1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375
|
.. _whatsnew_0130:
Version 0.13.0 (January 3, 2014)
--------------------------------
{{ header }}
This is a major release from 0.12.0 and includes a number of API changes, several new features and
enhancements along with a large number of bug fixes.
Highlights include:
- support for a new index type ``Float64Index``, and other Indexing enhancements
- ``HDFStore`` has a new string based syntax for query specification
- support for new methods of interpolation
- updated ``timedelta`` operations
- a new string manipulation method ``extract``
- Nanosecond support for Offsets
- ``isin`` for DataFrames
Several experimental features are added, including:
- new ``eval/query`` methods for expression evaluation
- support for ``msgpack`` serialization
- an i/o interface to Google's ``BigQuery``
Their are several new or updated docs sections including:
- :ref:`Comparison with SQL<compare_with_sql>`, which should be useful for those familiar with SQL but still learning pandas.
- :ref:`Comparison with R<compare_with_r>`, idiom translations from R to pandas.
- :ref:`Enhancing Performance<enhancingperf>`, ways to enhance pandas performance with ``eval/query``.
.. warning::
In 0.13.0 ``Series`` has internally been refactored to no longer sub-class ``ndarray``
but instead subclass ``NDFrame``, similar to the rest of the pandas containers. This should be
a transparent change with only very limited API implications. See :ref:`Internal Refactoring<whatsnew_0130.refactoring>`
API changes
~~~~~~~~~~~
- ``read_excel`` now supports an integer in its ``sheetname`` argument giving
the index of the sheet to read in (:issue:`4301`).
- Text parser now treats anything that reads like inf ("inf", "Inf", "-Inf",
"iNf", etc.) as infinity. (:issue:`4220`, :issue:`4219`), affecting
``read_table``, ``read_csv``, etc.
- ``pandas`` now is Python 2/3 compatible without the need for 2to3 thanks to
@jtratner. As a result, pandas now uses iterators more extensively. This
also led to the introduction of substantive parts of the Benjamin
Peterson's ``six`` library into compat. (:issue:`4384`, :issue:`4375`,
:issue:`4372`)
- ``pandas.util.compat`` and ``pandas.util.py3compat`` have been merged into
``pandas.compat``. ``pandas.compat`` now includes many functions allowing
2/3 compatibility. It contains both list and iterator versions of range,
filter, map and zip, plus other necessary elements for Python 3
compatibility. ``lmap``, ``lzip``, ``lrange`` and ``lfilter`` all produce
lists instead of iterators, for compatibility with ``numpy``, subscripting
and ``pandas`` constructors.(:issue:`4384`, :issue:`4375`, :issue:`4372`)
- ``Series.get`` with negative indexers now returns the same as ``[]`` (:issue:`4390`)
- Changes to how ``Index`` and ``MultiIndex`` handle metadata (``levels``,
``labels``, and ``names``) (:issue:`4039`):
.. code-block:: python
# previously, you would have set levels or labels directly
>>> pd.index.levels = [[1, 2, 3, 4], [1, 2, 4, 4]]
# now, you use the set_levels or set_labels methods
>>> index = pd.index.set_levels([[1, 2, 3, 4], [1, 2, 4, 4]])
# similarly, for names, you can rename the object
# but setting names is not deprecated
>>> index = pd.index.set_names(["bob", "cranberry"])
# and all methods take an inplace kwarg - but return None
>>> pd.index.set_names(["bob", "cranberry"], inplace=True)
- **All** division with ``NDFrame`` objects is now *truedivision*, regardless
of the future import. This means that operating on pandas objects will by default
use *floating point* division, and return a floating point dtype.
You can use ``//`` and ``floordiv`` to do integer division.
Integer division
.. code-block:: ipython
In [3]: arr = np.array([1, 2, 3, 4])
In [4]: arr2 = np.array([5, 3, 2, 1])
In [5]: arr / arr2
Out[5]: array([0, 0, 1, 4])
In [6]: pd.Series(arr) // pd.Series(arr2)
Out[6]:
0 0
1 0
2 1
3 4
dtype: int64
True Division
.. code-block:: ipython
In [7]: pd.Series(arr) / pd.Series(arr2) # no future import required
Out[7]:
0 0.200000
1 0.666667
2 1.500000
3 4.000000
dtype: float64
- Infer and downcast dtype if ``downcast='infer'`` is passed to ``fillna/ffill/bfill`` (:issue:`4604`)
- ``__nonzero__`` for all NDFrame objects, will now raise a ``ValueError``, this reverts back to (:issue:`1073`, :issue:`4633`)
behavior. See :ref:`gotchas<gotchas.truth>` for a more detailed discussion.
This prevents doing boolean comparison on *entire* pandas objects, which is inherently ambiguous. These all will raise a ``ValueError``.
.. code-block:: python
>>> df = pd.DataFrame({'A': np.random.randn(10),
... 'B': np.random.randn(10),
... 'C': pd.date_range('20130101', periods=10)
... })
...
>>> if df:
... pass
...
Traceback (most recent call last):
...
ValueError: The truth value of a DataFrame is ambiguous. Use a.empty,
a.bool(), a.item(), a.any() or a.all().
>>> df1 = df
>>> df2 = df
>>> df1 and df2
Traceback (most recent call last):
...
ValueError: The truth value of a DataFrame is ambiguous. Use a.empty,
a.bool(), a.item(), a.any() or a.all().
>>> d = [1, 2, 3]
>>> s1 = pd.Series(d)
>>> s2 = pd.Series(d)
>>> s1 and s2
Traceback (most recent call last):
...
ValueError: The truth value of a DataFrame is ambiguous. Use a.empty,
a.bool(), a.item(), a.any() or a.all().
Added the ``.bool()`` method to ``NDFrame`` objects to facilitate evaluating of single-element boolean Series:
.. code-block:: python
>>> pd.Series([True]).bool()
True
>>> pd.Series([False]).bool()
False
>>> pd.DataFrame([[True]]).bool()
True
>>> pd.DataFrame([[False]]).bool()
False
- All non-Index NDFrames (``Series``, ``DataFrame``, ``Panel``, ``Panel4D``,
``SparsePanel``, etc.), now support the entire set of arithmetic operators
and arithmetic flex methods (add, sub, mul, etc.). ``SparsePanel`` does not
support ``pow`` or ``mod`` with non-scalars. (:issue:`3765`)
- ``Series`` and ``DataFrame`` now have a ``mode()`` method to calculate the
statistical mode(s) by axis/Series. (:issue:`5367`)
- Chained assignment will now by default warn if the user is assigning to a copy. This can be changed
with the option ``mode.chained_assignment``, allowed options are ``raise/warn/None``. See :ref:`the docs<indexing.view_versus_copy>`.
.. ipython:: python
dfc = pd.DataFrame({'A': ['aaa', 'bbb', 'ccc'], 'B': [1, 2, 3]})
pd.set_option('chained_assignment', 'warn')
The following warning / exception will show if this is attempted.
.. ipython:: python
:okwarning:
dfc.loc[0]['A'] = 1111
::
Traceback (most recent call last)
...
SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_index,col_indexer] = value instead
Here is the correct method of assignment.
.. ipython:: python
dfc.loc[0, 'A'] = 11
dfc
- ``Panel.reindex`` has the following call signature ``Panel.reindex(items=None, major_axis=None, minor_axis=None, **kwargs)``
to conform with other ``NDFrame`` objects. See :ref:`Internal Refactoring<whatsnew_0130.refactoring>` for more information.
- ``Series.argmin`` and ``Series.argmax`` are now aliased to ``Series.idxmin`` and ``Series.idxmax``. These return the *index* of the
min or max element respectively. Prior to 0.13.0 these would return the position of the min / max element. (:issue:`6214`)
Prior version deprecations/changes
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
These were announced changes in 0.12 or prior that are taking effect as of 0.13.0
- Remove deprecated ``Factor`` (:issue:`3650`)
- Remove deprecated ``set_printoptions/reset_printoptions`` (:issue:`3046`)
- Remove deprecated ``_verbose_info`` (:issue:`3215`)
- Remove deprecated ``read_clipboard/to_clipboard/ExcelFile/ExcelWriter`` from ``pandas.io.parsers`` (:issue:`3717`)
These are available as functions in the main pandas namespace (e.g. ``pd.read_clipboard``)
- default for ``tupleize_cols`` is now ``False`` for both ``to_csv`` and ``read_csv``. Fair warning in 0.12 (:issue:`3604`)
- default for ``display.max_seq_len`` is now 100 rather than ``None``. This activates
truncated display ("...") of long sequences in various places. (:issue:`3391`)
Deprecations
~~~~~~~~~~~~
Deprecated in 0.13.0
- deprecated ``iterkv``, which will be removed in a future release (this was
an alias of iteritems used to bypass ``2to3``'s changes).
(:issue:`4384`, :issue:`4375`, :issue:`4372`)
- deprecated the string method ``match``, whose role is now performed more
idiomatically by ``extract``. In a future release, the default behavior
of ``match`` will change to become analogous to ``contains``, which returns
a boolean indexer. (Their
distinction is strictness: ``match`` relies on ``re.match`` while
``contains`` relies on ``re.search``.) In this release, the deprecated
behavior is the default, but the new behavior is available through the
keyword argument ``as_indexer=True``.
Indexing API changes
~~~~~~~~~~~~~~~~~~~~
Prior to 0.13, it was impossible to use a label indexer (``.loc/.ix``) to set a value that
was not contained in the index of a particular axis. (:issue:`2578`). See :ref:`the docs<indexing.basics.partial_setting>`
In the ``Series`` case this is effectively an appending operation
.. ipython:: python
s = pd.Series([1, 2, 3])
s
s[5] = 5.
s
.. ipython:: python
dfi = pd.DataFrame(np.arange(6).reshape(3, 2),
columns=['A', 'B'])
dfi
This would previously ``KeyError``
.. ipython:: python
dfi.loc[:, 'C'] = dfi.loc[:, 'A']
dfi
This is like an ``append`` operation.
.. ipython:: python
dfi.loc[3] = 5
dfi
A Panel setting operation on an arbitrary axis aligns the input to the Panel
.. code-block:: ipython
In [20]: p = pd.Panel(np.arange(16).reshape(2, 4, 2),
....: items=['Item1', 'Item2'],
....: major_axis=pd.date_range('2001/1/12', periods=4),
....: minor_axis=['A', 'B'], dtype='float64')
....:
In [21]: p
Out[21]:
<class 'pandas.core.panel.Panel'>
Dimensions: 2 (items) x 4 (major_axis) x 2 (minor_axis)
Items axis: Item1 to Item2
Major_axis axis: 2001-01-12 00:00:00 to 2001-01-15 00:00:00
Minor_axis axis: A to B
In [22]: p.loc[:, :, 'C'] = pd.Series([30, 32], index=p.items)
In [23]: p
Out[23]:
<class 'pandas.core.panel.Panel'>
Dimensions: 2 (items) x 4 (major_axis) x 3 (minor_axis)
Items axis: Item1 to Item2
Major_axis axis: 2001-01-12 00:00:00 to 2001-01-15 00:00:00
Minor_axis axis: A to C
In [24]: p.loc[:, :, 'C']
Out[24]:
Item1 Item2
2001-01-12 30.0 32.0
2001-01-13 30.0 32.0
2001-01-14 30.0 32.0
2001-01-15 30.0 32.0
Float64Index API change
~~~~~~~~~~~~~~~~~~~~~~~
- Added a new index type, ``Float64Index``. This will be automatically created when passing floating values in index creation.
This enables a pure label-based slicing paradigm that makes ``[],ix,loc`` for scalar indexing and slicing work exactly the
same. (:issue:`263`)
Construction is by default for floating type values.
.. ipython:: python
index = pd.Index([1.5, 2, 3, 4.5, 5])
index
s = pd.Series(range(5), index=index)
s
Scalar selection for ``[],.ix,.loc`` will always be label based. An integer will match an equal float index (e.g. ``3`` is equivalent to ``3.0``)
.. ipython:: python
s[3]
s.loc[3]
The only positional indexing is via ``iloc``
.. ipython:: python
s.iloc[3]
A scalar index that is not found will raise ``KeyError``
Slicing is ALWAYS on the values of the index, for ``[],ix,loc`` and ALWAYS positional with ``iloc``
.. ipython:: python
:okwarning:
s[2:4]
s.loc[2:4]
s.iloc[2:4]
In float indexes, slicing using floats are allowed
.. ipython:: python
s[2.1:4.6]
s.loc[2.1:4.6]
- Indexing on other index types are preserved (and positional fallback for ``[],ix``), with the exception, that floating point slicing
on indexes on non ``Float64Index`` will now raise a ``TypeError``.
.. code-block:: ipython
In [1]: pd.Series(range(5))[3.5]
TypeError: the label [3.5] is not a proper indexer for this index type (Int64Index)
In [1]: pd.Series(range(5))[3.5:4.5]
TypeError: the slice start [3.5] is not a proper indexer for this index type (Int64Index)
Using a scalar float indexer will be deprecated in a future version, but is allowed for now.
.. code-block:: ipython
In [3]: pd.Series(range(5))[3.0]
Out[3]: 3
HDFStore API changes
~~~~~~~~~~~~~~~~~~~~
- Query Format Changes. A much more string-like query format is now supported. See :ref:`the docs<io.hdf5-query>`.
.. ipython:: python
path = 'test.h5'
dfq = pd.DataFrame(np.random.randn(10, 4),
columns=list('ABCD'),
index=pd.date_range('20130101', periods=10))
dfq.to_hdf(path, key='dfq', format='table', data_columns=True)
Use boolean expressions, with in-line function evaluation.
