okexcept:
import os
os.remove('store.h5')
- provide dotted attribute access to ``get`` from stores, e.g. ``store.df == store['df']``
- new keywords ``iterator=boolean``, and ``chunksize=number_in_a_chunk`` are
provided to support iteration on ``select`` and ``select_as_multiple`` (:issue:`3076`)
- You can now select timestamps from an *unordered* timeseries similarly to an *ordered* timeseries (:issue:`2437`)
- You can now select with a string from a DataFrame with a datelike index, in a similar way to a Series (:issue:`3070`)
.. code-block:: ipython
In [30]: idx = pd.date_range("2001-10-1", periods=5, freq='M')
In [31]: ts = pd.Series(np.random.rand(len(idx)), index=idx)
In [32]: ts['2001']
Out[32]:
2001-10-31 0.117967
2001-11-30 0.702184
2001-12-31 0.414034
Freq: M, dtype: float64
In [33]: df = pd.DataFrame({'A': ts})
In [34]: df['2001']
Out[34]:
A
2001-10-31 0.117967
2001-11-30 0.702184
2001-12-31 0.414034
- ``Squeeze`` to possibly remove length 1 dimensions from an object.
.. code-block:: python
>>> p = pd.Panel(np.random.randn(3, 4, 4), items=['ItemA', 'ItemB', 'ItemC'],
... major_axis=pd.date_range('20010102', periods=4),
... minor_axis=['A', 'B', 'C', 'D'])
>>> p
<class 'pandas.core.panel.Panel'>
Dimensions: 3 (items) x 4 (major_axis) x 4 (minor_axis)
Items axis: ItemA to ItemC
Major_axis axis: 2001-01-02 00:00:00 to 2001-01-05 00:00:00
Minor_axis axis: A to D
>>> p.reindex(items=['ItemA']).squeeze()
A B C D
2001-01-02 0.926089 -2.026458 0.501277 -0.204683
2001-01-03 -0.076524 1.081161 1.141361 0.479243
2001-01-04 0.641817 -0.185352 1.824568 0.809152
2001-01-05 0.575237 0.669934 1.398014 -0.399338
>>> p.reindex(items=['ItemA'], minor=['B']).squeeze()
2001-01-02 -2.026458
2001-01-03 1.081161
2001-01-04 -0.185352
2001-01-05 0.669934
Freq: D, Name: B, dtype: float64
- In ``pd.io.data.Options``,
+ Fix bug when trying to fetch data for the current month when already
past expiry.
+ Now using lxml to scrape html instead of BeautifulSoup (lxml was faster).
+ New instance variables for calls and puts are automatically created
when a method that creates them is called. This works for current month
where the instance variables are simply ``calls`` and ``puts``. Also
works for future expiry months and save the instance variable as
``callsMMYY`` or ``putsMMYY``, where ``MMYY`` are, respectively, the
month and year of the option's expiry.
+ ``Options.get_near_stock_price`` now allows the user to specify the
month for which to get relevant options data.
+ ``Options.get_forward_data`` now has optional kwargs ``near`` and
``above_below``. This allows the user to specify if they would like to
only return forward looking data for options near the current stock
price. This just obtains the data from Options.get_near_stock_price
instead of Options.get_xxx_data() (:issue:`2758`).
- Cursor coordinate information is now displayed in time-series plots.
- added option ``display.max_seq_items`` to control the number of
elements printed per sequence pprinting it. (:issue:`2979`)
- added option ``display.chop_threshold`` to control display of small numerical
values. (:issue:`2739`)
- added option ``display.max_info_rows`` to prevent verbose_info from being
calculated for frames above 1M rows (configurable). (:issue:`2807`, :issue:`2918`)
- value_counts() now accepts a "normalize" argument, for normalized
histograms. (:issue:`2710`).
- DataFrame.from_records now accepts not only dicts but any instance of
the collections.Mapping ABC.
- added option ``display.mpl_style`` providing a sleeker visual style
for plots. Based on https://gist.github.com/huyng/816622 (:issue:`3075`).
- Treat boolean values as integers (values 1 and 0) for numeric
operations. (:issue:`2641`)
- to_html() now accepts an optional "escape" argument to control reserved
HTML character escaping (enabled by default) and escapes ``&``, in addition
to ``<`` and ``>``. (:issue:`2919`)
See the :ref:`full release notes
<release>` or issue tracker
on GitHub for a complete list.
.. _whatsnew_0.11.0.contributors:
Contributors
~~~~~~~~~~~~
.. contributors:: v0.10.1..v0.11.0
|