1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303
|
.. _whatsnew_0150:
Version 0.15.0 (October 18, 2014)
---------------------------------
{{ header }}
This is a major release from 0.14.1 and includes a small number of API changes, several new features,
enhancements, and performance improvements along with a large number of bug fixes. We recommend that all
users upgrade to this version.
.. warning::
pandas >= 0.15.0 will no longer support compatibility with NumPy versions <
1.7.0. If you want to use the latest versions of pandas, please upgrade to
NumPy >= 1.7.0 (:issue:`7711`)
- Highlights include:
- The ``Categorical`` type was integrated as a first-class pandas type, see :ref:`here <whatsnew_0150.cat>`
- New scalar type ``Timedelta``, and a new index type ``TimedeltaIndex``, see :ref:`here <whatsnew_0150.timedeltaindex>`
- New datetimelike properties accessor ``.dt`` for Series, see :ref:`Datetimelike Properties <whatsnew_0150.dt>`
- New DataFrame default display for ``df.info()`` to include memory usage, see :ref:`Memory Usage <whatsnew_0150.memory>`
- ``read_csv`` will now by default ignore blank lines when parsing, see :ref:`here <whatsnew_0150.blanklines>`
- API change in using Indexes in set operations, see :ref:`here <whatsnew_0150.index_set_ops>`
- Enhancements in the handling of timezones, see :ref:`here <whatsnew_0150.tz>`
- A lot of improvements to the rolling and expanding moment functions, see :ref:`here <whatsnew_0150.roll>`
- Internal refactoring of the ``Index`` class to no longer sub-class ``ndarray``, see :ref:`Internal Refactoring <whatsnew_0150.refactoring>`
- dropping support for ``PyTables`` less than version 3.0.0, and ``numexpr`` less than version 2.1 (:issue:`7990`)
- Split indexing documentation into :ref:`Indexing and Selecting Data <indexing>` and :ref:`MultiIndex / Advanced Indexing <advanced>`
- Split out string methods documentation into :ref:`Working with Text Data <text>`
- Check the :ref:`API Changes <whatsnew_0150.api>` and :ref:`deprecations <whatsnew_0150.deprecations>` before updating
- :ref:`Other Enhancements <whatsnew_0150.enhancements>`
- :ref:`Performance Improvements <whatsnew_0150.performance>`
- :ref:`Bug Fixes <whatsnew_0150.bug_fixes>`
.. warning::
In 0.15.0 ``Index`` has internally been refactored to no longer sub-class ``ndarray``
but instead subclass ``PandasObject``, similarly to the rest of the pandas objects. This change allows very easy sub-classing and creation of new index types. This should be
a transparent change with only very limited API implications (See the :ref:`Internal Refactoring <whatsnew_0150.refactoring>`)
.. warning::
The refactoring in :class:`~pandas.Categorical` changed the two argument constructor from
"codes/labels and levels" to "values and levels (now called 'categories')". This can lead to subtle bugs. If you use
:class:`~pandas.Categorical` directly, please audit your code before updating to this pandas
version and change it to use the :meth:`~pandas.Categorical.from_codes` constructor. See more on ``Categorical`` :ref:`here <whatsnew_0150.cat>`
New features
~~~~~~~~~~~~
.. _whatsnew_0150.cat:
Categoricals in Series/DataFrame
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
:class:`~pandas.Categorical` can now be included in ``Series`` and ``DataFrames`` and gained new
methods to manipulate. Thanks to Jan Schulz for much of this API/implementation. (:issue:`3943`, :issue:`5313`, :issue:`5314`,
:issue:`7444`, :issue:`7839`, :issue:`7848`, :issue:`7864`, :issue:`7914`, :issue:`7768`, :issue:`8006`, :issue:`3678`,
:issue:`8075`, :issue:`8076`, :issue:`8143`, :issue:`8453`, :issue:`8518`).
For full docs, see the :ref:`categorical introduction <categorical>` and the
:ref:`API documentation <api.arrays.categorical>`.
.. ipython:: python
df = pd.DataFrame({"id": [1, 2, 3, 4, 5, 6],
"raw_grade": ['a', 'b', 'b', 'a', 'a', 'e']})
df["grade"] = df["raw_grade"].astype("category")
df["grade"]
# Rename the categories
df["grade"] = df["grade"].cat.rename_categories(["very good", "good", "very bad"])
# Reorder the categories and simultaneously add the missing categories
df["grade"] = df["grade"].cat.set_categories(["very bad", "bad",
"medium", "good", "very good"])
df["grade"]
df.sort_values("grade")
df.groupby("grade", observed=False).size()
- ``pandas.core.group_agg`` and ``pandas.core.factor_agg`` were removed. As an alternative, construct
a dataframe and use ``df.groupby(<group>).agg(<func>)``.
- Supplying "codes/labels and levels" to the :class:`~pandas.Categorical` constructor is not
supported anymore. Supplying two arguments to the constructor is now interpreted as
"values and levels (now called 'categories')". Please change your code to use the :meth:`~pandas.Categorical.from_codes`
constructor.
- The ``Categorical.labels`` attribute was renamed to ``Categorical.codes`` and is read
only. If you want to manipulate codes, please use one of the
:ref:`API methods on Categoricals <api.arrays.categorical>`.
- The ``Categorical.levels`` attribute is renamed to ``Categorical.categories``.