.. ipython:: python
pd.read_hdf(path, 'dfq',
where="index>Timestamp('20130104') & columns=['A', 'B']")
Use an inline column reference
.. ipython:: python
pd.read_hdf(path, 'dfq',
where="A>0 or C>0")
.. ipython:: python
:suppress:
import os
os.remove(path)
- the ``format`` keyword now replaces the ``table`` keyword; allowed values are ``fixed(f)`` or ``table(t)``
the same defaults as prior < 0.13.0 remain, e.g. ``put`` implies ``fixed`` format and ``append`` implies
``table`` format. This default format can be set as an option by setting ``io.hdf.default_format``.
.. ipython:: python
path = 'test.h5'
df = pd.DataFrame(np.random.randn(10, 2))
df.to_hdf(path, key='df_table', format='table')
df.to_hdf(path, key='df_table2', append=True)
df.to_hdf(path, key='df_fixed')
with pd.HDFStore(path) as store:
print(store)
.. ipython:: python
:suppress:
import os
os.remove(path)
- Significant table writing performance improvements
- handle a passed ``Series`` in table format (:issue:`4330`)
- can now serialize a ``timedelta64[ns]`` dtype in a table (:issue:`3577`), See :ref:`the docs<io.hdf5-timedelta>`.
- added an ``is_open`` property to indicate if the underlying file handle is_open;
a closed store will now report 'CLOSED' when viewing the store (rather than raising an error)
(:issue:`4409`)
- a close of a ``HDFStore`` now will close that instance of the ``HDFStore``
but will only close the actual file if the ref count (by ``PyTables``) w.r.t. all of the open handles
are 0. Essentially you have a local instance of ``HDFStore`` referenced by a variable. Once you
close it, it will report closed. Other references (to the same file) will continue to operate
until they themselves are closed. Performing an action on a closed file will raise
``ClosedFileError``
.. ipython:: python
path = 'test.h5'
df = pd.DataFrame(np.random.randn(10, 2))
store1 = pd.HDFStore(path)
store2 = pd.HDFStore(path)
store1.append('df', df)
store2.append('df2', df)
store1
store2
store1.close()
store2
store2.close()
store2
.. ipython:: python
:suppress:
import os
os.remove(path)
- removed the ``_quiet`` attribute, replace by a ``DuplicateWarning`` if retrieving
duplicate rows from a table (:issue:`4367`)
- removed the ``warn`` argument from ``open``. Instead a ``PossibleDataLossError`` exception will
be raised if you try to use ``mode='w'`` with an OPEN file handle (:issue:`4367`)
- allow a passed locations array or mask as a ``where`` condition (:issue:`4467`).
See :ref:`the docs<io.hdf5-where_mask>` for an example.
- add the keyword ``dropna=True`` to ``append`` to change whether ALL nan rows are not written
to the store (default is ``True``, ALL nan rows are NOT written), also settable
via the option ``io.hdf.dropna_table`` (:issue:`4625`)
- pass through store creation arguments; can be used to support in-memory stores
DataFrame repr changes
~~~~~~~~~~~~~~~~~~~~~~
The HTML and plain text representations of :class:`DataFrame` now show
a truncated view of the table once it exceeds a certain size, rather
than switching to the short info view (:issue:`4886`, :issue:`5550`).
This makes the representation more consistent as small DataFrames get
larger.
.. image:: ../_static/df_repr_truncated.png
:alt: Truncated HTML representation of a DataFrame
To get the info view, call :meth:`DataFrame.info`. If you prefer the
info view as the repr for large DataFrames, you can set this by running
``set_option('display.large_repr', 'info')``.
Enhancements
~~~~~~~~~~~~
- ``df.to_clipboard()`` learned a new ``excel`` keyword that let's you
paste df data directly into excel (enabled by default). (:issue:`5070`).
- ``read_html`` now raises a ``URLError`` instead of catching and raising a
``ValueError`` (:issue:`4303`, :issue:`4305`)
- Added a test for ``read_clipboard()`` and ``to_clipboard()`` (:issue:`4282`)
- Clipboard functionality now works with PySide (:issue:`4282`)
- Added a more informative error message when plot arguments contain
overlapping color and style arguments (:issue:`4402`)
- ``to_dict`` now takes ``records`` as a possible out type. Returns an array
of column-keyed dictionaries. (:issue:`4936`)
- ``NaN`` handing in get_dummies (:issue:`4446`) with ``dummy_na``
.. ipython:: python
# previously, nan was erroneously counted as 2 here
# now it is not counted at all
pd.get_dummies([1, 2, np.nan])
# unless requested
pd.get_dummies([1, 2, np.nan], dummy_na=True)
- ``timedelta64[ns]`` operations. See :ref:`the docs<timedeltas.timedeltas_convert>`.
.. warning::
Most of these operations require ``numpy >= 1.7``
Using the new top-level ``to_timedelta``, you can convert a scalar or array from the standard
timedelta format (produced by ``to_csv``) into a timedelta type (``np.timedelta64`` in ``nanoseconds``).
.. ipython:: python
pd.to_timedelta('1 days 06:05:01.00003')
pd.to_timedelta('15.5us')
pd.to_timedelta(['1 days 06:05:01.00003', '15.5us', 'nan'])
pd.to_timedelta(np.arange(5), unit='s')
pd.to_timedelta(np.arange(5), unit='d')
A Series of dtype ``timedelta64[ns]`` can now be divided by another
``timedelta64[ns]`` object, or astyped to yield a ``float64`` dtyped Series. This
is frequency conversion. See :ref:`the docs<timedeltas.timedeltas_convert>` for the docs.
.. ipython:: python
import datetime
td = pd.Series(pd.date_range('20130101', periods=4)) - pd.Series(
pd.date_range('20121201', periods=4))
td[2] += np.timedelta64(datetime.timedelta(minutes=5, seconds=3))
td[3] = np.nan
td
.. code-block:: ipython
# to days
In [63]: td / np.timedelta64(1, 'D')
Out[63]:
0 31.000000
1 31.000000
2 31.003507
3 NaN
dtype: float64
In [64]: td.astype('timedelta64[D]')
Out[64]:
0 31.0
1 31.0
2 31.0
3 NaN
dtype: float64
# to seconds
In [65]: td / np.timedelta64(1, 's')
Out[65]:
0 2678400.0
1 2678400.0
2 2678703.0
3 NaN
dtype: float64
In [66]: td.astype('timedelta64[s]')
Out[66]:
0 2678400.0
1 2678400.0
2 2678703.0
3 NaN
dtype: float64
Dividing or multiplying a ``timedelta64[ns]`` Series by an integer or integer Series
.. ipython:: python
td * -1
td * pd.Series([1, 2, 3, 4])
Absolute ``DateOffset`` objects can act equivalently to ``timedeltas``
.. ipython:: python
from pandas import offsets
td + offsets.Minute(5) + offsets.Milli(5)
Fillna is now supported for timedeltas
.. ipython:: python
td.fillna(pd.Timedelta(0))
td.fillna(datetime.timedelta(days=1, seconds=5))
You can do numeric reduction operations on timedeltas.
