1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564
|
.. _whatsnew_0120:
Version 0.12.0 (July 24, 2013)
------------------------------
{{ header }}
This is a major release from 0.11.0 and includes several new features and
enhancements along with a large number of bug fixes.
Highlights include a consistent I/O API naming scheme, routines to read html,
write MultiIndexes to csv files, read & write STATA data files, read & write JSON format
files, Python 3 support for ``HDFStore``, filtering of groupby expressions via ``filter``, and a
revamped ``replace`` routine that accepts regular expressions.
API changes
~~~~~~~~~~~
- The I/O API is now much more consistent with a set of top level ``reader`` functions
accessed like ``pd.read_csv()`` that generally return a ``pandas`` object.
* ``read_csv``
* ``read_excel``
* ``read_hdf``
* ``read_sql``
* ``read_json``
* ``read_html``
* ``read_stata``
* ``read_clipboard``
The corresponding ``writer`` functions are object methods that are accessed like ``df.to_csv()``
* ``to_csv``
* ``to_excel``
* ``to_hdf``
* ``to_sql``
* ``to_json``
* ``to_html``
* ``to_stata``
* ``to_clipboard``
- Fix modulo and integer division on Series,DataFrames to act similarly to ``float`` dtypes to return
``np.nan`` or ``np.inf`` as appropriate (:issue:`3590`). This correct a numpy bug that treats ``integer``
and ``float`` dtypes differently.
.. ipython:: python
p = pd.DataFrame({"first": [4, 5, 8], "second": [0, 0, 3]})
p % 0
p % p
p / p
p / 0
- Add ``squeeze`` keyword to ``groupby`` to allow reduction from
DataFrame -> Series if groups are unique. This is a Regression from 0.10.1.
We are reverting back to the prior behavior. This means groupby will return the
same shaped objects whether the groups are unique or not. Revert this issue (:issue:`2893`)
with (:issue:`3596`).
.. code-block:: ipython
In [2]: df2 = pd.DataFrame([{"val1": 1, "val2": 20},
...: {"val1": 1, "val2": 19},
...: {"val1": 1, "val2": 27},
...: {"val1": 1, "val2": 12}])
In [3]: def func(dataf):
...: return dataf["val2"] - dataf["val2"].mean()
...:
In [4]: # squeezing the result frame to a series (because we have unique groups)
...: df2.groupby("val1", squeeze=True).apply(func)
Out[4]:
0 0.5
1 -0.5
2 7.5
3 -7.5
Name: 1, dtype: float64
In [5]: # no squeezing (the default, and behavior in 0.10.1)
...: df2.groupby("val1").apply(func)
Out[5]:
val2 0 1 2 3
val1
1 0.5 -0.5 7.5 -7.5
- Raise on ``iloc`` when boolean indexing with a label based indexer mask
e.g. a boolean Series, even with integer labels, will raise. Since ``iloc``
is purely positional based, the labels on the Series are not alignable (:issue:`3631`)
This case is rarely used, and there are plenty of alternatives. This preserves the
``iloc`` API to be *purely* positional based.
.. ipython:: python
df = pd.DataFrame(range(5), index=list("ABCDE"), columns=["a"])
mask = df.a % 2 == 0
mask
# this is what you should use
df.loc[mask]
# this will work as well
df.iloc[mask.values]
``df.iloc[mask]`` will raise a ``ValueError``
- The ``raise_on_error`` argument to plotting functions is removed. Instead,
plotting functions raise a ``TypeError`` when the ``dtype`` of the object
is ``object`` to remind you to avoid ``object`` arrays whenever possible
and thus you should cast to an appropriate numeric dtype if you need to
plot something.
- Add ``colormap`` keyword to DataFrame plotting methods. Accepts either a
matplotlib colormap object (ie, matplotlib.cm.jet) or a string name of such
an object (ie, 'jet'). The colormap is sampled to select the color for each
column. Please see :ref:`visualization.colormaps` for more information.
