File: v0.15.0.rst

package info (click to toggle)
pandas 2.2.3%2Bdfsg-9
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 66,784 kB
  • sloc: python: 422,228; ansic: 9,190; sh: 270; xml: 102; makefile: 83
file content (1303 lines) | stat: -rw-r--r-- 57,546 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
.. _whatsnew_0150:

Version 0.15.0 (October 18, 2014)
---------------------------------

{{ header }}


This is a major release from 0.14.1 and includes a small number of API changes, several new features,
enhancements, and performance improvements along with a large number of bug fixes. We recommend that all
users upgrade to this version.

.. warning::

   pandas >= 0.15.0 will no longer support compatibility with NumPy versions <
   1.7.0. If you want to use the latest versions of pandas, please upgrade to
   NumPy >= 1.7.0 (:issue:`7711`)

- Highlights include:

  - The ``Categorical`` type was integrated as a first-class pandas type, see :ref:`here <whatsnew_0150.cat>`
  - New scalar type ``Timedelta``, and a new index type ``TimedeltaIndex``, see :ref:`here <whatsnew_0150.timedeltaindex>`
  - New datetimelike properties accessor ``.dt`` for Series, see :ref:`Datetimelike Properties <whatsnew_0150.dt>`
  - New DataFrame default display for ``df.info()`` to include memory usage, see :ref:`Memory Usage <whatsnew_0150.memory>`
  - ``read_csv`` will now by default ignore blank lines when parsing, see :ref:`here <whatsnew_0150.blanklines>`
  - API change in using Indexes in set operations, see :ref:`here <whatsnew_0150.index_set_ops>`
  - Enhancements in the handling of timezones, see :ref:`here <whatsnew_0150.tz>`
  - A lot of improvements to the rolling and expanding moment functions, see :ref:`here <whatsnew_0150.roll>`
  - Internal refactoring of the ``Index`` class to no longer sub-class ``ndarray``, see :ref:`Internal Refactoring <whatsnew_0150.refactoring>`
  - dropping support for ``PyTables`` less than version 3.0.0, and ``numexpr`` less than version 2.1 (:issue:`7990`)
  - Split indexing documentation into :ref:`Indexing and Selecting Data <indexing>` and :ref:`MultiIndex / Advanced Indexing <advanced>`
  - Split out string methods documentation into :ref:`Working with Text Data <text>`

- Check the :ref:`API Changes <whatsnew_0150.api>` and :ref:`deprecations <whatsnew_0150.deprecations>` before updating

- :ref:`Other Enhancements <whatsnew_0150.enhancements>`

- :ref:`Performance Improvements <whatsnew_0150.performance>`

- :ref:`Bug Fixes <whatsnew_0150.bug_fixes>`

.. warning::

   In 0.15.0 ``Index`` has internally been refactored to no longer sub-class ``ndarray``
   but instead subclass ``PandasObject``, similarly to the rest of the pandas objects. This change allows very easy sub-classing and creation of new index types. This should be
   a transparent change with only very limited API implications (See the :ref:`Internal Refactoring <whatsnew_0150.refactoring>`)

.. warning::

   The refactoring in :class:`~pandas.Categorical` changed the two argument constructor from
   "codes/labels and levels" to "values and levels (now called 'categories')". This can lead to subtle bugs. If you use
   :class:`~pandas.Categorical` directly, please audit your code before updating to this pandas
   version and change it to use the :meth:`~pandas.Categorical.from_codes` constructor. See more on ``Categorical`` :ref:`here <whatsnew_0150.cat>`