.. ipython:: python
td.mean()
td.quantile(.1)
- ``plot(kind='kde')`` now accepts the optional parameters ``bw_method`` and
``ind``, passed to scipy.stats.gaussian_kde() (for scipy >= 0.11.0) to set
the bandwidth, and to gkde.evaluate() to specify the indices at which it
is evaluated, respectively. See scipy docs. (:issue:`4298`)
- DataFrame constructor now accepts a numpy masked record array (:issue:`3478`)
- The new vectorized string method ``extract`` return regular expression
matches more conveniently.
.. ipython:: python
:okwarning:
pd.Series(['a1', 'b2', 'c3']).str.extract('[ab](\\d)')
Elements that do not match return ``NaN``. Extracting a regular expression
with more than one group returns a DataFrame with one column per group.
.. ipython:: python
:okwarning:
pd.Series(['a1', 'b2', 'c3']).str.extract('([ab])(\\d)')
Elements that do not match return a row of ``NaN``.
Thus, a Series of messy strings can be *converted* into a
like-indexed Series or DataFrame of cleaned-up or more useful strings,
without necessitating ``get()`` to access tuples or ``re.match`` objects.
Named groups like
.. ipython:: python
:okwarning:
pd.Series(['a1', 'b2', 'c3']).str.extract(
'(?P<letter>[ab])(?P<digit>\\d)')
and optional groups can also be used.
.. ipython:: python
:okwarning:
pd.Series(['a1', 'b2', '3']).str.extract(
'(?P<letter>[ab])?(?P<digit>\\d)')
- ``read_stata`` now accepts Stata 13 format (:issue:`4291`)
- ``read_fwf`` now infers the column specifications from the first 100 rows of
the file if the data has correctly separated and properly aligned columns
using the delimiter provided to the function (:issue:`4488`).
- support for nanosecond times as an offset
.. warning::
These operations require ``numpy >= 1.7``
Period conversions in the range of seconds and below were reworked and extended
up to nanoseconds. Periods in the nanosecond range are now available.
.. code-block:: python
In [79]: pd.date_range('2013-01-01', periods=5, freq='5N')
Out[79]:
DatetimeIndex([ '2013-01-01 00:00:00',
'2013-01-01 00:00:00.000000005',
'2013-01-01 00:00:00.000000010',
'2013-01-01 00:00:00.000000015',
'2013-01-01 00:00:00.000000020'],
dtype='datetime64[ns]', freq='5N')
or with frequency as offset
.. ipython:: python
pd.date_range('2013-01-01', periods=5, freq=pd.offsets.Nano(5))
Timestamps can be modified in the nanosecond range
.. ipython:: python
t = pd.Timestamp('20130101 09:01:02')
t + pd.tseries.offsets.Nano(123)
- A new method, ``isin`` for DataFrames, which plays nicely with boolean indexing. The argument to ``isin``, what we're comparing the DataFrame to, can be a DataFrame, Series, dict, or array of values. See :ref:`the docs<indexing.basics.indexing_isin>` for more.
To get the rows where any of the conditions are met:
.. ipython:: python
dfi = pd.DataFrame({'A': [1, 2, 3, 4], 'B': ['a', 'b', 'f', 'n']})
dfi
other = pd.DataFrame({'A': [1, 3, 3, 7], 'B': ['e', 'f', 'f', 'e']})
mask = dfi.isin(other)
mask
dfi[mask.any(axis=1)]
- ``Series`` now supports a ``to_frame`` method to convert it to a single-column DataFrame (:issue:`5164`)
- All R datasets listed here http://stat.ethz.ch/R-manual/R-devel/library/datasets/html/00Index.html can now be loaded into pandas objects
.. code-block:: python
# note that pandas.rpy was deprecated in v0.16.0
import pandas.rpy.common as com
com.load_data('Titanic')
- ``tz_localize`` can infer a fall daylight savings transition based on the structure
of the unlocalized data (:issue:`4230`), see :ref:`the docs<timeseries.timezone>`
- ``DatetimeIndex`` is now in the API documentation, see :ref:`the docs<api.datetimeindex>`
- :meth:`~pandas.io.json.json_normalize` is a new method to allow you to create a flat table
from semi-structured JSON data. See :ref:`the docs<io.json_normalize>` (:issue:`1067`)
- Added PySide support for the qtpandas DataFrameModel and DataFrameWidget.
- Python csv parser now supports usecols (:issue:`4335`)
- Frequencies gained several new offsets:
* ``LastWeekOfMonth`` (:issue:`4637`)
* ``FY5253``, and ``FY5253Quarter`` (:issue:`4511`)
- DataFrame has a new ``interpolate`` method, similar to Series (:issue:`4434`, :issue:`1892`)
.. ipython:: python
df = pd.DataFrame({'A': [1, 2.1, np.nan, 4.7, 5.6, 6.8],
'B': [.25, np.nan, np.nan, 4, 12.2, 14.4]})
df.interpolate()
Additionally, the ``method`` argument to ``interpolate`` has been expanded
to include ``'nearest', 'zero', 'slinear', 'quadratic', 'cubic',
'barycentric', 'krogh', 'piecewise_polynomial', 'pchip', 'polynomial', 'spline'``
The new methods require scipy_. Consult the Scipy reference guide_ and documentation_ for more information
about when the various methods are appropriate. See :ref:`the docs<missing_data.interpolate>`.
Interpolate now also accepts a ``limit`` keyword argument.
This works similar to ``fillna``'s limit:
.. ipython:: python
ser = pd.Series([1, 3, np.nan, np.nan, np.nan, 11])
ser.interpolate(limit=2)
- Added ``wide_to_long`` panel data convenience function. See :ref:`the docs<reshaping.melt>`.
.. ipython:: python
np.random.seed(123)
df = pd.DataFrame({"A1970" : {0 : "a", 1 : "b", 2 : "c"},
"A1980" : {0 : "d", 1 : "e", 2 : "f"},
"B1970" : {0 : 2.5, 1 : 1.2, 2 : .7},
"B1980" : {0 : 3.2, 1 : 1.3, 2 : .1},
"X" : dict(zip(range(3), np.random.randn(3)))
})
df["id"] = df.index
df
pd.wide_to_long(df, ["A", "B"], i="id", j="year")
.. _scipy: http://www.scipy.org
.. _documentation: http://docs.scipy.org/doc/scipy/reference/interpolate.html#univariate-interpolation
.. _guide: https://docs.scipy.org/doc/scipy/tutorial/interpolate.html
- ``to_csv`` now takes a ``date_format`` keyword argument that specifies how
output datetime objects should be formatted. Datetimes encountered in the
index, columns, and values will all have this formatting applied. (:issue:`4313`)
- ``DataFrame.plot`` will scatter plot x versus y by passing ``kind='scatter'`` (:issue:`2215`)
- Added support for Google Analytics v3 API segment IDs that also supports v2 IDs. (:issue:`5271`)
.. _whatsnew_0130.experimental:
Experimental
~~~~~~~~~~~~
- The new :func:`~pandas.eval` function implements expression evaluation using
``numexpr`` behind the scenes. This results in large speedups for
complicated expressions involving large DataFrames/Series. For example,
.. ipython:: python
nrows, ncols = 20000, 100
df1, df2, df3, df4 = [pd.DataFrame(np.random.randn(nrows, ncols))
for _ in range(4)]
.. ipython:: python
# eval with NumExpr backend
%timeit pd.eval('df1 + df2 + df3 + df4')
.. ipython:: python
# pure Python evaluation
%timeit df1 + df2 + df3 + df4
For more details, see the :ref:`the docs<enhancingperf.eval>`
- Similar to ``pandas.eval``, :class:`~pandas.DataFrame` has a new
``DataFrame.eval`` method that evaluates an expression in the context of
the ``DataFrame``. For example,
.. ipython:: python
:suppress:
try:
del a # noqa: F821
except NameError:
pass
try:
del b # noqa: F821
except NameError:
pass
.. ipython:: python
df = pd.DataFrame(np.random.randn(10, 2), columns=['a', 'b'])
df.eval('a + b')
- :meth:`~pandas.DataFrame.query` method has been added that allows
you to select elements of a ``DataFrame`` using a natural query syntax
nearly identical to Python syntax. For example,
.. ipython:: python
:suppress:
try:
del a # noqa: F821
except NameError:
pass
try:
del b # noqa: F821
except NameError:
pass
try:
del c # noqa: F821
except NameError:
pass
.. ipython:: python
n = 20
df = pd.DataFrame(np.random.randint(n, size=(n, 3)), columns=['a', 'b', 'c'])
df.query('a < b < c')
selects all the rows of ``df`` where ``a < b < c`` evaluates to ``True``.