.. _whatsnew_0150.timedeltaindex:
TimedeltaIndex/scalar
^^^^^^^^^^^^^^^^^^^^^
We introduce a new scalar type ``Timedelta``, which is a subclass of ``datetime.timedelta``, and behaves in a similar manner,
but allows compatibility with ``np.timedelta64`` types as well as a host of custom representation, parsing, and attributes.
This type is very similar to how ``Timestamp`` works for ``datetimes``. It is a nice-API box for the type. See the :ref:`docs <timedeltas.timedeltas>`.
(:issue:`3009`, :issue:`4533`, :issue:`8209`, :issue:`8187`, :issue:`8190`, :issue:`7869`, :issue:`7661`, :issue:`8345`, :issue:`8471`)
.. warning::
``Timedelta`` scalars (and ``TimedeltaIndex``) component fields are *not the same* as the component fields on a ``datetime.timedelta`` object. For example, ``.seconds`` on a ``datetime.timedelta`` object returns the total number of seconds combined between ``hours``, ``minutes`` and ``seconds``. In contrast, the pandas ``Timedelta`` breaks out hours, minutes, microseconds and nanoseconds separately.
.. code-block:: ipython
# Timedelta accessor
In [9]: tds = pd.Timedelta('31 days 5 min 3 sec')
In [10]: tds.minutes
Out[10]: 5L
In [11]: tds.seconds
Out[11]: 3L
# datetime.timedelta accessor
# this is 5 minutes * 60 + 3 seconds
In [12]: tds.to_pytimedelta().seconds
Out[12]: 303
**Note**: this is no longer true starting from v0.16.0, where full
compatibility with ``datetime.timedelta`` is introduced. See the
:ref:`0.16.0 whatsnew entry <whatsnew_0160.api_breaking.timedelta>`
.. warning::
Prior to 0.15.0 ``pd.to_timedelta`` would return a ``Series`` for list-like/Series input, and a ``np.timedelta64`` for scalar input.
It will now return a ``TimedeltaIndex`` for list-like input, ``Series`` for Series input, and ``Timedelta`` for scalar input.
The arguments to ``pd.to_timedelta`` are now ``(arg,unit='ns',box=True,coerce=False)``, previously were ``(arg,box=True,unit='ns')`` as these are more logical.
Construct a scalar
.. ipython:: python
pd.Timedelta('1 days 06:05:01.00003')
pd.Timedelta('15.5us')
pd.Timedelta('1 hour 15.5us')
# negative Timedeltas have this string repr
# to be more consistent with datetime.timedelta conventions
pd.Timedelta('-1us')
# a NaT
pd.Timedelta('nan')
Access fields for a ``Timedelta``
.. ipython:: python
td = pd.Timedelta('1 hour 3m 15.5us')
td.seconds
td.microseconds
td.nanoseconds
Construct a ``TimedeltaIndex``
.. ipython:: python
:suppress:
import datetime
.. ipython:: python
pd.TimedeltaIndex(['1 days', '1 days, 00:00:05',
np.timedelta64(2, 'D'),
datetime.timedelta(days=2, seconds=2)])
Constructing a ``TimedeltaIndex`` with a regular range
.. ipython:: python
pd.timedelta_range('1 days', periods=5, freq='D')
.. code-block:: python
In [20]: pd.timedelta_range(start='1 days', end='2 days', freq='30T')
Out[20]:
TimedeltaIndex(['1 days 00:00:00', '1 days 00:30:00', '1 days 01:00:00',
'1 days 01:30:00', '1 days 02:00:00', '1 days 02:30:00',
'1 days 03:00:00', '1 days 03:30:00', '1 days 04:00:00',
'1 days 04:30:00', '1 days 05:00:00', '1 days 05:30:00',
'1 days 06:00:00', '1 days 06:30:00', '1 days 07:00:00',
'1 days 07:30:00', '1 days 08:00:00', '1 days 08:30:00',
'1 days 09:00:00', '1 days 09:30:00', '1 days 10:00:00',
'1 days 10:30:00', '1 days 11:00:00', '1 days 11:30:00',
'1 days 12:00:00', '1 days 12:30:00', '1 days 13:00:00',
'1 days 13:30:00', '1 days 14:00:00', '1 days 14:30:00',
'1 days 15:00:00', '1 days 15:30:00', '1 days 16:00:00',
'1 days 16:30:00', '1 days 17:00:00', '1 days 17:30:00',
'1 days 18:00:00', '1 days 18:30:00', '1 days 19:00:00',
'1 days 19:30:00', '1 days 20:00:00', '1 days 20:30:00',
'1 days 21:00:00', '1 days 21:30:00', '1 days 22:00:00',
'1 days 22:30:00', '1 days 23:00:00', '1 days 23:30:00',
'2 days 00:00:00'],
dtype='timedelta64[ns]', freq='30T')
You can now use a ``TimedeltaIndex`` as the index of a pandas object
.. ipython:: python
s = pd.Series(np.arange(5),
index=pd.timedelta_range('1 days', periods=5, freq='s'))
s
You can select with partial string selections
.. ipython:: python
s['1 day 00:00:02']
s['1 day':'1 day 00:00:02']
Finally, the combination of ``TimedeltaIndex`` with ``DatetimeIndex`` allow certain combination operations that are ``NaT`` preserving:
.. ipython:: python
tdi = pd.TimedeltaIndex(['1 days', pd.NaT, '2 days'])
tdi.tolist()
dti = pd.date_range('20130101', periods=3)
dti.tolist()
(dti + tdi).tolist()
(dti - tdi).tolist()
- iteration of a ``Series`` e.g. ``list(Series(...))`` of ``timedelta64[ns]`` would prior to v0.15.0 return ``np.timedelta64`` for each element. These will now be wrapped in ``Timedelta``.