New features
~~~~~~~~~~~~

.. _whatsnew_0150.cat:

Categoricals in Series/DataFrame
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

:class:`~pandas.Categorical` can now be included in ``Series`` and ``DataFrames`` and gained new
methods to manipulate. Thanks to Jan Schulz for much of this API/implementation. (:issue:`3943`, :issue:`5313`, :issue:`5314`,
:issue:`7444`, :issue:`7839`, :issue:`7848`, :issue:`7864`, :issue:`7914`, :issue:`7768`, :issue:`8006`, :issue:`3678`,
:issue:`8075`, :issue:`8076`, :issue:`8143`, :issue:`8453`, :issue:`8518`).

For full docs, see the :ref:`categorical introduction <categorical>` and the
:ref:`API documentation <api.arrays.categorical>`.

.. ipython:: python

    df = pd.DataFrame({"id": [1, 2, 3, 4, 5, 6],
                       "raw_grade": ['a', 'b', 'b', 'a', 'a', 'e']})

    df["grade"] = df["raw_grade"].astype("category")
    df["grade"]

    # Rename the categories
    df["grade"] = df["grade"].cat.rename_categories(["very good", "good", "very bad"])

    # Reorder the categories and simultaneously add the missing categories
    df["grade"] = df["grade"].cat.set_categories(["very bad", "bad",
                                                  "medium", "good", "very good"])
    df["grade"]
    df.sort_values("grade")
    df.groupby("grade", observed=False).size()

- ``pandas.core.group_agg`` and ``pandas.core.factor_agg`` were removed. As an alternative, construct
  a dataframe and use ``df.groupby(<group>).agg(<func>)``.

- Supplying "codes/labels and levels" to the :class:`~pandas.Categorical` constructor is not
  supported anymore. Supplying two arguments to the constructor is now interpreted as
  "values and levels (now called 'categories')". Please change your code to use the :meth:`~pandas.Categorical.from_codes`
  constructor.

- The ``Categorical.labels`` attribute was renamed to ``Categorical.codes`` and is read
  only. If you want to manipulate codes, please use one of the
  :ref:`API methods on Categoricals <api.arrays.categorical>`.

- The ``Categorical.levels`` attribute is renamed to ``Categorical.categories``.


.. _whatsnew_0150.timedeltaindex:

TimedeltaIndex/scalar
^^^^^^^^^^^^^^^^^^^^^

We introduce a new scalar type ``Timedelta``, which is a subclass of ``datetime.timedelta``, and behaves in a similar manner,
but allows compatibility with ``np.timedelta64`` types as well as a host of custom representation, parsing, and attributes.
This type is very similar to how ``Timestamp`` works for ``datetimes``. It is a nice-API box for the type. See the :ref:`docs <timedeltas.timedeltas>`.
(:issue:`3009`, :issue:`4533`, :issue:`8209`, :issue:`8187`, :issue:`8190`, :issue:`7869`, :issue:`7661`, :issue:`8345`, :issue:`8471`)

.. warning::

   ``Timedelta`` scalars (and ``TimedeltaIndex``) component fields are *not the same* as the component fields on a ``datetime.timedelta`` object. For example, ``.seconds`` on a ``datetime.timedelta`` object returns the total number of seconds combined between ``hours``, ``minutes`` and ``seconds``. In contrast, the pandas ``Timedelta`` breaks out hours, minutes, microseconds and nanoseconds separately.

   .. code-block:: ipython

      # Timedelta accessor
      In [9]: tds = pd.Timedelta('31 days 5 min 3 sec')

      In [10]: tds.minutes
      Out[10]: 5L

      In [11]: tds.seconds
      Out[11]: 3L

      # datetime.timedelta accessor
      # this is 5 minutes * 60 + 3 seconds
      In [12]: tds.to_pytimedelta().seconds
      Out[12]: 303

   **Note**: this is no longer true starting from v0.16.0, where full
   compatibility with ``datetime.timedelta`` is introduced. See the
   :ref:`0.16.0 whatsnew entry <whatsnew_0160.api_breaking.timedelta>`

.. warning::

       Prior to 0.15.0 ``pd.to_timedelta`` would return a ``Series`` for list-like/Series input, and a ``np.timedelta64`` for scalar input.
       It will now return a ``TimedeltaIndex`` for list-like input, ``Series`` for Series input, and ``Timedelta`` for scalar input.

       The arguments to ``pd.to_timedelta`` are now ``(arg,unit='ns',box=True,coerce=False)``, previously were ``(arg,box=True,unit='ns')`` as these are more logical.

Construct a scalar

.. ipython:: python

   pd.Timedelta('1 days 06:05:01.00003')
   pd.Timedelta('15.5us')
   pd.Timedelta('1 hour 15.5us')

   # negative Timedeltas have this string repr
   # to be more consistent with datetime.timedelta conventions
   pd.Timedelta('-1us')

   # a NaT
   pd.Timedelta('nan')

Access fields for a ``Timedelta``

.. ipython:: python

   td = pd.Timedelta('1 hour 3m 15.5us')
   td.seconds
   td.microseconds
   td.nanoseconds

Construct a ``TimedeltaIndex``

.. ipython:: python
   :suppress:

   import datetime

.. ipython:: python

   pd.TimedeltaIndex(['1 days', '1 days, 00:00:05',
                      np.timedelta64(2, 'D'),
                      datetime.timedelta(days=2, seconds=2)])

Constructing a ``TimedeltaIndex`` with a regular range

.. ipython:: python

   pd.timedelta_range('1 days', periods=5, freq='D')

.. code-block:: python

   In [20]: pd.timedelta_range(start='1 days', end='2 days', freq='30T')
   Out[20]:
   TimedeltaIndex(['1 days 00:00:00', '1 days 00:30:00', '1 days 01:00:00',
                   '1 days 01:30:00', '1 days 02:00:00', '1 days 02:30:00',
                   '1 days 03:00:00', '1 days 03:30:00', '1 days 04:00:00',
                   '1 days 04:30:00', '1 days 05:00:00', '1 days 05:30:00',
                   '1 days 06:00:00', '1 days 06:30:00', '1 days 07:00:00',
                   '1 days 07:30:00', '1 days 08:00:00', '1 days 08:30:00',
                   '1 days 09:00:00', '1 days 09:30:00', '1 days 10:00:00',
                   '1 days 10:30:00', '1 days 11:00:00', '1 days 11:30:00',
                   '1 days 12:00:00', '1 days 12:30:00', '1 days 13:00:00',
                   '1 days 13:30:00', '1 days 14:00:00', '1 days 14:30:00',
                   '1 days 15:00:00', '1 days 15:30:00', '1 days 16:00:00',
                   '1 days 16:30:00', '1 days 17:00:00', '1 days 17:30:00',
                   '1 days 18:00:00', '1 days 18:30:00', '1 days 19:00:00',
                   '1 days 19:30:00', '1 days 20:00:00', '1 days 20:30:00',
                   '1 days 21:00:00', '1 days 21:30:00', '1 days 22:00:00',
                   '1 days 22:30:00', '1 days 23:00:00', '1 days 23:30:00',
                   '2 days 00:00:00'],
                  dtype='timedelta64[ns]', freq='30T')

You can now use a ``TimedeltaIndex`` as the index of a pandas object

.. ipython:: python

   s = pd.Series(np.arange(5),
                 index=pd.timedelta_range('1 days', periods=5, freq='s'))
   s

You can select with partial string selections

.. ipython:: python

   s['1 day 00:00:02']
   s['1 day':'1 day 00:00:02']

Finally, the combination of ``TimedeltaIndex`` with ``DatetimeIndex`` allow certain combination operations that are ``NaT`` preserving:

.. ipython:: python

   tdi = pd.TimedeltaIndex(['1 days', pd.NaT, '2 days'])
   tdi.tolist()
   dti = pd.date_range('20130101', periods=3)
   dti.tolist()

   (dti + tdi).tolist()
   (dti - tdi).tolist()

- iteration of a ``Series`` e.g. ``list(Series(...))`` of ``timedelta64[ns]`` would prior to v0.15.0 return ``np.timedelta64`` for each element. These will now be wrapped in ``Timedelta``.


.. _whatsnew_0150.memory:

Memory usage
^^^^^^^^^^^^

Implemented methods to find memory usage of a DataFrame. See the :ref:`FAQ <df-memory-usage>` for more. (:issue:`6852`).

A new display option ``display.memory_usage`` (see :ref:`options`) sets the default behavior of the ``memory_usage`` argument in the ``df.info()`` method. By default ``display.memory_usage`` is ``True``.

.. ipython:: python

    dtypes = ['int64', 'float64', 'datetime64[ns]', 'timedelta64[ns]',
              'complex128', 'object', 'bool']
    n = 5000
    data = {t: np.random.randint(100, size=n).astype(t) for t in dtypes}
    df = pd.DataFrame(data)
    df['categorical'] = df['object'].astype('category')

    df.info()

Additionally :meth:`~pandas.DataFrame.memory_usage` is an available method for a dataframe object which returns the memory usage of each column.

.. ipython:: python

    df.memory_usage(index=True)


.. _whatsnew_0150.dt:

Series.dt accessor
^^^^^^^^^^^^^^^^^^

``Series`` has gained an accessor to succinctly return datetime like properties for the *values* of the Series, if its a datetime/period like Series. (:issue:`7207`)
This will return a Series, indexed like the existing Series. See the :ref:`docs <basics.dt_accessors>`

.. ipython:: python

   # datetime
   s = pd.Series(pd.date_range('20130101 09:10:12', periods=4))