For more details see the :ref:`the docs<indexing.query>`.
- ``pd.read_msgpack()`` and ``pd.to_msgpack()`` are now a supported method of serialization
of arbitrary pandas (and python objects) in a lightweight portable binary format. See :ref:`the docs<io.msgpack>`
.. warning::
Since this is an EXPERIMENTAL LIBRARY, the storage format may not be stable until a future release.
.. code-block:: python
df = pd.DataFrame(np.random.rand(5, 2), columns=list('AB'))
df.to_msgpack('foo.msg')
pd.read_msgpack('foo.msg')
s = pd.Series(np.random.rand(5), index=pd.date_range('20130101', periods=5))
pd.to_msgpack('foo.msg', df, s)
pd.read_msgpack('foo.msg')
You can pass ``iterator=True`` to iterator over the unpacked results
.. code-block:: python
for o in pd.read_msgpack('foo.msg', iterator=True):
print(o)
.. ipython:: python
:suppress:
:okexcept:
os.remove('foo.msg')
- ``pandas.io.gbq`` provides a simple way to extract from, and load data into,
Google's BigQuery Data Sets by way of pandas DataFrames. BigQuery is a high
performance SQL-like database service, useful for performing ad-hoc queries
against extremely large datasets. :ref:`See the docs <io.bigquery>`
.. code-block:: python
from pandas.io import gbq
# A query to select the average monthly temperatures in the
# in the year 2000 across the USA. The dataset,
# publicata:samples.gsod, is available on all BigQuery accounts,
# and is based on NOAA gsod data.
query = """SELECT station_number as STATION,
month as MONTH, AVG(mean_temp) as MEAN_TEMP
FROM publicdata:samples.gsod
WHERE YEAR = 2000
GROUP BY STATION, MONTH
ORDER BY STATION, MONTH ASC"""
# Fetch the result set for this query
# Your Google BigQuery Project ID
# To find this, see your dashboard:
# https://console.developers.google.com/iam-admin/projects?authuser=0
projectid = 'xxxxxxxxx'
df = gbq.read_gbq(query, project_id=projectid)
# Use pandas to process and reshape the dataset
df2 = df.pivot(index='STATION', columns='MONTH', values='MEAN_TEMP')
df3 = pd.concat([df2.min(), df2.mean(), df2.max()],
axis=1, keys=["Min Tem", "Mean Temp", "Max Temp"])
The resulting DataFrame is::
> df3
Min Tem Mean Temp Max Temp
MONTH
1 -53.336667 39.827892 89.770968
2 -49.837500 43.685219 93.437932
3 -77.926087 48.708355 96.099998
4 -82.892858 55.070087 97.317240
5 -92.378261 61.428117 102.042856
6 -77.703334 65.858888 102.900000
7 -87.821428 68.169663 106.510714
8 -89.431999 68.614215 105.500000
9 -86.611112 63.436935 107.142856
10 -78.209677 56.880838 92.103333
11 -50.125000 48.861228 94.996428
12 -50.332258 42.286879 94.396774
.. warning::
To use this module, you will need a BigQuery account. See
<https://cloud.google.com/products/big-query> for details.
As of 10/10/13, there is a bug in Google's API preventing result sets
from being larger than 100,000 rows. A patch is scheduled for the week of
10/14/13.
.. _whatsnew_0130.refactoring:
Internal refactoring
~~~~~~~~~~~~~~~~~~~~
In 0.13.0 there is a major refactor primarily to subclass ``Series`` from
``NDFrame``, which is the base class currently for ``DataFrame`` and ``Panel``,
to unify methods and behaviors. Series formerly subclassed directly from
``ndarray``. (:issue:`4080`, :issue:`3862`, :issue:`816`)
.. warning::
There are two potential incompatibilities from < 0.13.0
- Using certain numpy functions would previously return a ``Series`` if passed a ``Series``
as an argument. This seems only to affect ``np.ones_like``, ``np.empty_like``,
``np.diff`` and ``np.where``. These now return ``ndarrays``.
.. ipython:: python
s = pd.Series([1, 2, 3, 4])
Numpy Usage
.. ipython:: python
np.ones_like(s)
np.diff(s)
np.where(s > 1, s, np.nan)
Pandonic Usage
.. ipython:: python
pd.Series(1, index=s.index)
s.diff()
s.where(s > 1)
- Passing a ``Series`` directly to a cython function expecting an ``ndarray`` type will no
long work directly, you must pass ``Series.values``, See :ref:`Enhancing Performance<enhancingperf.ndarray>`
- ``Series(0.5)`` would previously return the scalar ``0.5``, instead this will return a 1-element ``Series``
- This change breaks ``rpy2<=2.3.8``. an Issue has been opened against rpy2 and a workaround
is detailed in :issue:`5698`. Thanks @JanSchulz.
- Pickle compatibility is preserved for pickles created prior to 0.13. These must be unpickled with ``pd.read_pickle``, see :ref:`Pickling<io.pickle>`.