.. _whatsnew_0150.memory:
Memory usage
^^^^^^^^^^^^
Implemented methods to find memory usage of a DataFrame. See the :ref:`FAQ <df-memory-usage>` for more. (:issue:`6852`).
A new display option ``display.memory_usage`` (see :ref:`options`) sets the default behavior of the ``memory_usage`` argument in the ``df.info()`` method. By default ``display.memory_usage`` is ``True``.
.. ipython:: python
dtypes = ['int64', 'float64', 'datetime64[ns]', 'timedelta64[ns]',
'complex128', 'object', 'bool']
n = 5000
data = {t: np.random.randint(100, size=n).astype(t) for t in dtypes}
df = pd.DataFrame(data)
df['categorical'] = df['object'].astype('category')
df.info()
Additionally :meth:`~pandas.DataFrame.memory_usage` is an available method for a dataframe object which returns the memory usage of each column.
.. ipython:: python
df.memory_usage(index=True)
.. _whatsnew_0150.dt:
Series.dt accessor
^^^^^^^^^^^^^^^^^^
``Series`` has gained an accessor to succinctly return datetime like properties for the *values* of the Series, if its a datetime/period like Series. (:issue:`7207`)
This will return a Series, indexed like the existing Series. See the :ref:`docs <basics.dt_accessors>`
.. ipython:: python
# datetime
s = pd.Series(pd.date_range('20130101 09:10:12', periods=4))
s
s.dt.hour
s.dt.second
s.dt.day
s.dt.freq
This enables nice expressions like this:
.. ipython:: python
s[s.dt.day == 2]
You can easily produce tz aware transformations:
.. ipython:: python
stz = s.dt.tz_localize('US/Eastern')
stz
stz.dt.tz
You can also chain these types of operations:
.. ipython:: python
s.dt.tz_localize('UTC').dt.tz_convert('US/Eastern')
The ``.dt`` accessor works for period and timedelta dtypes.
.. ipython:: python
# period
s = pd.Series(pd.period_range('20130101', periods=4, freq='D'))
s
s.dt.year
s.dt.day
.. ipython:: python
# timedelta
s = pd.Series(pd.timedelta_range('1 day 00:00:05', periods=4, freq='s'))
s
s.dt.days
s.dt.seconds
s.dt.components
.. _whatsnew_0150.tz:
Timezone handling improvements
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- ``tz_localize(None)`` for tz-aware ``Timestamp`` and ``DatetimeIndex`` now removes timezone holding local time,
previously this resulted in ``Exception`` or ``TypeError`` (:issue:`7812`)
.. code-block:: ipython
In [58]: ts = pd.Timestamp('2014-08-01 09:00', tz='US/Eastern')
In[59]: ts
Out[59]: Timestamp('2014-08-01 09:00:00-0400', tz='US/Eastern')
In [60]: ts.tz_localize(None)
Out[60]: Timestamp('2014-08-01 09:00:00')
In [61]: didx = pd.date_range(start='2014-08-01 09:00', freq='H',
....: periods=10, tz='US/Eastern')
....:
In [62]: didx
Out[62]:
DatetimeIndex(['2014-08-01 09:00:00-04:00', '2014-08-01 10:00:00-04:00',
'2014-08-01 11:00:00-04:00', '2014-08-01 12:00:00-04:00',
'2014-08-01 13:00:00-04:00', '2014-08-01 14:00:00-04:00',
'2014-08-01 15:00:00-04:00', '2014-08-01 16:00:00-04:00',
'2014-08-01 17:00:00-04:00', '2014-08-01 18:00:00-04:00'],
dtype='datetime64[ns, US/Eastern]', freq='H')
In [63]: didx.tz_localize(None)
Out[63]:
DatetimeIndex(['2014-08-01 09:00:00', '2014-08-01 10:00:00',
'2014-08-01 11:00:00', '2014-08-01 12:00:00',
'2014-08-01 13:00:00', '2014-08-01 14:00:00',
'2014-08-01 15:00:00', '2014-08-01 16:00:00',
'2014-08-01 17:00:00', '2014-08-01 18:00:00'],
dtype='datetime64[ns]', freq=None)
- ``tz_localize`` now accepts the ``ambiguous`` keyword which allows for passing an array of bools
indicating whether the date belongs in DST or not, 'NaT' for setting transition times to NaT,
'infer' for inferring DST/non-DST, and 'raise' (default) for an ``AmbiguousTimeError`` to be raised. See :ref:`the docs<timeseries.timezone_ambiguous>` for more details (:issue:`7943`)
- ``DataFrame.tz_localize`` and ``DataFrame.tz_convert`` now accepts an optional ``level`` argument
for localizing a specific level of a MultiIndex (:issue:`7846`)
- ``Timestamp.tz_localize`` and ``Timestamp.tz_convert`` now raise ``TypeError`` in error cases, rather than ``Exception`` (:issue:`8025`)
- a timeseries/index localized to UTC when inserted into a Series/DataFrame will preserve the UTC timezone (rather than being a naive ``datetime64[ns]``) as ``object`` dtype (:issue:`8411`)
- ``Timestamp.__repr__`` displays ``dateutil.tz.tzoffset`` info (:issue:`7907`)
.. _whatsnew_0150.roll:
Rolling/expanding moments improvements
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- :func:`rolling_min`, :func:`rolling_max`, :func:`rolling_cov`, and :func:`rolling_corr`