(:issue:`3860`)
- ``DataFrame.interpolate()`` is now deprecated. Please use
``DataFrame.fillna()`` and ``DataFrame.replace()`` instead. (:issue:`3582`,
:issue:`3675`, :issue:`3676`)
- the ``method`` and ``axis`` arguments of ``DataFrame.replace()`` are
deprecated
- ``DataFrame.replace`` 's ``infer_types`` parameter is removed and now
performs conversion by default. (:issue:`3907`)
- Add the keyword ``allow_duplicates`` to ``DataFrame.insert`` to allow a duplicate column
to be inserted if ``True``, default is ``False`` (same as prior to 0.12) (:issue:`3679`)
- Implement ``__nonzero__`` for ``NDFrame`` objects (:issue:`3691`, :issue:`3696`)
- IO api
- added top-level function ``read_excel`` to replace the following,
The original API is deprecated and will be removed in a future version
.. code-block:: python
from pandas.io.parsers import ExcelFile
xls = ExcelFile("path_to_file.xls")
xls.parse("Sheet1", index_col=None, na_values=["NA"])
With
.. code-block:: python
import pandas as pd
pd.read_excel("path_to_file.xls", "Sheet1", index_col=None, na_values=["NA"])
- added top-level function ``read_sql`` that is equivalent to the following
.. code-block:: python
from pandas.io.sql import read_frame
read_frame(...)
- ``DataFrame.to_html`` and ``DataFrame.to_latex`` now accept a path for
their first argument (:issue:`3702`)
- Do not allow astypes on ``datetime64[ns]`` except to ``object``, and
``timedelta64[ns]`` to ``object/int`` (:issue:`3425`)
- The behavior of ``datetime64`` dtypes has changed with respect to certain
so-called reduction operations (:issue:`3726`). The following operations now
raise a ``TypeError`` when performed on a ``Series`` and return an *empty*
``Series`` when performed on a ``DataFrame`` similar to performing these
operations on, for example, a ``DataFrame`` of ``slice`` objects:
- sum, prod, mean, std, var, skew, kurt, corr, and cov
- ``read_html`` now defaults to ``None`` when reading, and falls back on
``bs4`` + ``html5lib`` when lxml fails to parse. a list of parsers to try
until success is also valid
- The internal ``pandas`` class hierarchy has changed (slightly). The
previous ``PandasObject`` now is called ``PandasContainer`` and a new
``PandasObject`` has become the base class for ``PandasContainer`` as well
as ``Index``, ``Categorical``, ``GroupBy``, ``SparseList``, and
``SparseArray`` (+ their base classes). Currently, ``PandasObject``
provides string methods (from ``StringMixin``). (:issue:`4090`, :issue:`4092`)
- New ``StringMixin`` that, given a ``__unicode__`` method, gets python 2 and
python 3 compatible string methods (``__str__``, ``__bytes__``, and
``__repr__``). Plus string safety throughout. Now employed in many places
throughout the pandas library. (:issue:`4090`, :issue:`4092`)
IO enhancements
~~~~~~~~~~~~~~~
- ``pd.read_html()`` can now parse HTML strings, files or urls and return
DataFrames, courtesy of @cpcloud. (:issue:`3477`, :issue:`3605`, :issue:`3606`, :issue:`3616`).
It works with a *single* parser backend: BeautifulSoup4 + html5lib :ref:`See the docs<io.html>`
You can use ``pd.read_html()`` to read the output from ``DataFrame.to_html()`` like so
.. ipython:: python
:okwarning:
df = pd.DataFrame({"a": range(3), "b": list("abc")})
print(df)
html = df.to_html()
alist = pd.read_html(html, index_col=0)
print(df == alist[0])
Note that ``alist`` here is a Python ``list`` so ``pd.read_html()`` and
``DataFrame.to_html()`` are not inverses.
- ``pd.read_html()`` no longer performs hard conversion of date strings
(:issue:`3656`).
.. warning::
You may have to install an older version of BeautifulSoup4,
:ref:`See the installation docs<install.optional_dependencies>`
- Added module for reading and writing Stata files: ``pandas.io.stata`` (:issue:`1512`)
accessible via ``read_stata`` top-level function for reading,
and ``to_stata`` DataFrame method for writing, :ref:`See the docs<io.stata>`
- Added module for reading and writing json format files: ``pandas.io.json``
accessible via ``read_json`` top-level function for reading,
and ``to_json`` DataFrame method for writing, :ref:`See the docs<io.json>`
various issues (:issue:`1226`, :issue:`3804`, :issue:`3876`, :issue:`3867`, :issue:`1305`)
- ``MultiIndex`` column support for reading and writing csv format files
- The ``header`` option in ``read_csv`` now accepts a
list of the rows from which to read the index.