- Refactor of series.py/frame.py/panel.py to move common code to generic.py
- added ``_setup_axes`` to created generic NDFrame structures
- moved methods
- ``from_axes,_wrap_array,axes,ix,loc,iloc,shape,empty,swapaxes,transpose,pop``
- ``__iter__,keys,__contains__,__len__,__neg__,__invert__``
- ``convert_objects,as_blocks,as_matrix,values``
- ``__getstate__,__setstate__`` (compat remains in frame/panel)
- ``__getattr__,__setattr__``
- ``_indexed_same,reindex_like,align,where,mask``
- ``fillna,replace`` (``Series`` replace is now consistent with ``DataFrame``)
- ``filter`` (also added axis argument to selectively filter on a different axis)
- ``reindex,reindex_axis,take``
- ``truncate`` (moved to become part of ``NDFrame``)
- These are API changes which make ``Panel`` more consistent with ``DataFrame``
- ``swapaxes`` on a ``Panel`` with the same axes specified now return a copy
- support attribute access for setting
- filter supports the same API as the original ``DataFrame`` filter
- Reindex called with no arguments will now return a copy of the input object
- ``TimeSeries`` is now an alias for ``Series``. the property ``is_time_series``
can be used to distinguish (if desired)
- Refactor of Sparse objects to use BlockManager
- Created a new block type in internals, ``SparseBlock``, which can hold multi-dtypes
and is non-consolidatable. ``SparseSeries`` and ``SparseDataFrame`` now inherit
more methods from there hierarchy (Series/DataFrame), and no longer inherit
from ``SparseArray`` (which instead is the object of the ``SparseBlock``)
- Sparse suite now supports integration with non-sparse data. Non-float sparse
data is supportable (partially implemented)
- Operations on sparse structures within DataFrames should preserve sparseness,
merging type operations will convert to dense (and back to sparse), so might
be somewhat inefficient
- enable setitem on ``SparseSeries`` for boolean/integer/slices
- ``SparsePanels`` implementation is unchanged (e.g. not using BlockManager, needs work)
- added ``ftypes`` method to Series/DataFrame, similar to ``dtypes``, but indicates
if the underlying is sparse/dense (as well as the dtype)
- All ``NDFrame`` objects can now use ``__finalize__()`` to specify various
values to propagate to new objects from an existing one (e.g. ``name`` in ``Series`` will
follow more automatically now)
- Internal type checking is now done via a suite of generated classes, allowing ``isinstance(value, klass)``
without having to directly import the klass, courtesy of @jtratner
- Bug in Series update where the parent frame is not updating its cache based on
changes (:issue:`4080`) or types (:issue:`3217`), fillna (:issue:`3386`)
- Indexing with dtype conversions fixed (:issue:`4463`, :issue:`4204`)
- Refactor ``Series.reindex`` to core/generic.py (:issue:`4604`, :issue:`4618`), allow ``method=`` in reindexing
on a Series to work
- ``Series.copy`` no longer accepts the ``order`` parameter and is now consistent with ``NDFrame`` copy
- Refactor ``rename`` methods to core/generic.py; fixes ``Series.rename`` for (:issue:`4605`), and adds ``rename``
with the same signature for ``Panel``
- Refactor ``clip`` methods to core/generic.py (:issue:`4798`)
- Refactor of ``_get_numeric_data/_get_bool_data`` to core/generic.py, allowing Series/Panel functionality
- ``Series`` (for index) / ``Panel`` (for items) now allow attribute access to its elements (:issue:`1903`)
.. ipython:: python
s = pd.Series([1, 2, 3], index=list('abc'))
s.b
s.a = 5
s
.. _release.bug_fixes-0.13.0:
Bug fixes
~~~~~~~~~
- ``HDFStore``
- raising an invalid ``TypeError`` rather than ``ValueError`` when
appending with a different block ordering (:issue:`4096`)
- ``read_hdf`` was not respecting as passed ``mode`` (:issue:`4504`)
- appending a 0-len table will work correctly (:issue:`4273`)
- ``to_hdf`` was raising when passing both arguments ``append`` and
``table`` (:issue:`4584`)
- reading from a store with duplicate columns across dtypes would raise
(:issue:`4767`)
- Fixed a bug where ``ValueError`` wasn't correctly raised when column
names weren't strings (:issue:`4956`)
- A zero length series written in Fixed format not deserializing properly.
(:issue:`4708`)
- Fixed decoding perf issue on pyt3 (:issue:`5441`)
- Validate levels in a MultiIndex before storing (:issue:`5527`)
- Correctly handle ``data_columns`` with a Panel (:issue:`5717`)
- Fixed bug in tslib.tz_convert(vals, tz1, tz2): it could raise IndexError
exception while trying to access trans[pos + 1] (:issue:`4496`)
- The ``by`` argument now works correctly with the ``layout`` argument
(:issue:`4102`, :issue:`4014`) in ``*.hist`` plotting methods
- Fixed bug in ``PeriodIndex.map`` where using ``str`` would return the str
representation of the index (:issue:`4136`)
- Fixed test failure ``test_time_series_plot_color_with_empty_kwargs`` when
using custom matplotlib default colors (:issue:`4345`)
- Fix running of stata IO tests. Now uses temporary files to write
(:issue:`4353`)
- Fixed an issue where ``DataFrame.sum`` was slower than ``DataFrame.mean``
for integer valued frames (:issue:`4365`)
- ``read_html`` tests now work with Python 2.6 (:issue:`4351`)
- Fixed bug where ``network`` testing was throwing ``NameError`` because a
local variable was undefined (:issue:`4381`)
- In ``to_json``, raise if a passed ``orient`` would cause loss of data
because of a duplicate index (:issue:`4359`)
- In ``to_json``, fix date handling so milliseconds are the default timestamp
as the docstring says (:issue:`4362`).
- ``as_index`` is no longer ignored when doing groupby apply (:issue:`4648`,
:issue:`3417`)
- JSON NaT handling fixed, NaTs are now serialized to ``null`` (:issue:`4498`)
- Fixed JSON handling of escapable characters in JSON object keys
(:issue:`4593`)
- Fixed passing ``keep_default_na=False`` when ``na_values=None``
(:issue:`4318`)
- Fixed bug with ``values`` raising an error on a DataFrame with duplicate
columns and mixed dtypes, surfaced in (:issue:`4377`)
- Fixed bug with duplicate columns and type conversion in ``read_json`` when
``orient='split'`` (:issue:`4377`)
- Fixed JSON bug where locales with decimal separators other than '.' threw
exceptions when encoding / decoding certain values. (:issue:`4918`)
- Fix ``.iat`` indexing with a ``PeriodIndex`` (:issue:`4390`)
- Fixed an issue where ``PeriodIndex`` joining with self was returning a new
instance rather than the same instance (:issue:`4379`); also adds a test
for this for the other index types
- Fixed a bug with all the dtypes being converted to object when using the
CSV cparser with the usecols parameter (:issue:`3192`)
- Fix an issue in merging blocks where the resulting DataFrame had partially
set _ref_locs (:issue:`4403`)
- Fixed an issue where hist subplots were being overwritten when they were
called using the top level matplotlib API (:issue:`4408`)
- Fixed a bug where calling ``Series.astype(str)`` would truncate the string
(:issue:`4405`, :issue:`4437`)
- Fixed a py3 compat issue where bytes were being repr'd as tuples
(:issue:`4455`)
- Fixed Panel attribute naming conflict if item is named 'a'
(:issue:`3440`)
- Fixed an issue where duplicate indexes were raising when plotting
(:issue:`4486`)
- Fixed an issue where cumsum and cumprod didn't work with bool dtypes
(:issue:`4170`, :issue:`4440`)
- Fixed Panel slicing issued in ``xs`` that was returning an incorrect dimmed
object (:issue:`4016`)
- Fix resampling bug where custom reduce function not used if only one group
(:issue:`3849`, :issue:`4494`)
- Fixed Panel assignment with a transposed frame (:issue:`3830`)
- Raise on set indexing with a Panel and a Panel as a value which needs
alignment (:issue:`3777`)
- frozenset objects now raise in the ``Series`` constructor (:issue:`4482`,
:issue:`4480`)
- Fixed issue with sorting a duplicate MultiIndex that has multiple dtypes
(:issue:`4516`)
- Fixed bug in ``DataFrame.set_values`` which was causing name attributes to
be lost when expanding the index. (:issue:`3742`, :issue:`4039`)
- Fixed issue where individual ``names``, ``levels`` and ``labels`` could be
set on ``MultiIndex`` without validation (:issue:`3714`, :issue:`4039`)
- Fixed (:issue:`3334`) in pivot_table. Margins did not compute if values is
the index.