now return objects with all ``NaN`` when ``len(arg) < min_periods <= window`` rather
than raising. (This makes all rolling functions consistent in this behavior). (:issue:`7766`)
Prior to 0.15.0
.. ipython:: python
s = pd.Series([10, 11, 12, 13])
.. code-block:: ipython
In [15]: pd.rolling_min(s, window=10, min_periods=5)
ValueError: min_periods (5) must be <= window (4)
New behavior
.. code-block:: ipython
In [4]: pd.rolling_min(s, window=10, min_periods=5)
Out[4]:
0 NaN
1 NaN
2 NaN
3 NaN
dtype: float64
- :func:`rolling_max`, :func:`rolling_min`, :func:`rolling_sum`, :func:`rolling_mean`, :func:`rolling_median`,
:func:`rolling_std`, :func:`rolling_var`, :func:`rolling_skew`, :func:`rolling_kurt`, :func:`rolling_quantile`,
:func:`rolling_cov`, :func:`rolling_corr`, :func:`rolling_corr_pairwise`,
:func:`rolling_window`, and :func:`rolling_apply` with ``center=True`` previously would return a result of the same
structure as the input ``arg`` with ``NaN`` in the final ``(window-1)/2`` entries.
Now the final ``(window-1)/2`` entries of the result are calculated as if the input ``arg`` were followed
by ``(window-1)/2`` ``NaN`` values (or with shrinking windows, in the case of :func:`rolling_apply`).
(:issue:`7925`, :issue:`8269`)
Prior behavior (note final value is ``NaN``):
.. code-block:: ipython
In [7]: pd.rolling_sum(Series(range(4)), window=3, min_periods=0, center=True)
Out[7]:
0 1
1 3
2 6
3 NaN
dtype: float64
New behavior (note final value is ``5 = sum([2, 3, NaN])``):
.. code-block:: ipython
In [7]: pd.rolling_sum(pd.Series(range(4)), window=3,
....: min_periods=0, center=True)
Out[7]:
0 1
1 3
2 6
3 5
dtype: float64
- :func:`rolling_window` now normalizes the weights properly in rolling mean mode (`mean=True`) so that
the calculated weighted means (e.g. 'triang', 'gaussian') are distributed about the same means as those
calculated without weighting (i.e. 'boxcar'). See :ref:`the note on normalization <window.weighted>` for further details. (:issue:`7618`)
.. ipython:: python
s = pd.Series([10.5, 8.8, 11.4, 9.7, 9.3])
Behavior prior to 0.15.0:
.. code-block:: ipython
In [39]: pd.rolling_window(s, window=3, win_type='triang', center=True)
Out[39]:
0 NaN
1 6.583333
2 6.883333
3 6.683333
4 NaN
dtype: float64
New behavior
.. code-block:: ipython
In [10]: pd.rolling_window(s, window=3, win_type='triang', center=True)
Out[10]:
0 NaN
1 9.875
2 10.325
3 10.025
4 NaN
dtype: float64
- Removed ``center`` argument from all :func:`expanding_ <expanding_apply>` functions (see :ref:`list <api.functions_expanding>`),
as the results produced when ``center=True`` did not make much sense. (:issue:`7925`)
- Added optional ``ddof`` argument to :func:`expanding_cov` and :func:`rolling_cov`.
The default value of ``1`` is backwards-compatible. (:issue:`8279`)
- Documented the ``ddof`` argument to :func:`expanding_var`, :func:`expanding_std`,
:func:`rolling_var`, and :func:`rolling_std`. These functions' support of a
``ddof`` argument (with a default value of ``1``) was previously undocumented. (:issue:`8064`)
- :func:`ewma`, :func:`ewmstd`, :func:`ewmvol`, :func:`ewmvar`, :func:`ewmcov`, and :func:`ewmcorr`
now interpret ``min_periods`` in the same manner that the :func:`rolling_*()` and :func:`expanding_*()` functions do:
a given result entry will be ``NaN`` if the (expanding, in this case) window does not contain
at least ``min_periods`` values. The previous behavior was to set to ``NaN`` the ``min_periods`` entries
starting with the first non- ``NaN`` value. (:issue:`7977`)
Prior behavior (note values start at index ``2``, which is ``min_periods`` after index ``0``
(the index of the first non-empty value)):
.. ipython:: python
s = pd.Series([1, None, None, None, 2, 3])
.. code-block:: ipython
In [51]: pd.ewma(s, com=3., min_periods=2)
Out[51]:
0 NaN
1 NaN
2 1.000000
3 1.000000
4 1.571429
5 2.189189
dtype: float64
New behavior (note values start at index ``4``, the location of the 2nd (since ``min_periods=2``) non-empty value):
.. code-block:: ipython
In [2]: pd.ewma(s, com=3., min_periods=2)
Out[2]:
0 NaN
1 NaN
2 NaN
3 NaN
4 1.759644
5 2.383784
dtype: float64
- :func:`ewmstd`, :func:`ewmvol`, :func:`ewmvar`, :func:`ewmcov`, and :func:`ewmcorr`
now have an optional ``adjust`` argument, just like :func:`ewma` does,
affecting how the weights are calculated.