   s
   s.dt.hour
   s.dt.second
   s.dt.day
   s.dt.freq

This enables nice expressions like this:

.. ipython:: python

   s[s.dt.day == 2]

You can easily produce tz aware transformations:

.. ipython:: python

   stz = s.dt.tz_localize('US/Eastern')
   stz
   stz.dt.tz

You can also chain these types of operations:

.. ipython:: python

   s.dt.tz_localize('UTC').dt.tz_convert('US/Eastern')

The ``.dt`` accessor works for period and timedelta dtypes.

.. ipython:: python

   # period
   s = pd.Series(pd.period_range('20130101', periods=4, freq='D'))
   s
   s.dt.year
   s.dt.day

.. ipython:: python

   # timedelta
   s = pd.Series(pd.timedelta_range('1 day 00:00:05', periods=4, freq='s'))
   s
   s.dt.days
   s.dt.seconds
   s.dt.components


.. _whatsnew_0150.tz:

Timezone handling improvements
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

- ``tz_localize(None)`` for tz-aware ``Timestamp`` and ``DatetimeIndex`` now removes timezone holding local time,
  previously this resulted in ``Exception`` or ``TypeError`` (:issue:`7812`)

  .. code-block:: ipython

     In [58]: ts = pd.Timestamp('2014-08-01 09:00', tz='US/Eastern')

     In[59]: ts
     Out[59]: Timestamp('2014-08-01 09:00:00-0400', tz='US/Eastern')

     In [60]: ts.tz_localize(None)
     Out[60]: Timestamp('2014-08-01 09:00:00')

     In [61]: didx = pd.date_range(start='2014-08-01 09:00', freq='H',
        ....:                      periods=10, tz='US/Eastern')
        ....:

     In [62]: didx
     Out[62]:
     DatetimeIndex(['2014-08-01 09:00:00-04:00', '2014-08-01 10:00:00-04:00',
                    '2014-08-01 11:00:00-04:00', '2014-08-01 12:00:00-04:00',
                    '2014-08-01 13:00:00-04:00', '2014-08-01 14:00:00-04:00',
                    '2014-08-01 15:00:00-04:00', '2014-08-01 16:00:00-04:00',
                    '2014-08-01 17:00:00-04:00', '2014-08-01 18:00:00-04:00'],
                   dtype='datetime64[ns, US/Eastern]', freq='H')

     In [63]: didx.tz_localize(None)
     Out[63]:
     DatetimeIndex(['2014-08-01 09:00:00', '2014-08-01 10:00:00',
                    '2014-08-01 11:00:00', '2014-08-01 12:00:00',
                    '2014-08-01 13:00:00', '2014-08-01 14:00:00',
                    '2014-08-01 15:00:00', '2014-08-01 16:00:00',
                    '2014-08-01 17:00:00', '2014-08-01 18:00:00'],
                   dtype='datetime64[ns]', freq=None)

- ``tz_localize`` now accepts the ``ambiguous`` keyword which allows for passing an array of bools
  indicating whether the date belongs in DST or not, 'NaT' for setting transition times to NaT,
  'infer' for inferring DST/non-DST, and 'raise' (default) for an ``AmbiguousTimeError`` to be raised. See :ref:`the docs<timeseries.timezone_ambiguous>` for more details (:issue:`7943`)

- ``DataFrame.tz_localize`` and ``DataFrame.tz_convert`` now accepts an optional ``level`` argument
  for localizing a specific level of a MultiIndex (:issue:`7846`)

- ``Timestamp.tz_localize`` and ``Timestamp.tz_convert`` now raise ``TypeError`` in error cases, rather than ``Exception`` (:issue:`8025`)

- a timeseries/index localized to UTC when inserted into a Series/DataFrame will preserve the UTC timezone (rather than being a naive ``datetime64[ns]``) as ``object`` dtype (:issue:`8411`)

- ``Timestamp.__repr__`` displays ``dateutil.tz.tzoffset`` info (:issue:`7907`)


.. _whatsnew_0150.roll:

Rolling/expanding moments improvements
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

- :func:`rolling_min`, :func:`rolling_max`, :func:`rolling_cov`, and :func:`rolling_corr`
  now return objects with all ``NaN`` when ``len(arg) < min_periods <= window`` rather
  than raising. (This makes all rolling functions consistent in this behavior). (:issue:`7766`)

  Prior to 0.15.0

  .. ipython:: python

     s = pd.Series([10, 11, 12, 13])

  .. code-block:: ipython

     In [15]: pd.rolling_min(s, window=10, min_periods=5)
     ValueError: min_periods (5) must be <= window (4)

  New behavior

  .. code-block:: ipython

     In [4]: pd.rolling_min(s, window=10, min_periods=5)
     Out[4]:
     0   NaN
     1   NaN
     2   NaN
     3   NaN
     dtype: float64

- :func:`rolling_max`, :func:`rolling_min`, :func:`rolling_sum`, :func:`rolling_mean`, :func:`rolling_median`,
  :func:`rolling_std`, :func:`rolling_var`, :func:`rolling_skew`, :func:`rolling_kurt`, :func:`rolling_quantile`,
  :func:`rolling_cov`, :func:`rolling_corr`, :func:`rolling_corr_pairwise`,
  :func:`rolling_window`, and :func:`rolling_apply` with ``center=True`` previously would return a result of the same
  structure as the input ``arg`` with ``NaN`` in the final ``(window-1)/2`` entries.

  Now the final ``(window-1)/2`` entries of the result are calculated as if the input ``arg`` were followed
  by ``(window-1)/2`` ``NaN`` values (or with shrinking windows, in the case of :func:`rolling_apply`).
  (:issue:`7925`, :issue:`8269`)

  Prior behavior (note final value is ``NaN``):

  .. code-block:: ipython

    In [7]: pd.rolling_sum(Series(range(4)), window=3, min_periods=0, center=True)
    Out[7]:
    0     1
    1     3
    2     6
    3   NaN
    dtype: float64

  New behavior (note final value is ``5 = sum([2, 3, NaN])``):

  .. code-block:: ipython

     In [7]: pd.rolling_sum(pd.Series(range(4)), window=3,
       ....:                min_periods=0, center=True)
     Out[7]:
     0    1
     1    3
     2    6
     3    5
     dtype: float64

- :func:`rolling_window` now normalizes the weights properly in rolling mean mode (`mean=True`) so that
  the calculated weighted means (e.g. 'triang', 'gaussian') are distributed about the same means as those
  calculated without weighting (i.e. 'boxcar'). See :ref:`the note on normalization <window.weighted>` for further details. (:issue:`7618`)

  .. ipython:: python

    s = pd.Series([10.5, 8.8, 11.4, 9.7, 9.3])

  Behavior prior to 0.15.0:

  .. code-block:: ipython

     In [39]: pd.rolling_window(s, window=3, win_type='triang', center=True)
     Out[39]:
     0         NaN
     1    6.583333
     2    6.883333
     3    6.683333
     4         NaN
     dtype: float64

  New behavior

  .. code-block:: ipython

     In [10]: pd.rolling_window(s, window=3, win_type='triang', center=True)
     Out[10]:
     0       NaN
     1     9.875
     2    10.325
     3    10.025
     4       NaN
     dtype: float64

- Removed ``center`` argument from all :func:`expanding_ <expanding_apply>` functions (see :ref:`list <api.functions_expanding>`),
  as the results produced when ``center=True`` did not make much sense. (:issue:`7925`)

- Added optional ``ddof`` argument to :func:`expanding_cov` and :func:`rolling_cov`.
  The default value of ``1`` is backwards-compatible. (:issue:`8279`)

- Documented the ``ddof`` argument to :func:`expanding_var`, :func:`expanding_std`,
  :func:`rolling_var`, and :func:`rolling_std`. These functions' support of a
  ``ddof`` argument (with a default value of ``1``) was previously undocumented. (:issue:`8064`)

- :func:`ewma`, :func:`ewmstd`, :func:`ewmvol`, :func:`ewmvar`, :func:`ewmcov`, and :func:`ewmcorr`
  now interpret ``min_periods`` in the same manner that the :func:`rolling_*()` and :func:`expanding_*()` functions do:
  a given result entry will be ``NaN`` if the (expanding, in this case) window does not contain
  at least ``min_periods`` values. The previous behavior was to set to ``NaN`` the ``min_periods`` entries
  starting with the first non- ``NaN`` value. (:issue:`7977`)

  Prior behavior (note values start at index ``2``, which is ``min_periods`` after index ``0``
  (the index of the first non-empty value)):

  .. ipython:: python

    s  = pd.Series([1, None, None, None, 2, 3])

  .. code-block:: ipython

        In [51]: pd.ewma(s, com=3., min_periods=2)
        Out[51]:
        0         NaN
        1         NaN
        2    1.000000
        3    1.000000
        4    1.571429
        5    2.189189
        dtype: float64

  New behavior (note values start at index ``4``, the location of the 2nd (since ``min_periods=2``) non-empty value):

  .. code-block:: ipython

     In [2]: pd.ewma(s, com=3., min_periods=2)
     Out[2]:
     0         NaN
     1         NaN
     2         NaN
     3         NaN
     4    1.759644
     5    2.383784
     dtype: float64

- :func:`ewmstd`, :func:`ewmvol`, :func:`ewmvar`, :func:`ewmcov`, and :func:`ewmcorr`
  now have an optional ``adjust`` argument, just like :func:`ewma` does,
  affecting how the weights are calculated.
  The default value of ``adjust`` is ``True``, which is backwards-compatible.