- Fix bug in having a rhs of ``np.timedelta64`` or ``np.offsets.DateOffset``
when operating with datetimes (:issue:`4532`)
- Fix arithmetic with series/datetimeindex and ``np.timedelta64`` not working
the same (:issue:`4134`) and buggy timedelta in NumPy 1.6 (:issue:`4135`)
- Fix bug in ``pd.read_clipboard`` on windows with PY3 (:issue:`4561`); not
decoding properly
- ``tslib.get_period_field()`` and ``tslib.get_period_field_arr()`` now raise
if code argument out of range (:issue:`4519`, :issue:`4520`)
- Fix boolean indexing on an empty series loses index names (:issue:`4235`),
infer_dtype works with empty arrays.
- Fix reindexing with multiple axes; if an axes match was not replacing the
current axes, leading to a possible lazy frequency inference issue
(:issue:`3317`)
- Fixed issue where ``DataFrame.apply`` was reraising exceptions incorrectly
(causing the original stack trace to be truncated).
- Fix selection with ``ix/loc`` and non_unique selectors (:issue:`4619`)
- Fix assignment with iloc/loc involving a dtype change in an existing column
(:issue:`4312`, :issue:`5702`) have internal setitem_with_indexer in core/indexing
to use Block.setitem
- Fixed bug where thousands operator was not handled correctly for floating
point numbers in csv_import (:issue:`4322`)
- Fix an issue with CacheableOffset not properly being used by many
DateOffset; this prevented the DateOffset from being cached (:issue:`4609`)
- Fix boolean comparison with a DataFrame on the lhs, and a list/tuple on the
rhs (:issue:`4576`)
- Fix error/dtype conversion with setitem of ``None`` on ``Series/DataFrame``
(:issue:`4667`)
- Fix decoding based on a passed in non-default encoding in ``pd.read_stata``
(:issue:`4626`)
- Fix ``DataFrame.from_records`` with a plain-vanilla ``ndarray``.
(:issue:`4727`)
- Fix some inconsistencies with ``Index.rename`` and ``MultiIndex.rename``,
etc. (:issue:`4718`, :issue:`4628`)
- Bug in using ``iloc/loc`` with a cross-sectional and duplicate indices
(:issue:`4726`)
- Bug with using ``QUOTE_NONE`` with ``to_csv`` causing ``Exception``.
(:issue:`4328`)
- Bug with Series indexing not raising an error when the right-hand-side has
an incorrect length (:issue:`2702`)
- Bug in MultiIndexing with a partial string selection as one part of a
MultIndex (:issue:`4758`)
- Bug with reindexing on the index with a non-unique index will now raise
``ValueError`` (:issue:`4746`)
- Bug in setting with ``loc/ix`` a single indexer with a MultiIndex axis and
a NumPy array, related to (:issue:`3777`)
- Bug in concatenation with duplicate columns across dtypes not merging with
axis=0 (:issue:`4771`, :issue:`4975`)
- Bug in ``iloc`` with a slice index failing (:issue:`4771`)
- Incorrect error message with no colspecs or width in ``read_fwf``.
(:issue:`4774`)
- Fix bugs in indexing in a Series with a duplicate index (:issue:`4548`,
:issue:`4550`)
- Fixed bug with reading compressed files with ``read_fwf`` in Python 3.
(:issue:`3963`)
- Fixed an issue with a duplicate index and assignment with a dtype change
(:issue:`4686`)
- Fixed bug with reading compressed files in as ``bytes`` rather than ``str``
in Python 3. Simplifies bytes-producing file-handling in Python 3
(:issue:`3963`, :issue:`4785`).
- Fixed an issue related to ticklocs/ticklabels with log scale bar plots
across different versions of matplotlib (:issue:`4789`)
- Suppressed DeprecationWarning associated with internal calls issued by
repr() (:issue:`4391`)
- Fixed an issue with a duplicate index and duplicate selector with ``.loc``
(:issue:`4825`)
- Fixed an issue with ``DataFrame.sort_index`` where, when sorting by a
single column and passing a list for ``ascending``, the argument for
``ascending`` was being interpreted as ``True`` (:issue:`4839`,
:issue:`4846`)
- Fixed ``Panel.tshift`` not working. Added ``freq`` support to ``Panel.shift``
(:issue:`4853`)
- Fix an issue in TextFileReader w/ Python engine (i.e. PythonParser)
with thousands != "," (:issue:`4596`)
- Bug in getitem with a duplicate index when using where (:issue:`4879`)
- Fix Type inference code coerces float column into datetime (:issue:`4601`)
- Fixed ``_ensure_numeric`` does not check for complex numbers
(:issue:`4902`)
- Fixed a bug in ``Series.hist`` where two figures were being created when
the ``by`` argument was passed (:issue:`4112`, :issue:`4113`).
- Fixed a bug in ``convert_objects`` for > 2 ndims (:issue:`4937`)
- Fixed a bug in DataFrame/Panel cache insertion and subsequent indexing
(:issue:`4939`, :issue:`5424`)
- Fixed string methods for ``FrozenNDArray`` and ``FrozenList``
(:issue:`4929`)
- Fixed a bug with setting invalid or out-of-range values in indexing
enlargement scenarios (:issue:`4940`)
- Tests for fillna on empty Series (:issue:`4346`), thanks @immerrr
- Fixed ``copy()`` to shallow copy axes/indices as well and thereby keep
separate metadata. (:issue:`4202`, :issue:`4830`)
- Fixed skiprows option in Python parser for read_csv (:issue:`4382`)
- Fixed bug preventing ``cut`` from working with ``np.inf`` levels without
explicitly passing labels (:issue:`3415`)
- Fixed wrong check for overlapping in ``DatetimeIndex.union``
(:issue:`4564`)
- Fixed conflict between thousands separator and date parser in csv_parser
(:issue:`4678`)
- Fix appending when dtypes are not the same (error showing mixing
float/np.datetime64) (:issue:`4993`)
- Fix repr for DateOffset. No longer show duplicate entries in kwds.