The default value of ``adjust`` is ``True``, which is backwards-compatible.
See :ref:`Exponentially weighted moment functions <window.exponentially_weighted>` for details. (:issue:`7911`)
- :func:`ewma`, :func:`ewmstd`, :func:`ewmvol`, :func:`ewmvar`, :func:`ewmcov`, and :func:`ewmcorr`
now have an optional ``ignore_na`` argument.
When ``ignore_na=False`` (the default), missing values are taken into account in the weights calculation.
When ``ignore_na=True`` (which reproduces the pre-0.15.0 behavior), missing values are ignored in the weights calculation.
(:issue:`7543`)
.. code-block:: ipython
In [7]: pd.ewma(pd.Series([None, 1., 8.]), com=2.)
Out[7]:
0 NaN
1 1.0
2 5.2
dtype: float64
In [8]: pd.ewma(pd.Series([1., None, 8.]), com=2.,
....: ignore_na=True) # pre-0.15.0 behavior
Out[8]:
0 1.0
1 1.0
2 5.2
dtype: float64
In [9]: pd.ewma(pd.Series([1., None, 8.]), com=2.,
....: ignore_na=False) # new default
Out[9]:
0 1.000000
1 1.000000
2 5.846154
dtype: float64
.. warning::
By default (``ignore_na=False``) the :func:`ewm*()` functions' weights calculation
in the presence of missing values is different than in pre-0.15.0 versions.
To reproduce the pre-0.15.0 calculation of weights in the presence of missing values
one must specify explicitly ``ignore_na=True``.
- Bug in :func:`expanding_cov`, :func:`expanding_corr`, :func:`rolling_cov`, :func:`rolling_cor`, :func:`ewmcov`, and :func:`ewmcorr`
returning results with columns sorted by name and producing an error for non-unique columns;
now handles non-unique columns and returns columns in original order
(except for the case of two DataFrames with ``pairwise=False``, where behavior is unchanged) (:issue:`7542`)
- Bug in :func:`rolling_count` and :func:`expanding_*()` functions unnecessarily producing error message for zero-length data (:issue:`8056`)
- Bug in :func:`rolling_apply` and :func:`expanding_apply` interpreting ``min_periods=0`` as ``min_periods=1`` (:issue:`8080`)
- Bug in :func:`expanding_std` and :func:`expanding_var` for a single value producing a confusing error message (:issue:`7900`)
- Bug in :func:`rolling_std` and :func:`rolling_var` for a single value producing ``0`` rather than ``NaN`` (:issue:`7900`)
- Bug in :func:`ewmstd`, :func:`ewmvol`, :func:`ewmvar`, and :func:`ewmcov`
calculation of de-biasing factors when ``bias=False`` (the default).
Previously an incorrect constant factor was used, based on ``adjust=True``, ``ignore_na=True``,
and an infinite number of observations.
Now a different factor is used for each entry, based on the actual weights
(analogous to the usual ``N/(N-1)`` factor).
In particular, for a single point a value of ``NaN`` is returned when ``bias=False``,
whereas previously a value of (approximately) ``0`` was returned.
For example, consider the following pre-0.15.0 results for ``ewmvar(..., bias=False)``,
and the corresponding debiasing factors:
.. ipython:: python
s = pd.Series([1., 2., 0., 4.])
.. code-block:: ipython
In [89]: pd.ewmvar(s, com=2., bias=False)
Out[89]:
0 -2.775558e-16
1 3.000000e-01
2 9.556787e-01
3 3.585799e+00
dtype: float64
In [90]: pd.ewmvar(s, com=2., bias=False) / pd.ewmvar(s, com=2., bias=True)
Out[90]:
0 1.25
1 1.25
2 1.25
3 1.25
dtype: float64
Note that entry ``0`` is approximately 0, and the debiasing factors are a constant 1.25.
By comparison, the following 0.15.0 results have a ``NaN`` for entry ``0``,
and the debiasing factors are decreasing (towards 1.25):
.. code-block:: ipython
In [14]: pd.ewmvar(s, com=2., bias=False)
Out[14]:
0 NaN
1 0.500000
2 1.210526
3 4.089069
dtype: float64
In [15]: pd.ewmvar(s, com=2., bias=False) / pd.ewmvar(s, com=2., bias=True)
Out[15]:
0 NaN
1 2.083333
2 1.583333
3 1.425439
dtype: float64
See :ref:`Exponentially weighted moment functions <window.exponentially_weighted>` for details. (:issue:`7912`)
.. _whatsnew_0150.sql:
Improvements in the SQL IO module
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- Added support for a ``chunksize`` parameter to ``to_sql`` function. This allows DataFrame to be written in chunks and avoid packet-size overflow errors (:issue:`8062`).
- Added support for a ``chunksize`` parameter to ``read_sql`` function. Specifying this argument will return an iterator through chunks of the query result (:issue:`2908`).
- Added support for writing ``datetime.date`` and ``datetime.time`` object columns with ``to_sql`` (:issue:`6932`).
- Added support for specifying a ``schema`` to read from/write to with ``read_sql_table`` and ``to_sql`` (:issue:`7441`, :issue:`7952`).