  See :ref:`Exponentially weighted moment functions <window.exponentially_weighted>` for details. (:issue:`7911`)

- :func:`ewma`, :func:`ewmstd`, :func:`ewmvol`, :func:`ewmvar`, :func:`ewmcov`, and :func:`ewmcorr`
  now have an optional ``ignore_na`` argument.
  When ``ignore_na=False`` (the default), missing values are taken into account in the weights calculation.
  When ``ignore_na=True`` (which reproduces the pre-0.15.0 behavior), missing values are ignored in the weights calculation.
  (:issue:`7543`)

  .. code-block:: ipython

     In [7]: pd.ewma(pd.Series([None, 1., 8.]), com=2.)
     Out[7]:
     0    NaN
     1    1.0
     2    5.2
     dtype: float64

     In [8]: pd.ewma(pd.Series([1., None, 8.]), com=2.,
       ....:         ignore_na=True)  # pre-0.15.0 behavior
     Out[8]:
     0    1.0
     1    1.0
     2    5.2
     dtype: float64

     In [9]: pd.ewma(pd.Series([1., None, 8.]), com=2.,
       ....:         ignore_na=False)  # new default
     Out[9]:
     0    1.000000
     1    1.000000
     2    5.846154
     dtype: float64

  .. warning::

     By default (``ignore_na=False``) the :func:`ewm*()` functions' weights calculation
     in the presence of missing values is different than in pre-0.15.0 versions.
     To reproduce the pre-0.15.0 calculation of weights in the presence of missing values
     one must specify explicitly ``ignore_na=True``.

- Bug in :func:`expanding_cov`, :func:`expanding_corr`, :func:`rolling_cov`, :func:`rolling_cor`, :func:`ewmcov`, and :func:`ewmcorr`
  returning results with columns sorted by name and producing an error for non-unique columns;
  now handles non-unique columns and returns columns in original order
  (except for the case of two DataFrames with ``pairwise=False``, where behavior is unchanged) (:issue:`7542`)
- Bug in :func:`rolling_count` and :func:`expanding_*()` functions unnecessarily producing error message for zero-length data (:issue:`8056`)
- Bug in :func:`rolling_apply` and :func:`expanding_apply` interpreting ``min_periods=0`` as ``min_periods=1`` (:issue:`8080`)
- Bug in :func:`expanding_std` and :func:`expanding_var` for a single value producing a confusing error message (:issue:`7900`)
- Bug in :func:`rolling_std` and :func:`rolling_var` for a single value producing ``0`` rather than ``NaN`` (:issue:`7900`)

- Bug in :func:`ewmstd`, :func:`ewmvol`, :func:`ewmvar`, and :func:`ewmcov`
  calculation of de-biasing factors when ``bias=False`` (the default).
  Previously an incorrect constant factor was used, based on ``adjust=True``, ``ignore_na=True``,
  and an infinite number of observations.
  Now a different factor is used for each entry, based on the actual weights
  (analogous to the usual ``N/(N-1)`` factor).
  In particular, for a single point a value of ``NaN`` is returned when ``bias=False``,
  whereas previously a value of (approximately) ``0`` was returned.

  For example, consider the following pre-0.15.0 results for ``ewmvar(..., bias=False)``,
  and the corresponding debiasing factors:

  .. ipython:: python

     s = pd.Series([1., 2., 0., 4.])

  .. code-block:: ipython

         In [89]: pd.ewmvar(s, com=2., bias=False)
         Out[89]:
         0   -2.775558e-16
         1    3.000000e-01
         2    9.556787e-01
         3    3.585799e+00
         dtype: float64

         In [90]: pd.ewmvar(s, com=2., bias=False) / pd.ewmvar(s, com=2., bias=True)
         Out[90]:
         0    1.25
         1    1.25
         2    1.25
         3    1.25
         dtype: float64

  Note that entry ``0`` is approximately 0, and the debiasing factors are a constant 1.25.
  By comparison, the following 0.15.0 results have a ``NaN`` for entry ``0``,
  and the debiasing factors are decreasing (towards 1.25):

  .. code-block:: ipython

     In [14]: pd.ewmvar(s, com=2., bias=False)
     Out[14]:
     0         NaN
     1    0.500000
     2    1.210526
     3    4.089069
     dtype: float64

     In [15]: pd.ewmvar(s, com=2., bias=False) / pd.ewmvar(s, com=2., bias=True)
     Out[15]:
     0         NaN
     1    2.083333
     2    1.583333
     3    1.425439
     dtype: float64

  See :ref:`Exponentially weighted moment functions <window.exponentially_weighted>` for details. (:issue:`7912`)


.. _whatsnew_0150.sql:

Improvements in the SQL IO module
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

- Added support for a ``chunksize`` parameter to ``to_sql`` function. This allows DataFrame to be written in chunks and avoid packet-size overflow errors (:issue:`8062`).
- Added support for a ``chunksize`` parameter to ``read_sql`` function. Specifying this argument will return an iterator through chunks of the query result (:issue:`2908`).
- Added support for writing ``datetime.date`` and ``datetime.time`` object columns with ``to_sql`` (:issue:`6932`).
- Added support for specifying a ``schema`` to read from/write to with ``read_sql_table`` and ``to_sql`` (:issue:`7441`, :issue:`7952`).
  For example:

  .. code-block:: python

         df.to_sql('table', engine, schema='other_schema')  # noqa F821
         pd.read_sql_table('table', engine, schema='other_schema')  # noqa F821

- Added support for writing ``NaN`` values with ``to_sql`` (:issue:`2754`).
- Added support for writing datetime64 columns with ``to_sql`` for all database flavors (:issue:`7103`).


.. _whatsnew_0150.api:

Backwards incompatible API changes
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

.. _whatsnew_0150.api_breaking:

Breaking changes
^^^^^^^^^^^^^^^^

API changes related to ``Categorical`` (see :ref:`here <whatsnew_0150.cat>`
for more details):

- The ``Categorical`` constructor with two arguments changed from
  "codes/labels and levels" to "values and levels (now called 'categories')".
  This can lead to subtle bugs. If you use :class:`~pandas.Categorical` directly,
  please audit your code by changing it to use the :meth:`~pandas.Categorical.from_codes`
  constructor.

  An old function call like (prior to 0.15.0):

  .. code-block:: python

    pd.Categorical([0,1,0,2,1], levels=['a', 'b', 'c'])

  will have to adapted to the following to keep the same behaviour:

  .. code-block:: ipython

    In [2]: pd.Categorical.from_codes([0,1,0,2,1], categories=['a', 'b', 'c'])
    Out[2]:
    [a, b, a, c, b]
    Categories (3, object): [a, b, c]

API changes related to the introduction of the ``Timedelta`` scalar (see
:ref:`above <whatsnew_0150.timedeltaindex>` for more details):

- Prior to 0.15.0 :func:`to_timedelta` would return a ``Series`` for list-like/Series input,
  and a ``np.timedelta64`` for scalar input. It will now return a ``TimedeltaIndex`` for
  list-like input, ``Series`` for Series input, and ``Timedelta`` for scalar input.

For API changes related to the rolling and expanding functions, see detailed overview :ref:`above <whatsnew_0150.roll>`.

Other notable API changes:

- Consistency when indexing with ``.loc`` and a list-like indexer when no values are found.

  .. ipython:: python

     df = pd.DataFrame([['a'], ['b']], index=[1, 2])
     df

  In prior versions there was a difference in these two constructs:

  - ``df.loc[[3]]`` would return a frame reindexed by 3 (with all ``np.nan`` values)
  - ``df.loc[[3],:]`` would raise ``KeyError``.

  Both will now raise a ``KeyError``. The rule is that *at least 1* indexer must be found when using a list-like and ``.loc`` (:issue:`7999`)

  Furthermore in prior versions these were also different:

  - ``df.loc[[1,3]]`` would return a frame reindexed by [1,3]
  - ``df.loc[[1,3],:]`` would raise ``KeyError``.

  Both will now return a frame reindex by [1,3]. E.g.

  .. code-block:: ipython

     In [3]: df.loc[[1, 3]]
     Out[3]:
          0
     1    a
     3  NaN

     In [4]: df.loc[[1, 3], :]
     Out[4]:
          0
     1    a
     3  NaN

  This can also be seen in multi-axis indexing with a ``Panel``.

  .. code-block:: python

     >>> p = pd.Panel(np.arange(2 * 3 * 4).reshape(2, 3, 4),
     ...              items=['ItemA', 'ItemB'],
     ...              major_axis=[1, 2, 3],
     ...              minor_axis=['A', 'B', 'C', 'D'])
     >>> p
     <class 'pandas.core.panel.Panel'>
     Dimensions: 2 (items) x 3 (major_axis) x 4 (minor_axis)
     Items axis: ItemA to ItemB
     Major_axis axis: 1 to 3
     Minor_axis axis: A to D


  The following would raise ``KeyError`` prior to 0.15.0:

  .. code-block:: ipython

     In [5]:
     Out[5]:
        ItemA  ItemD
     1      3    NaN
     2      7    NaN
     3     11    NaN

  Furthermore, ``.loc`` will raise If no values are found in a MultiIndex with a list-like indexer:

  .. ipython:: python