- The option, ``tupleize_cols`` can now be specified in both ``to_csv`` and
``read_csv``, to provide compatibility for the pre 0.12 behavior of
writing and reading ``MultIndex`` columns via a list of tuples. The default in
0.12 is to write lists of tuples and *not* interpret list of tuples as a
``MultiIndex`` column.
Note: The default behavior in 0.12 remains unchanged from prior versions, but starting with 0.13,
the default *to* write and read ``MultiIndex`` columns will be in the new
format. (:issue:`3571`, :issue:`1651`, :issue:`3141`)
- If an ``index_col`` is not specified (e.g. you don't have an index, or wrote it
with ``df.to_csv(..., index=False``), then any ``names`` on the columns index will
be *lost*.
.. ipython:: python
mi_idx = pd.MultiIndex.from_arrays([[1, 2, 3, 4], list("abcd")], names=list("ab"))
mi_col = pd.MultiIndex.from_arrays([[1, 2], list("ab")], names=list("cd"))
df = pd.DataFrame(np.ones((4, 2)), index=mi_idx, columns=mi_col)
df.to_csv("mi.csv")
print(open("mi.csv").read())
pd.read_csv("mi.csv", header=[0, 1, 2, 3], index_col=[0, 1])
.. ipython:: python
:suppress:
import os
os.remove("mi.csv")
- Support for ``HDFStore`` (via ``PyTables 3.0.0``) on Python3
- Iterator support via ``read_hdf`` that automatically opens and closes the
store when iteration is finished. This is only for *tables*
.. code-block:: ipython
In [25]: path = 'store_iterator.h5'
In [26]: pd.DataFrame(np.random.randn(10, 2)).to_hdf(path, 'df', table=True)
In [27]: for df in pd.read_hdf(path, 'df', chunksize=3):
....: print(df)
....:
0 1
0 0.713216 -0.778461
1 -0.661062 0.862877
2 0.344342 0.149565
0 1
3 -0.626968 -0.875772
4 -0.930687 -0.218983
5 0.949965 -0.442354
0 1
6 -0.402985 1.111358
7 -0.241527 -0.670477
8 0.049355 0.632633
0 1
9 -1.502767 -1.225492
- ``read_csv`` will now throw a more informative error message when a file
contains no columns, e.g., all newline characters
Other enhancements
~~~~~~~~~~~~~~~~~~
- ``DataFrame.replace()`` now allows regular expressions on contained
``Series`` with object dtype. See the examples section in the regular docs
:ref:`Replacing via String Expression <missing_data.replace_expression>`
For example you can do
.. ipython:: python
df = pd.DataFrame({"a": list("ab.."), "b": [1, 2, 3, 4]})
df.replace(regex=r"\s*\.\s*", value=np.nan)
to replace all occurrences of the string ``'.'`` with zero or more
instances of surrounding white space with ``NaN``.
Regular string replacement still works as expected. For example, you can do
.. ipython:: python
df.replace(".", np.nan)
to replace all occurrences of the string ``'.'`` with ``NaN``.
- ``pd.melt()`` now accepts the optional parameters ``var_name`` and ``value_name``
to specify custom column names of the returned DataFrame.
- ``pd.set_option()`` now allows N option, value pairs (:issue:`3667`).
Let's say that we had an option ``'a.b'`` and another option ``'b.c'``.
We can set them at the same time:
.. code-block:: ipython
In [31]: pd.get_option('a.b')
Out[31]: 2
In [32]: pd.get_option('b.c')
Out[32]: 3
In [33]: pd.set_option('a.b', 1, 'b.c', 4)
In [34]: pd.get_option('a.b')
Out[34]: 1
In [35]: pd.get_option('b.c')
Out[35]: 4
- The ``filter`` method for group objects returns a subset of the original
object. Suppose we want to take only elements that belong to groups with a
group sum greater than 2.
.. ipython:: python
sf = pd.Series([1, 1, 2, 3, 3, 3])
sf.groupby(sf).filter(lambda x: x.sum() > 2)
The argument of ``filter`` must a function that, applied to the group as a
whole, returns ``True`` or ``False``.