For example:
.. code-block:: python
df.to_sql('table', engine, schema='other_schema') # noqa F821
pd.read_sql_table('table', engine, schema='other_schema') # noqa F821
- Added support for writing ``NaN`` values with ``to_sql`` (:issue:`2754`).
- Added support for writing datetime64 columns with ``to_sql`` for all database flavors (:issue:`7103`).
.. _whatsnew_0150.api:
Backwards incompatible API changes
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. _whatsnew_0150.api_breaking:
Breaking changes
^^^^^^^^^^^^^^^^
API changes related to ``Categorical`` (see :ref:`here <whatsnew_0150.cat>`
for more details):
- The ``Categorical`` constructor with two arguments changed from
"codes/labels and levels" to "values and levels (now called 'categories')".
This can lead to subtle bugs. If you use :class:`~pandas.Categorical` directly,
please audit your code by changing it to use the :meth:`~pandas.Categorical.from_codes`
constructor.
An old function call like (prior to 0.15.0):
.. code-block:: python
pd.Categorical([0,1,0,2,1], levels=['a', 'b', 'c'])
will have to adapted to the following to keep the same behaviour:
.. code-block:: ipython
In [2]: pd.Categorical.from_codes([0,1,0,2,1], categories=['a', 'b', 'c'])
Out[2]:
[a, b, a, c, b]
Categories (3, object): [a, b, c]
API changes related to the introduction of the ``Timedelta`` scalar (see
:ref:`above <whatsnew_0150.timedeltaindex>` for more details):
- Prior to 0.15.0 :func:`to_timedelta` would return a ``Series`` for list-like/Series input,
and a ``np.timedelta64`` for scalar input. It will now return a ``TimedeltaIndex`` for
list-like input, ``Series`` for Series input, and ``Timedelta`` for scalar input.
For API changes related to the rolling and expanding functions, see detailed overview :ref:`above <whatsnew_0150.roll>`.
Other notable API changes:
- Consistency when indexing with ``.loc`` and a list-like indexer when no values are found.
.. ipython:: python
df = pd.DataFrame([['a'], ['b']], index=[1, 2])
df
In prior versions there was a difference in these two constructs:
- ``df.loc[[3]]`` would return a frame reindexed by 3 (with all ``np.nan`` values)
- ``df.loc[[3],:]`` would raise ``KeyError``.
Both will now raise a ``KeyError``. The rule is that *at least 1* indexer must be found when using a list-like and ``.loc`` (:issue:`7999`)
Furthermore in prior versions these were also different:
- ``df.loc[[1,3]]`` would return a frame reindexed by [1,3]
- ``df.loc[[1,3],:]`` would raise ``KeyError``.
Both will now return a frame reindex by [1,3]. E.g.
.. code-block:: ipython
In [3]: df.loc[[1, 3]]
Out[3]:
0
1 a
3 NaN
In [4]: df.loc[[1, 3], :]
Out[4]:
0
1 a
3 NaN
This can also be seen in multi-axis indexing with a ``Panel``.
.. code-block:: python
>>> p = pd.Panel(np.arange(2 * 3 * 4).reshape(2, 3, 4),
... items=['ItemA', 'ItemB'],
... major_axis=[1, 2, 3],
... minor_axis=['A', 'B', 'C', 'D'])
>>> p
<class 'pandas.core.panel.Panel'>
Dimensions: 2 (items) x 3 (major_axis) x 4 (minor_axis)
Items axis: ItemA to ItemB
Major_axis axis: 1 to 3
Minor_axis axis: A to D
The following would raise ``KeyError`` prior to 0.15.0:
.. code-block:: ipython
In [5]:
Out[5]:
ItemA ItemD
1 3 NaN
2 7 NaN
3 11 NaN
Furthermore, ``.loc`` will raise If no values are found in a MultiIndex with a list-like indexer:
.. ipython:: python
:okexcept:
s = pd.Series(np.arange(3, dtype='int64'),
index=pd.MultiIndex.from_product([['A'],
['foo', 'bar', 'baz']],
names=['one', 'two'])
).sort_index()
s
try:
s.loc[['D']]
except KeyError as e:
print("KeyError: " + str(e))
- Assigning values to ``None`` now considers the dtype when choosing an 'empty' value (:issue:`7941`).
Previously, assigning to ``None`` in numeric containers changed the
dtype to object (or errored, depending on the call). It now uses
``NaN``:
.. ipython:: python
s = pd.Series([1., 2., 3.])
s.loc[0] = None
s
``NaT`` is now used similarly for datetime containers.
For object containers, we now preserve ``None`` values (previously these
were converted to ``NaN`` values).
.. ipython:: python
s = pd.Series(["a", "b", "c"])
s.loc[0] = None
s
To insert a ``NaN``, you must explicitly use ``np.nan``. See the :ref:`docs <missing.inserting>`.