     :okexcept:

     s = pd.Series(np.arange(3, dtype='int64'),
                   index=pd.MultiIndex.from_product([['A'],
                                                    ['foo', 'bar', 'baz']],
                                                    names=['one', 'two'])
                   ).sort_index()
     s
     try:
         s.loc[['D']]
     except KeyError as e:
         print("KeyError: " + str(e))

- Assigning values to ``None`` now considers the dtype when choosing an 'empty' value (:issue:`7941`).

  Previously, assigning to ``None`` in numeric containers changed the
  dtype to object (or errored, depending on the call). It now uses
  ``NaN``:

  .. ipython:: python

     s = pd.Series([1., 2., 3.])
     s.loc[0] = None
     s

  ``NaT`` is now used similarly for datetime containers.

  For object containers, we now preserve ``None`` values (previously these
  were converted to ``NaN`` values).

  .. ipython:: python

     s = pd.Series(["a", "b", "c"])
     s.loc[0] = None
     s

  To insert a ``NaN``, you must explicitly use ``np.nan``. See the :ref:`docs <missing.inserting>`.

- In prior versions, updating a pandas object inplace would not reflect in other python references to this object. (:issue:`8511`, :issue:`5104`)

  .. ipython:: python

     s = pd.Series([1, 2, 3])
     s2 = s
     s += 1.5

  Behavior prior to v0.15.0

  .. code-block:: ipython


     # the original object
     In [5]: s
     Out[5]:
     0    2.5
     1    3.5
     2    4.5
     dtype: float64


     # a reference to the original object
     In [7]: s2
     Out[7]:
     0    1
     1    2
     2    3
     dtype: int64

  This is now the correct behavior

  .. ipython:: python

     # the original object
     s

     # a reference to the original object
     s2

.. _whatsnew_0150.blanklines:

- Made both the C-based and Python engines for ``read_csv`` and ``read_table`` ignore empty lines in input as well as
  white space-filled lines, as long as ``sep`` is not white space. This is an API change
  that can be controlled by the keyword parameter ``skip_blank_lines``.  See :ref:`the docs <io.skiplines>` (:issue:`4466`)

- A timeseries/index localized to UTC when inserted into a Series/DataFrame will preserve the UTC timezone
  and inserted as ``object`` dtype rather than being converted to a naive ``datetime64[ns]`` (:issue:`8411`).

- Bug in passing a ``DatetimeIndex`` with a timezone that was not being retained in DataFrame construction from a dict (:issue:`7822`)

  In prior versions this would drop the timezone, now it retains the timezone,
  but gives a column of ``object`` dtype:

  .. ipython:: python

        i = pd.date_range('1/1/2011', periods=3, freq='10s', tz='US/Eastern')
        i
        df = pd.DataFrame({'a': i})
        df
        df.dtypes

  Previously this would have yielded a column of ``datetime64`` dtype, but without timezone info.

  The behaviour of assigning a column to an existing dataframe as ``df['a'] = i``
  remains unchanged (this already returned an  ``object`` column with a timezone).

- When passing multiple levels to :meth:`~pandas.DataFrame.stack()`, it will now raise a ``ValueError`` when the
  levels aren't all level names or all level numbers (:issue:`7660`). See
  :ref:`Reshaping by stacking and unstacking <reshaping.stack_multiple>`.

- Raise a ``ValueError`` in ``df.to_hdf`` with 'fixed' format, if ``df`` has non-unique columns as the resulting file will be broken (:issue:`7761`)

- ``SettingWithCopy`` raise/warnings (according to the option ``mode.chained_assignment``) will now be issued when setting a value on a sliced mixed-dtype DataFrame using chained-assignment. (:issue:`7845`, :issue:`7950`)

  .. code-block:: python

     In [1]: df = pd.DataFrame(np.arange(0, 9), columns=['count'])

     In [2]: df['group'] = 'b'

     In [3]: df.iloc[0:5]['group'] = 'a'
     /usr/local/bin/ipython:1: SettingWithCopyWarning:
     A value is trying to be set on a copy of a slice from a DataFrame.
     Try using .loc[row_indexer,col_indexer] = value instead

     See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy

- ``merge``, ``DataFrame.merge``, and ``ordered_merge`` now return the same type
  as the ``left`` argument (:issue:`7737`).

- Previously an enlargement with a mixed-dtype frame would act unlike ``.append`` which will preserve dtypes (related :issue:`2578`, :issue:`8176`):

  .. ipython:: python

     df = pd.DataFrame([[True, 1], [False, 2]],
                       columns=["female", "fitness"])
     df
     df.dtypes

     # dtypes are now preserved
     df.loc[2] = df.loc[1]
     df
     df.dtypes

- ``Series.to_csv()`` now returns a string when ``path=None``, matching the behaviour of ``DataFrame.to_csv()`` (:issue:`8215`).

- ``read_hdf`` now raises ``IOError`` when a file that doesn't exist is passed in. Previously, a new, empty file was created, and a ``KeyError`` raised (:issue:`7715`).

- ``DataFrame.info()`` now ends its output with a newline character (:issue:`8114`)
- Concatenating no objects will now raise a ``ValueError`` rather than a bare ``Exception``.
- Merge errors will now be sub-classes of ``ValueError`` rather than raw ``Exception`` (:issue:`8501`)
- ``DataFrame.plot`` and ``Series.plot`` keywords are now have consistent orders (:issue:`8037`)


.. _whatsnew_0150.refactoring:

Internal refactoring
^^^^^^^^^^^^^^^^^^^^

In 0.15.0 ``Index`` has internally been refactored to no longer sub-class ``ndarray``
but instead subclass ``PandasObject``, similarly to the rest of the pandas objects. This
change allows very easy sub-classing and creation of new index types. This should be
a transparent change with only very limited API implications (:issue:`5080`, :issue:`7439`, :issue:`7796`, :issue:`8024`, :issue:`8367`, :issue:`7997`, :issue:`8522`):

- you may need to unpickle pandas version < 0.15.0 pickles using ``pd.read_pickle`` rather than ``pickle.load``. See :ref:`pickle docs <io.pickle>`
- when plotting with a ``PeriodIndex``, the matplotlib internal axes will now be arrays of ``Period`` rather than a ``PeriodIndex`` (this is similar to how a ``DatetimeIndex`` passes arrays of ``datetimes`` now)
- MultiIndexes will now raise similarly to other pandas objects w.r.t. truth testing, see :ref:`here <gotchas.truth>` (:issue:`7897`).
- When plotting a DatetimeIndex directly with matplotlib's ``plot`` function,
  the axis labels will no longer be formatted as dates but as integers (the
  internal representation of a ``datetime64``). **UPDATE** This is fixed
  in 0.15.1, see :ref:`here <whatsnew_0151.datetime64_plotting>`.

.. _whatsnew_0150.deprecations:

Deprecations
^^^^^^^^^^^^

- The attributes ``Categorical`` ``labels`` and ``levels`` attributes are
  deprecated and renamed to ``codes`` and ``categories``.
- The ``outtype`` argument to ``pd.DataFrame.to_dict`` has been deprecated in favor of ``orient``. (:issue:`7840`)
- The ``convert_dummies`` method has been deprecated in favor of
  ``get_dummies`` (:issue:`8140`)
- The ``infer_dst`` argument in ``tz_localize`` will be deprecated in favor of
  ``ambiguous`` to allow for more flexibility in dealing with DST transitions.
  Replace ``infer_dst=True`` with ``ambiguous='infer'`` for the same behavior (:issue:`7943`).
  See :ref:`the docs<timeseries.timezone_ambiguous>` for more details.
- The top-level ``pd.value_range`` has been deprecated and can be replaced by ``.describe()`` (:issue:`8481`)

.. _whatsnew_0150.index_set_ops:

- The ``Index`` set operations ``+`` and ``-`` were deprecated in order to provide these for numeric type operations on certain index types. ``+`` can be replaced by ``.union()`` or ``|``, and ``-`` by ``.difference()``. Further the method name ``Index.diff()`` is deprecated and can be replaced by ``Index.difference()`` (:issue:`8226`)

  .. code-block:: python

     # +
     pd.Index(['a', 'b', 'c']) + pd.Index(['b', 'c', 'd'])

     # should be replaced by
     pd.Index(['a', 'b', 'c']).union(pd.Index(['b', 'c', 'd']))

  .. code-block:: python

     # -
     pd.Index(['a', 'b', 'c']) - pd.Index(['b', 'c', 'd'])

     # should be replaced by
     pd.Index(['a', 'b', 'c']).difference(pd.Index(['b', 'c', 'd']))

- The ``infer_types`` argument to :func:`~pandas.read_html` now has no
  effect and is deprecated (:issue:`7762`, :issue:`7032`).


.. _whatsnew_0150.prior_deprecations:

Removal of prior version deprecations/changes
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

- Remove ``DataFrame.delevel`` method in favor of ``DataFrame.reset_index``



.. _whatsnew_0150.enhancements:

Enhancements
~~~~~~~~~~~~