Another useful operation is filtering out elements that belong to groups
with only a couple members.
.. ipython:: python
dff = pd.DataFrame({"A": np.arange(8), "B": list("aabbbbcc")})
dff.groupby("B").filter(lambda x: len(x) > 2)
Alternatively, instead of dropping the offending groups, we can return a
like-indexed objects where the groups that do not pass the filter are
filled with NaNs.
.. ipython:: python
dff.groupby("B").filter(lambda x: len(x) > 2, dropna=False)
- Series and DataFrame hist methods now take a ``figsize`` argument (:issue:`3834`)
- DatetimeIndexes no longer try to convert mixed-integer indexes during join
operations (:issue:`3877`)
- Timestamp.min and Timestamp.max now represent valid Timestamp instances instead
of the default datetime.min and datetime.max (respectively), thanks @SleepingPills
- ``read_html`` now raises when no tables are found and BeautifulSoup==4.2.0
is detected (:issue:`4214`)
Experimental features
~~~~~~~~~~~~~~~~~~~~~
- Added experimental ``CustomBusinessDay`` class to support ``DateOffsets``
with custom holiday calendars and custom weekmasks. (:issue:`2301`)
.. note::
This uses the ``numpy.busdaycalendar`` API introduced in Numpy 1.7 and
therefore requires Numpy 1.7.0 or newer.
.. ipython:: python
from pandas.tseries.offsets import CustomBusinessDay
from datetime import datetime
# As an interesting example, let's look at Egypt where
# a Friday-Saturday weekend is observed.
weekmask_egypt = "Sun Mon Tue Wed Thu"
# They also observe International Workers' Day so let's
# add that for a couple of years
holidays = ["2012-05-01", datetime(2013, 5, 1), np.datetime64("2014-05-01")]
bday_egypt = CustomBusinessDay(holidays=holidays, weekmask=weekmask_egypt)
dt = datetime(2013, 4, 30)
print(dt + 2 * bday_egypt)
dts = pd.date_range(dt, periods=5, freq=bday_egypt)
print(pd.Series(dts.weekday, dts).map(pd.Series("Mon Tue Wed Thu Fri Sat Sun".split())))
Bug fixes
~~~~~~~~~
- Plotting functions now raise a ``TypeError`` before trying to plot anything
if the associated objects have a dtype of ``object`` (:issue:`1818`,
:issue:`3572`, :issue:`3911`, :issue:`3912`), but they will try to convert object arrays to
numeric arrays if possible so that you can still plot, for example, an
object array with floats. This happens before any drawing takes place which
eliminates any spurious plots from showing up.
- ``fillna`` methods now raise a ``TypeError`` if the ``value`` parameter is
a list or tuple.
- ``Series.str`` now supports iteration (:issue:`3638`). You can iterate over the
individual elements of each string in the ``Series``. Each iteration yields
a ``Series`` with either a single character at each index of the original
``Series`` or ``NaN``. For example,
.. code-block:: ipython
In [38]: strs = "go", "bow", "joe", "slow"
In [32]: ds = pd.Series(strs)
In [33]: for s in ds.str:
...: print(s)
0 g
1 b
2 j
3 s
dtype: object
0 o
1 o
2 o
3 l
dtype: object
0 NaN
1 w
2 e
3 o
dtype: object
0 NaN
1 NaN
2 NaN
3 w
dtype: object
In [41]: s
Out[41]:
0 NaN
1 NaN
2 NaN
3 w
dtype: object
In [42]: s.dropna().values.item() == "w"
Out[42]: True
The last element yielded by the iterator will be a ``Series`` containing
the last element of the longest string in the ``Series`` with all other
elements being ``NaN``. Here since ``'slow'`` is the longest string
and there are no other strings with the same length ``'w'`` is the only
non-null string in the yielded ``Series``.
- ``HDFStore``
- will retain index attributes (freq,tz,name) on recreation (:issue:`3499`)
- will warn with a ``AttributeConflictWarning`` if you are attempting to append
an index with a different frequency than the existing, or attempting
to append an index with a different name than the existing
- support datelike columns with a timezone as data_columns (:issue:`2852`)
- Non-unique index support clarified (:issue:`3468`).