- In prior versions, updating a pandas object inplace would not reflect in other python references to this object. (:issue:`8511`, :issue:`5104`)
.. ipython:: python
s = pd.Series([1, 2, 3])
s2 = s
s += 1.5
Behavior prior to v0.15.0
.. code-block:: ipython
# the original object
In [5]: s
Out[5]:
0 2.5
1 3.5
2 4.5
dtype: float64
# a reference to the original object
In [7]: s2
Out[7]:
0 1
1 2
2 3
dtype: int64
This is now the correct behavior
.. ipython:: python
# the original object
s
# a reference to the original object
s2
.. _whatsnew_0150.blanklines:
- Made both the C-based and Python engines for ``read_csv`` and ``read_table`` ignore empty lines in input as well as
white space-filled lines, as long as ``sep`` is not white space. This is an API change
that can be controlled by the keyword parameter ``skip_blank_lines``. See :ref:`the docs <io.skiplines>` (:issue:`4466`)
- A timeseries/index localized to UTC when inserted into a Series/DataFrame will preserve the UTC timezone
and inserted as ``object`` dtype rather than being converted to a naive ``datetime64[ns]`` (:issue:`8411`).
- Bug in passing a ``DatetimeIndex`` with a timezone that was not being retained in DataFrame construction from a dict (:issue:`7822`)
In prior versions this would drop the timezone, now it retains the timezone,
but gives a column of ``object`` dtype:
.. ipython:: python
i = pd.date_range('1/1/2011', periods=3, freq='10s', tz='US/Eastern')
i
df = pd.DataFrame({'a': i})
df
df.dtypes
Previously this would have yielded a column of ``datetime64`` dtype, but without timezone info.
The behaviour of assigning a column to an existing dataframe as ``df['a'] = i``
remains unchanged (this already returned an ``object`` column with a timezone).
- When passing multiple levels to :meth:`~pandas.DataFrame.stack()`, it will now raise a ``ValueError`` when the
levels aren't all level names or all level numbers (:issue:`7660`). See
:ref:`Reshaping by stacking and unstacking <reshaping.stack_multiple>`.
- Raise a ``ValueError`` in ``df.to_hdf`` with 'fixed' format, if ``df`` has non-unique columns as the resulting file will be broken (:issue:`7761`)
- ``SettingWithCopy`` raise/warnings (according to the option ``mode.chained_assignment``) will now be issued when setting a value on a sliced mixed-dtype DataFrame using chained-assignment. (:issue:`7845`, :issue:`7950`)
.. code-block:: python
In [1]: df = pd.DataFrame(np.arange(0, 9), columns=['count'])
In [2]: df['group'] = 'b'
In [3]: df.iloc[0:5]['group'] = 'a'
/usr/local/bin/ipython:1: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy
- ``merge``, ``DataFrame.merge``, and ``ordered_merge`` now return the same type
as the ``left`` argument (:issue:`7737`).
- Previously an enlargement with a mixed-dtype frame would act unlike ``.append`` which will preserve dtypes (related :issue:`2578`, :issue:`8176`):
.. ipython:: python
df = pd.DataFrame([[True, 1], [False, 2]],
columns=["female", "fitness"])
df
df.dtypes
# dtypes are now preserved
df.loc[2] = df.loc[1]
df
df.dtypes
- ``Series.to_csv()`` now returns a string when ``path=None``, matching the behaviour of ``DataFrame.to_csv()`` (:issue:`8215`).
- ``read_hdf`` now raises ``IOError`` when a file that doesn't exist is passed in. Previously, a new, empty file was created, and a ``KeyError`` raised (:issue:`7715`).
- ``DataFrame.info()`` now ends its output with a newline character (:issue:`8114`)
- Concatenating no objects will now raise a ``ValueError`` rather than a bare ``Exception``.
- Merge errors will now be sub-classes of ``ValueError`` rather than raw ``Exception`` (:issue:`8501`)
- ``DataFrame.plot`` and ``Series.plot`` keywords are now have consistent orders (:issue:`8037`)
.. _whatsnew_0150.refactoring:
Internal refactoring
^^^^^^^^^^^^^^^^^^^^
In 0.15.0 ``Index`` has internally been refactored to no longer sub-class ``ndarray``
but instead subclass ``PandasObject``, similarly to the rest of the pandas objects. This
change allows very easy sub-classing and creation of new index types. This should be
a transparent change with only very limited API implications (:issue:`5080`, :issue:`7439`, :issue:`7796`, :issue:`8024`, :issue:`8367`, :issue:`7997`, :issue:`8522`):
- you may need to unpickle pandas version < 0.15.0 pickles using ``pd.read_pickle`` rather than ``pickle.load``. See :ref:`pickle docs <io.pickle>`
- when plotting with a ``PeriodIndex``, the matplotlib internal axes will now be arrays of ``Period`` rather than a ``PeriodIndex`` (this is similar to how a ``DatetimeIndex`` passes arrays of ``datetimes`` now)
- MultiIndexes will now raise similarly to other pandas objects w.r.t. truth testing, see :ref:`here <gotchas.truth>` (:issue:`7897`).
- When plotting a DatetimeIndex directly with matplotlib's ``plot`` function,
the axis labels will no longer be formatted as dates but as integers (the
internal representation of a ``datetime64``). **UPDATE** This is fixed
in 0.15.1, see :ref:`here <whatsnew_0151.datetime64_plotting>`.
.. _whatsnew_0150.deprecations:
Deprecations
^^^^^^^^^^^^
- The attributes ``Categorical`` ``labels`` and ``levels`` attributes are
deprecated and renamed to ``codes`` and ``categories``.
- The ``outtype`` argument to ``pd.DataFrame.to_dict`` has been deprecated in favor of ``orient``. (:issue:`7840`)
- The ``convert_dummies`` method has been deprecated in favor of
``get_dummies`` (:issue:`8140`)
- The ``infer_dst`` argument in ``tz_localize`` will be deprecated in favor of
``ambiguous`` to allow for more flexibility in dealing with DST transitions.