Enhancements in the importing/exporting of Stata files:

- Added support for bool, uint8, uint16 and uint32 data types in ``to_stata`` (:issue:`7097`, :issue:`7365`)
- Added conversion option when importing Stata files (:issue:`8527`)
- ``DataFrame.to_stata`` and ``StataWriter`` check string length for
  compatibility with limitations imposed in dta files where fixed-width
  strings must contain 244 or fewer characters.  Attempting to write Stata
  dta files with strings longer than 244 characters raises a ``ValueError``. (:issue:`7858`)
- ``read_stata`` and ``StataReader`` can import missing data information into a
  ``DataFrame`` by setting the argument ``convert_missing`` to ``True``. When
  using this options, missing values are returned as ``StataMissingValue``
  objects and columns containing missing values have ``object`` data type. (:issue:`8045`)

Enhancements in the plotting functions:

- Added ``layout`` keyword to ``DataFrame.plot``. You can pass a tuple of ``(rows, columns)``, one of which can be ``-1`` to automatically infer (:issue:`6667`, :issue:`8071`).
- Allow to pass multiple axes to ``DataFrame.plot``, ``hist`` and ``boxplot`` (:issue:`5353`, :issue:`6970`, :issue:`7069`)
- Added support for ``c``, ``colormap`` and ``colorbar`` arguments for ``DataFrame.plot`` with ``kind='scatter'`` (:issue:`7780`)
- Histogram from ``DataFrame.plot`` with ``kind='hist'`` (:issue:`7809`), See :ref:`the docs<visualization.hist>`.
- Boxplot from ``DataFrame.plot`` with ``kind='box'`` (:issue:`7998`), See :ref:`the docs<visualization.box>`.

Other:

- ``read_csv`` now has a keyword parameter ``float_precision`` which specifies which floating-point converter the C engine should use during parsing, see :ref:`here <io.float_precision>` (:issue:`8002`, :issue:`8044`)

- Added ``searchsorted`` method to ``Series`` objects (:issue:`7447`)

- :func:`describe` on mixed-types DataFrames is more flexible. Type-based column filtering is now possible via the ``include``/``exclude`` arguments.
  See the :ref:`docs <basics.describe>` (:issue:`8164`).

  .. ipython:: python

    df = pd.DataFrame({'catA': ['foo', 'foo', 'bar'] * 8,
                       'catB': ['a', 'b', 'c', 'd'] * 6,
                       'numC': np.arange(24),
                       'numD': np.arange(24.) + .5})
    df.describe(include=["object"])
    df.describe(include=["number", "object"], exclude=["float"])

  Requesting all columns is possible with the shorthand 'all'

  .. ipython:: python

    df.describe(include='all')

  Without those arguments, ``describe`` will behave as before, including only numerical columns or, if none are, only categorical columns. See also the :ref:`docs <basics.describe>`

- Added ``split`` as an option to the ``orient`` argument in ``pd.DataFrame.to_dict``. (:issue:`7840`)

- The ``get_dummies`` method can now be used on DataFrames. By default only
  categorical columns are encoded as 0's and 1's, while other columns are
  left untouched.

  .. ipython:: python

    df = pd.DataFrame({'A': ['a', 'b', 'a'], 'B': ['c', 'c', 'b'],
                    'C': [1, 2, 3]})
    pd.get_dummies(df)

- ``PeriodIndex`` supports ``resolution`` as the same as ``DatetimeIndex`` (:issue:`7708`)
- ``pandas.tseries.holiday`` has added support for additional holidays and ways to observe holidays (:issue:`7070`)
- ``pandas.tseries.holiday.Holiday`` now supports a list of offsets in Python3 (:issue:`7070`)
- ``pandas.tseries.holiday.Holiday`` now supports a days_of_week parameter (:issue:`7070`)
- ``GroupBy.nth()`` now supports selecting multiple nth values (:issue:`7910`)

  .. ipython:: python

    business_dates = pd.date_range(start='4/1/2014', end='6/30/2014', freq='B')
    df = pd.DataFrame(1, index=business_dates, columns=['a', 'b'])
    # get the first, 4th, and last date index for each month
    df.groupby([df.index.year, df.index.month]).nth([0, 3, -1])

- ``Period`` and ``PeriodIndex`` supports addition/subtraction with ``timedelta``-likes (:issue:`7966`)

  If ``Period`` freq is ``D``, ``H``, ``T``, ``S``, ``L``, ``U``, ``N``, ``Timedelta``-like can be added if the result can have same freq. Otherwise, only the same ``offsets`` can be added.

  .. code-block:: ipython

     In [104]: idx = pd.period_range('2014-07-01 09:00', periods=5, freq='H')

     In [105]: idx
     Out[105]:
     PeriodIndex(['2014-07-01 09:00', '2014-07-01 10:00', '2014-07-01 11:00',
                  '2014-07-01 12:00', '2014-07-01 13:00'],
                 dtype='period[H]')

     In [106]: idx + pd.offsets.Hour(2)
     Out[106]:
     PeriodIndex(['2014-07-01 11:00', '2014-07-01 12:00', '2014-07-01 13:00',
                  '2014-07-01 14:00', '2014-07-01 15:00'],
                 dtype='period[H]')

     In [107]: idx + pd.Timedelta('120m')
     Out[107]:
     PeriodIndex(['2014-07-01 11:00', '2014-07-01 12:00', '2014-07-01 13:00',
                  '2014-07-01 14:00', '2014-07-01 15:00'],
                 dtype='period[H]')

     In [108]: idx = pd.period_range('2014-07', periods=5, freq='M')

     In [109]: idx
     Out[109]: PeriodIndex(['2014-07', '2014-08', '2014-09', '2014-10', '2014-11'], dtype='period[M]')

     In [110]: idx + pd.offsets.MonthEnd(3)
     Out[110]: PeriodIndex(['2014-10', '2014-11', '2014-12', '2015-01', '2015-02'], dtype='period[M]')

- Added experimental compatibility with ``openpyxl`` for versions >= 2.0. The ``DataFrame.to_excel``
  method ``engine`` keyword now recognizes ``openpyxl1`` and ``openpyxl2``
  which will explicitly require openpyxl v1 and v2 respectively, failing if
  the requested version is not available. The ``openpyxl`` engine is a now a
  meta-engine that automatically uses whichever version of openpyxl is
  installed. (:issue:`7177`)

- ``DataFrame.fillna`` can now accept a ``DataFrame`` as a fill value (:issue:`8377`)

- Passing multiple levels to :meth:`~pandas.DataFrame.stack()` will now work when multiple level
  numbers are passed (:issue:`7660`). See
  :ref:`Reshaping by stacking and unstacking <reshaping.stack_multiple>`.