- Fix assigning a new index to a duplicate index in a DataFrame would fail (:issue:`3468`)
- Fix construction of a DataFrame with a duplicate index
- ref_locs support to allow duplicative indices across dtypes,
allows iget support to always find the index (even across dtypes) (:issue:`2194`)
- applymap on a DataFrame with a non-unique index now works
(removed warning) (:issue:`2786`), and fix (:issue:`3230`)
- Fix to_csv to handle non-unique columns (:issue:`3495`)
- Duplicate indexes with getitem will return items in the correct order (:issue:`3455`, :issue:`3457`)
and handle missing elements like unique indices (:issue:`3561`)
- Duplicate indexes with and empty DataFrame.from_records will return a correct frame (:issue:`3562`)
- Concat to produce a non-unique columns when duplicates are across dtypes is fixed (:issue:`3602`)
- Allow insert/delete to non-unique columns (:issue:`3679`)
- Non-unique indexing with a slice via ``loc`` and friends fixed (:issue:`3659`)
- Allow insert/delete to non-unique columns (:issue:`3679`)
- Extend ``reindex`` to correctly deal with non-unique indices (:issue:`3679`)
- ``DataFrame.itertuples()`` now works with frames with duplicate column
names (:issue:`3873`)
- Bug in non-unique indexing via ``iloc`` (:issue:`4017`); added ``takeable`` argument to
``reindex`` for location-based taking
- Allow non-unique indexing in series via ``.ix/.loc`` and ``__getitem__`` (:issue:`4246`)
- Fixed non-unique indexing memory allocation issue with ``.ix/.loc`` (:issue:`4280`)
- ``DataFrame.from_records`` did not accept empty recarrays (:issue:`3682`)
- ``read_html`` now correctly skips tests (:issue:`3741`)
- Fixed a bug where ``DataFrame.replace`` with a compiled regular expression
in the ``to_replace`` argument wasn't working (:issue:`3907`)
- Improved ``network`` test decorator to catch ``IOError`` (and therefore
``URLError`` as well). Added ``with_connectivity_check`` decorator to allow
explicitly checking a website as a proxy for seeing if there is network
connectivity. Plus, new ``optional_args`` decorator factory for decorators.
(:issue:`3910`, :issue:`3914`)
- Fixed testing issue where too many sockets where open thus leading to a
connection reset issue (:issue:`3982`, :issue:`3985`, :issue:`4028`,
:issue:`4054`)
- Fixed failing tests in test_yahoo, test_google where symbols were not
retrieved but were being accessed (:issue:`3982`, :issue:`3985`,
:issue:`4028`, :issue:`4054`)
- ``Series.hist`` will now take the figure from the current environment if
one is not passed
- Fixed bug where a 1xN DataFrame would barf on a 1xN mask (:issue:`4071`)
- Fixed running of ``tox`` under python3 where the pickle import was getting
rewritten in an incompatible way (:issue:`4062`, :issue:`4063`)
- Fixed bug where sharex and sharey were not being passed to grouped_hist
(:issue:`4089`)
- Fixed bug in ``DataFrame.replace`` where a nested dict wasn't being
iterated over when regex=False (:issue:`4115`)
- Fixed bug in the parsing of microseconds when using the ``format``
argument in ``to_datetime`` (:issue:`4152`)
- Fixed bug in ``PandasAutoDateLocator`` where ``invert_xaxis`` triggered
incorrectly ``MilliSecondLocator`` (:issue:`3990`)
- Fixed bug in plotting that wasn't raising on invalid colormap for
matplotlib 1.1.1 (:issue:`4215`)
- Fixed the legend displaying in ``DataFrame.plot(kind='kde')`` (:issue:`4216`)
- Fixed bug where Index slices weren't carrying the name attribute
(:issue:`4226`)
- Fixed bug in initializing ``DatetimeIndex`` with an array of strings
in a certain time zone (:issue:`4229`)
- Fixed bug where html5lib wasn't being properly skipped (:issue:`4265`)
- Fixed bug where get_data_famafrench wasn't using the correct file edges
(:issue:`4281`)
See the :ref:`full release notes
<release>` or issue tracker
on GitHub for a complete list.
.. _whatsnew_0.12.0.contributors:
Contributors
~~~~~~~~~~~~
.. contributors:: v0.11.0..v0.12.0
|