Removed unused offset fields. (:issue:`4638`)
- Fixed wrong index name during read_csv if using usecols. Applies to c
parser only. (:issue:`4201`)
- ``Timestamp`` objects can now appear in the left hand side of a comparison
operation with a ``Series`` or ``DataFrame`` object (:issue:`4982`).
- Fix a bug when indexing with ``np.nan`` via ``iloc/loc`` (:issue:`5016`)
- Fixed a bug where low memory c parser could create different types in
different chunks of the same file. Now coerces to numerical type or raises
warning. (:issue:`3866`)
- Fix a bug where reshaping a ``Series`` to its own shape raised
``TypeError`` (:issue:`4554`) and other reshaping issues.
- Bug in setting with ``ix/loc`` and a mixed int/string index (:issue:`4544`)
- Make sure series-series boolean comparisons are label based (:issue:`4947`)
- Bug in multi-level indexing with a Timestamp partial indexer
(:issue:`4294`)
- Tests/fix for MultiIndex construction of an all-nan frame (:issue:`4078`)
- Fixed a bug where :func:`~pandas.read_html` wasn't correctly inferring
values of tables with commas (:issue:`5029`)
- Fixed a bug where :func:`~pandas.read_html` wasn't providing a stable
ordering of returned tables (:issue:`4770`, :issue:`5029`).
- Fixed a bug where :func:`~pandas.read_html` was incorrectly parsing when
passed ``index_col=0`` (:issue:`5066`).
- Fixed a bug where :func:`~pandas.read_html` was incorrectly inferring the
type of headers (:issue:`5048`).
- Fixed a bug where ``DatetimeIndex`` joins with ``PeriodIndex`` caused a
stack overflow (:issue:`3899`).
- Fixed a bug where ``groupby`` objects didn't allow plots (:issue:`5102`).
- Fixed a bug where ``groupby`` objects weren't tab-completing column names
(:issue:`5102`).
- Fixed a bug where ``groupby.plot()`` and friends were duplicating figures
multiple times (:issue:`5102`).
- Provide automatic conversion of ``object`` dtypes on fillna, related
(:issue:`5103`)
- Fixed a bug where default options were being overwritten in the option
parser cleaning (:issue:`5121`).
- Treat a list/ndarray identically for ``iloc`` indexing with list-like
(:issue:`5006`)
- Fix ``MultiIndex.get_level_values()`` with missing values (:issue:`5074`)
- Fix bound checking for Timestamp() with datetime64 input (:issue:`4065`)
- Fix a bug where ``TestReadHtml`` wasn't calling the correct ``read_html()``
function (:issue:`5150`).
- Fix a bug with ``NDFrame.replace()`` which made replacement appear as
though it was (incorrectly) using regular expressions (:issue:`5143`).
- Fix better error message for to_datetime (:issue:`4928`)
- Made sure different locales are tested on travis-ci (:issue:`4918`). Also
adds a couple of utilities for getting locales and setting locales with a
context manager.
- Fixed segfault on ``isnull(MultiIndex)`` (now raises an error instead)
(:issue:`5123`, :issue:`5125`)
- Allow duplicate indices when performing operations that align
(:issue:`5185`, :issue:`5639`)
- Compound dtypes in a constructor raise ``NotImplementedError``
(:issue:`5191`)
- Bug in comparing duplicate frames (:issue:`4421`) related
- Bug in describe on duplicate frames
- Bug in ``to_datetime`` with a format and ``coerce=True`` not raising
(:issue:`5195`)
- Bug in ``loc`` setting with multiple indexers and a rhs of a Series that
needs broadcasting (:issue:`5206`)
- Fixed bug where inplace setting of levels or labels on ``MultiIndex`` would
not clear cached ``values`` property and therefore return wrong ``values``.
(:issue:`5215`)
- Fixed bug where filtering a grouped DataFrame or Series did not maintain
the original ordering (:issue:`4621`).
- Fixed ``Period`` with a business date freq to always roll-forward if on a
non-business date. (:issue:`5203`)
- Fixed bug in Excel writers where frames with duplicate column names weren't
written correctly. (:issue:`5235`)
- Fixed issue with ``drop`` and a non-unique index on Series (:issue:`5248`)
- Fixed segfault in C parser caused by passing more names than columns in
the file. (:issue:`5156`)
- Fix ``Series.isin`` with date/time-like dtypes (:issue:`5021`)
- C and Python Parser can now handle the more common MultiIndex column
format which doesn't have a row for index names (:issue:`4702`)
- Bug when trying to use an out-of-bounds date as an object dtype
(:issue:`5312`)
- Bug when trying to display an embedded PandasObject (:issue:`5324`)
- Allows operating of Timestamps to return a datetime if the result is out-of-bounds
related (:issue:`5312`)
- Fix return value/type signature of ``initObjToJSON()`` to be compatible
with numpy's ``import_array()`` (:issue:`5334`, :issue:`5326`)
- Bug when renaming then set_index on a DataFrame (:issue:`5344`)
- Test suite no longer leaves around temporary files when testing graphics. (:issue:`5347`)
(thanks for catching this @yarikoptic!)
- Fixed html tests on win32. (:issue:`4580`)
- Make sure that ``head/tail`` are ``iloc`` based, (:issue:`5370`)
- Fixed bug for ``PeriodIndex`` string representation if there are 1 or 2
elements. (:issue:`5372`)
- The GroupBy methods ``transform`` and ``filter`` can be used on Series
and DataFrames that have repeated (non-unique) indices. (:issue:`4620`)
- Fix empty series not printing name in repr (:issue:`4651`)
- Make tests create temp files in temp directory by default. (:issue:`5419`)
- ``pd.to_timedelta`` of a scalar returns a scalar (:issue:`5410`)
- ``pd.to_timedelta`` accepts ``NaN`` and ``NaT``, returning ``NaT`` instead of raising (:issue:`5437`)
- performance improvements in ``isnull`` on larger size pandas objects
- Fixed various setitem with 1d ndarray that does not have a matching
length to the indexer (:issue:`5508`)
- Bug in getitem with a MultiIndex and ``iloc`` (:issue:`5528`)
- Bug in delitem on a Series (:issue:`5542`)
- Bug fix in apply when using custom function and objects are not mutated (:issue:`5545`)
- Bug in selecting from a non-unique index with ``loc`` (:issue:`5553`)
- Bug in groupby returning non-consistent types when user function returns a ``None``, (:issue:`5592`)
- Work around regression in numpy 1.7.0 which erroneously raises IndexError from ``ndarray.item`` (:issue:`5666`)
- Bug in repeated indexing of object with resultant non-unique index (:issue:`5678`)
- Bug in fillna with Series and a passed series/dict (:issue:`5703`)
- Bug in groupby transform with a datetime-like grouper (:issue:`5712`)
- Bug in MultiIndex selection in PY3 when using certain keys (:issue:`5725`)
- Row-wise concat of differing dtypes failing in certain cases (:issue:`5754`)
.. _whatsnew_0.13.0.contributors:
Contributors
~~~~~~~~~~~~
.. contributors:: v0.12.0..v0.13.0
|