- :func:`set_names`, :func:`set_labels`, and :func:`set_levels` methods now take an optional ``level`` keyword argument to all modification of specific level(s) of a MultiIndex. Additionally :func:`set_names` now accepts a scalar string value when operating on an ``Index`` or on a specific level of a ``MultiIndex`` (:issue:`7792`)

  .. ipython:: python

      idx = pd.MultiIndex.from_product([['a'], range(3), list("pqr")],
                                       names=['foo', 'bar', 'baz'])
      idx.set_names('qux', level=0)
      idx.set_names(['qux', 'corge'], level=[0, 1])
      idx.set_levels(['a', 'b', 'c'], level='bar')
      idx.set_levels([['a', 'b', 'c'], [1, 2, 3]], level=[1, 2])

- ``Index.isin`` now supports a ``level`` argument to specify which index level
  to use for membership tests (:issue:`7892`, :issue:`7890`)

  .. code-block:: ipython

     In [1]: idx = pd.MultiIndex.from_product([[0, 1], ['a', 'b', 'c']])

     In [2]: idx.values
     Out[2]: array([(0, 'a'), (0, 'b'), (0, 'c'), (1, 'a'), (1, 'b'), (1, 'c')], dtype=object)

     In [3]: idx.isin(['a', 'c', 'e'], level=1)
     Out[3]: array([ True, False,  True,  True, False,  True], dtype=bool)

- ``Index`` now supports ``duplicated`` and ``drop_duplicates``. (:issue:`4060`)

  .. ipython:: python

     idx = pd.Index([1, 2, 3, 4, 1, 2])
     idx
     idx.duplicated()
     idx.drop_duplicates()

- add ``copy=True`` argument to ``pd.concat`` to enable pass through of complete blocks (:issue:`8252`)

- Added support for numpy 1.8+ data types (``bool_``, ``int_``, ``float_``, ``string_``) for conversion to R dataframe  (:issue:`8400`)



.. _whatsnew_0150.performance:

Performance
~~~~~~~~~~~

- Performance improvements in ``DatetimeIndex.__iter__`` to allow faster iteration (:issue:`7683`)
- Performance improvements in ``Period`` creation (and ``PeriodIndex`` setitem) (:issue:`5155`)
- Improvements in Series.transform for significant performance gains (revised) (:issue:`6496`)
- Performance improvements in ``StataReader`` when reading large files (:issue:`8040`, :issue:`8073`)
- Performance improvements in ``StataWriter`` when writing large files (:issue:`8079`)
- Performance and memory usage improvements in multi-key ``groupby`` (:issue:`8128`)
- Performance improvements in groupby ``.agg`` and ``.apply`` where builtins max/min were not mapped to numpy/cythonized versions (:issue:`7722`)
- Performance improvement in writing to sql (``to_sql``) of up to 50% (:issue:`8208`).
- Performance benchmarking of groupby for large value of ngroups (:issue:`6787`)
- Performance improvement in ``CustomBusinessDay``, ``CustomBusinessMonth`` (:issue:`8236`)
- Performance improvement for ``MultiIndex.values`` for multi-level indexes containing datetimes (:issue:`8543`)



.. _whatsnew_0150.bug_fixes:

Bug fixes
~~~~~~~~~

- Bug in pivot_table, when using margins and a dict aggfunc (:issue:`8349`)
- Bug in ``read_csv`` where ``squeeze=True`` would return a view (:issue:`8217`)
- Bug in checking of table name in ``read_sql`` in certain cases (:issue:`7826`).
- Bug in ``DataFrame.groupby`` where ``Grouper`` does not recognize level when frequency is specified (:issue:`7885`)
- Bug in multiindexes dtypes getting mixed up when DataFrame is saved to SQL table (:issue:`8021`)
- Bug in ``Series`` 0-division with a float and integer operand dtypes  (:issue:`7785`)
- Bug in ``Series.astype("unicode")`` not calling ``unicode`` on the values correctly (:issue:`7758`)
- Bug in ``DataFrame.as_matrix()`` with mixed ``datetime64[ns]`` and ``timedelta64[ns]`` dtypes (:issue:`7778`)
- Bug in ``HDFStore.select_column()`` not preserving UTC timezone info when selecting a ``DatetimeIndex`` (:issue:`7777`)
- Bug in ``to_datetime`` when ``format='%Y%m%d'`` and ``coerce=True`` are specified, where previously an object array was returned (rather than
  a coerced time-series with ``NaT``), (:issue:`7930`)
- Bug in ``DatetimeIndex`` and ``PeriodIndex`` in-place addition and subtraction cause different result from normal one (:issue:`6527`)
- Bug in adding and subtracting ``PeriodIndex`` with ``PeriodIndex`` raise ``TypeError`` (:issue:`7741`)
- Bug in ``combine_first`` with ``PeriodIndex`` data raises ``TypeError`` (:issue:`3367`)
- Bug in MultiIndex slicing with missing indexers (:issue:`7866`)
- Bug in MultiIndex slicing with various edge cases (:issue:`8132`)
- Regression in MultiIndex indexing with a non-scalar type object (:issue:`7914`)
- Bug in ``Timestamp`` comparisons with ``==`` and ``int64`` dtype (:issue:`8058`)
- Bug in pickles contains ``DateOffset`` may raise ``AttributeError`` when ``normalize`` attribute is referred internally (:issue:`7748`)
- Bug in ``Panel`` when using ``major_xs`` and ``copy=False`` is passed (deprecation warning fails because of missing ``warnings``) (:issue:`8152`).
- Bug in pickle deserialization that failed for pre-0.14.1 containers with dup items trying to avoid ambiguity
  when matching block and manager items, when there's only one block there's no ambiguity (:issue:`7794`)
- Bug in putting a ``PeriodIndex`` into a ``Series`` would convert to ``int64`` dtype, rather than ``object`` of ``Periods`` (:issue:`7932`)
- Bug in ``HDFStore`` iteration when passing a where (:issue:`8014`)
- Bug in ``DataFrameGroupby.transform`` when transforming with a passed non-sorted key (:issue:`8046`, :issue:`8430`)
- Bug in repeated timeseries line and area plot may result in ``ValueError`` or incorrect kind (:issue:`7733`)
- Bug in inference in a ``MultiIndex`` with ``datetime.date`` inputs (:issue:`7888`)
- Bug in ``get`` where an ``IndexError`` would not cause the default value to be returned (:issue:`7725`)
- Bug in ``offsets.apply``, ``rollforward`` and ``rollback`` may reset nanosecond (:issue:`7697`)
- Bug in ``offsets.apply``, ``rollforward`` and ``rollback`` may raise ``AttributeError`` if ``Timestamp`` has ``dateutil`` tzinfo (:issue:`7697`)
- Bug in sorting a MultiIndex frame with a ``Float64Index`` (:issue:`8017`)
- Bug in inconsistent panel setitem with a rhs of a ``DataFrame`` for alignment (:issue:`7763`)
- Bug in ``is_superperiod`` and ``is_subperiod`` cannot handle higher frequencies than ``S`` (:issue:`7760`, :issue:`7772`, :issue:`7803`)
- Bug in 32-bit platforms with ``Series.shift`` (:issue:`8129`)
- Bug in ``PeriodIndex.unique`` returns int64 ``np.ndarray`` (:issue:`7540`)
- Bug in ``groupby.apply`` with a non-affecting mutation in the function (:issue:`8467`)
- Bug in ``DataFrame.reset_index`` which has ``MultiIndex`` contains ``PeriodIndex`` or ``DatetimeIndex`` with tz raises ``ValueError`` (:issue:`7746`, :issue:`7793`)
- Bug in ``DataFrame.plot`` with ``subplots=True`` may draw unnecessary minor xticks and yticks (:issue:`7801`)
- Bug in ``StataReader`` which did not read variable labels in 117 files due to difference between Stata documentation and implementation (:issue:`7816`)
- Bug in ``StataReader`` where strings were always converted to 244 characters-fixed width irrespective of underlying string size (:issue:`7858`)
- Bug in ``DataFrame.plot`` and ``Series.plot`` may ignore ``rot`` and ``fontsize`` keywords (:issue:`7844`)
- Bug in ``DatetimeIndex.value_counts`` doesn't preserve tz  (:issue:`7735`)
- Bug in ``PeriodIndex.value_counts`` results in ``Int64Index`` (:issue:`7735`)
- Bug in ``DataFrame.join`` when doing left join on index and there are multiple matches (:issue:`5391`)
- Bug in ``GroupBy.transform()`` where int groups with a transform that
  didn't preserve the index were incorrectly truncated (:issue:`7972`).
- Bug in ``groupby`` where callable objects without name attributes would take the wrong path,
  and produce a ``DataFrame`` instead of a ``Series`` (:issue:`7929`)
- Bug in ``groupby`` error message when a DataFrame grouping column is duplicated (:issue:`7511`)
- Bug in ``read_html`` where the ``infer_types`` argument forced coercion of
  date-likes incorrectly (:issue:`7762`, :issue:`7032`).
- Bug in ``Series.str.cat`` with an index which was filtered as to not include the first item (:issue:`7857`)
- Bug in ``Timestamp`` cannot parse ``nanosecond`` from string (:issue:`7878`)
- Bug in ``Timestamp`` with string offset and ``tz`` results incorrect (:issue:`7833`)
- Bug in ``tslib.tz_convert`` and ``tslib.tz_convert_single`` may return different results (:issue:`7798`)
- Bug in ``DatetimeIndex.intersection`` of non-overlapping timestamps with tz raises ``IndexError`` (:issue:`7880`)
- Bug in alignment with TimeOps and non-unique indexes (:issue:`8363`)
- Bug in ``GroupBy.filter()`` where fast path vs. slow path made the filter
  return a non scalar value that appeared valid but wasn't (:issue:`7870`).
- Bug in ``date_range()``/``DatetimeIndex()`` when the timezone was inferred from input dates yet incorrect
  times were returned when crossing DST boundaries (:issue:`7835`, :issue:`7901`).
- Bug in ``to_excel()`` where a negative sign was being prepended to positive infinity and was absent for negative infinity (:issue:`7949`)
- Bug in area plot draws legend with incorrect ``alpha`` when ``stacked=True`` (:issue:`8027`)
- ``Period`` and ``PeriodIndex`` addition/subtraction with ``np.timedelta64`` results in incorrect internal representations (:issue:`7740`)
- Bug in ``Holiday`` with no offset or observance (:issue:`7987`)
- Bug in ``DataFrame.to_latex`` formatting when columns or index is a ``MultiIndex`` (:issue:`7982`).
- Bug in ``DateOffset`` around Daylight Savings Time produces unexpected results (:issue:`5175`).
- Bug in ``DataFrame.shift`` where empty columns would throw ``ZeroDivisionError`` on numpy 1.7 (:issue:`8019`)
- Bug in installation where ``html_encoding/*.html`` wasn't installed and
  therefore some tests were not running correctly (:issue:`7927`).
- Bug in ``read_html`` where ``bytes`` objects were not tested for in
  ``_read`` (:issue:`7927`).
- Bug in ``DataFrame.stack()`` when one of the column levels was a datelike (:issue:`8039`)
- Bug in broadcasting numpy scalars with ``DataFrame`` (:issue:`8116`)
- Bug in ``pivot_table`` performed with nameless ``index`` and ``columns`` raises ``KeyError`` (:issue:`8103`)
- Bug in ``DataFrame.plot(kind='scatter')`` draws points and errorbars with different colors when the color is specified by ``c`` keyword (:issue:`8081`)
- Bug in ``Float64Index`` where ``iat`` and ``at`` were not testing and were
  failing (:issue:`8092`).
- Bug in ``DataFrame.boxplot()`` where y-limits were not set correctly when
  producing multiple axes (:issue:`7528`, :issue:`5517`).
- Bug in ``read_csv`` where line comments were not handled correctly given
  a custom line terminator or ``delim_whitespace=True`` (:issue:`8122`).
- Bug in ``read_html`` where empty tables caused a ``StopIteration`` (:issue:`7575`)
- Bug in casting when setting a column in a same-dtype block (:issue:`7704`)
- Bug in accessing groups from a ``GroupBy`` when the original grouper
  was a tuple (:issue:`8121`).
- Bug in ``.at`` that would accept integer indexers on a non-integer index and do fallback (:issue:`7814`)
- Bug with kde plot and NaNs (:issue:`8182`)
- Bug in ``GroupBy.count`` with float32 data type were nan values were not excluded (:issue:`8169`).
- Bug with stacked barplots and NaNs (:issue:`8175`).
- Bug in resample with non evenly divisible offsets (e.g. '7s') (:issue:`8371`)
- Bug in interpolation methods with the ``limit`` keyword when no values needed interpolating (:issue:`7173`).
- Bug where ``col_space`` was ignored in ``DataFrame.to_string()`` when ``header=False`` (:issue:`8230`).
- Bug with ``DatetimeIndex.asof`` incorrectly matching partial strings and returning the wrong date (:issue:`8245`).
- Bug in plotting methods modifying the global matplotlib rcParams (:issue:`8242`).
- Bug in ``DataFrame.__setitem__`` that caused errors when setting a dataframe column to a sparse array (:issue:`8131`)
- Bug where ``Dataframe.boxplot()`` failed when entire column was empty (:issue:`8181`).
- Bug with messed variables in ``radviz`` visualization (:issue:`8199`).
- Bug in interpolation methods with the ``limit`` keyword when no values needed interpolating (:issue:`7173`).
- Bug where ``col_space`` was ignored in ``DataFrame.to_string()`` when ``header=False`` (:issue:`8230`).
- Bug in ``to_clipboard`` that would clip long column data (:issue:`8305`)
- Bug in ``DataFrame`` terminal display: Setting max_column/max_rows to zero did not trigger auto-resizing of dfs to fit terminal width/height (:issue:`7180`).
- Bug in OLS where running with "cluster" and "nw_lags" parameters did not work correctly, but also did not throw an error
  (:issue:`5884`).
- Bug in ``DataFrame.dropna`` that interpreted non-existent columns in the subset argument as the 'last column' (:issue:`8303`)
- Bug in ``Index.intersection`` on non-monotonic non-unique indexes (:issue:`8362`).
- Bug in masked series assignment where mismatching types would break alignment (:issue:`8387`)
- Bug in ``NDFrame.equals`` gives false negatives with dtype=object (:issue:`8437`)
- Bug in assignment with indexer where type diversity would break alignment (:issue:`8258`)
- Bug in ``NDFrame.loc`` indexing when row/column names were lost when target was a list/ndarray (:issue:`6552`)
- Regression in ``NDFrame.loc`` indexing when rows/columns were converted to Float64Index if target was an empty list/ndarray (:issue:`7774`)
- Bug in ``Series`` that allows it to be indexed by a ``DataFrame`` which has unexpected results.  Such indexing is no longer permitted (:issue:`8444`)
- Bug in item assignment of a ``DataFrame`` with MultiIndex columns where right-hand-side columns were not aligned (:issue:`7655`)
- Suppress FutureWarning generated by NumPy when comparing object arrays containing NaN for equality (:issue:`7065`)
- Bug in ``DataFrame.eval()`` where the dtype of the ``not`` operator (``~``)
  was not correctly inferred as ``bool``.


.. _whatsnew_0.15.0.contributors:

Contributors
~~~~~~~~~~~~

.. contributors:: v0.14.1..v0.15.0