Replace ``infer_dst=True`` with ``ambiguous='infer'`` for the same behavior (:issue:`7943`).
See :ref:`the docs<timeseries.timezone_ambiguous>` for more details.
- The top-level ``pd.value_range`` has been deprecated and can be replaced by ``.describe()`` (:issue:`8481`)
.. _whatsnew_0150.index_set_ops:
- The ``Index`` set operations ``+`` and ``-`` were deprecated in order to provide these for numeric type operations on certain index types. ``+`` can be replaced by ``.union()`` or ``|``, and ``-`` by ``.difference()``. Further the method name ``Index.diff()`` is deprecated and can be replaced by ``Index.difference()`` (:issue:`8226`)
.. code-block:: python
# +
pd.Index(['a', 'b', 'c']) + pd.Index(['b', 'c', 'd'])
# should be replaced by
pd.Index(['a', 'b', 'c']).union(pd.Index(['b', 'c', 'd']))
.. code-block:: python
# -
pd.Index(['a', 'b', 'c']) - pd.Index(['b', 'c', 'd'])
# should be replaced by
pd.Index(['a', 'b', 'c']).difference(pd.Index(['b', 'c', 'd']))
- The ``infer_types`` argument to :func:`~pandas.read_html` now has no
effect and is deprecated (:issue:`7762`, :issue:`7032`).
.. _whatsnew_0150.prior_deprecations:
Removal of prior version deprecations/changes
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- Remove ``DataFrame.delevel`` method in favor of ``DataFrame.reset_index``
.. _whatsnew_0150.enhancements:
Enhancements
~~~~~~~~~~~~
Enhancements in the importing/exporting of Stata files:
- Added support for bool, uint8, uint16 and uint32 data types in ``to_stata`` (:issue:`7097`, :issue:`7365`)
- Added conversion option when importing Stata files (:issue:`8527`)
- ``DataFrame.to_stata`` and ``StataWriter`` check string length for
compatibility with limitations imposed in dta files where fixed-width
strings must contain 244 or fewer characters. Attempting to write Stata
dta files with strings longer than 244 characters raises a ``ValueError``. (:issue:`7858`)
- ``read_stata`` and ``StataReader`` can import missing data information into a
``DataFrame`` by setting the argument ``convert_missing`` to ``True``. When
using this options, missing values are returned as ``StataMissingValue``
objects and columns containing missing values have ``object`` data type. (:issue:`8045`)
Enhancements in the plotting functions:
- Added ``layout`` keyword to ``DataFrame.plot``. You can pass a tuple of ``(rows, columns)``, one of which can be ``-1`` to automatically infer (:issue:`6667`, :issue:`8071`).
- Allow to pass multiple axes to ``DataFrame.plot``, ``hist`` and ``boxplot`` (:issue:`5353`, :issue:`6970`, :issue:`7069`)
- Added support for ``c``, ``colormap`` and ``colorbar`` arguments for ``DataFrame.plot`` with ``kind='scatter'`` (:issue:`7780`)
- Histogram from ``DataFrame.plot`` with ``kind='hist'`` (:issue:`7809`), See :ref:`the docs<visualization.hist>`.
- Boxplot from ``DataFrame.plot`` with ``kind='box'`` (:issue:`7998`), See :ref:`the docs<visualization.box>`.
Other:
- ``read_csv`` now has a keyword parameter ``float_precision`` which specifies which floating-point converter the C engine should use during parsing, see :ref:`here <io.float_precision>` (:issue:`8002`, :issue:`8044`)
- Added ``searchsorted`` method to ``Series`` objects (:issue:`7447`)
- :func:`describe` on mixed-types DataFrames is more flexible. Type-based column filtering is now possible via the ``include``/``exclude`` arguments.
See the :ref:`docs <basics.describe>` (:issue:`8164`).
.. ipython:: python
df = pd.DataFrame({'catA': ['foo', 'foo', 'bar'] * 8,
'catB': ['a', 'b', 'c', 'd'] * 6,
'numC': np.arange(24),
'numD': np.arange(24.) + .5})
df.describe(include=["object"])
df.describe(include=["number", "object"], exclude=["float"])
Requesting all columns is possible with the shorthand 'all'
.. ipython:: python
df.describe(include='all')
Without those arguments, ``describe`` will behave as before, including only numerical columns or, if none are, only categorical columns. See also the :ref:`docs <basics.describe>`
- Added ``split`` as an option to the ``orient`` argument in ``pd.DataFrame.to_dict``. (:issue:`7840`)
- The ``get_dummies`` method can now be used on DataFrames. By default only
categorical columns are encoded as 0's and 1's, while other columns are
left untouched.
.. ipython:: python
df = pd.DataFrame({'A': ['a', 'b', 'a'], 'B': ['c', 'c', 'b'],
'C': [1, 2, 3]})
pd.get_dummies(df)
- ``PeriodIndex`` supports ``resolution`` as the same as ``DatetimeIndex`` (:issue:`7708`)
- ``pandas.tseries.holiday`` has added support for additional holidays and ways to observe holidays (:issue:`7070`)
- ``pandas.tseries.holiday.Holiday`` now supports a list of offsets in Python3 (:issue:`7070`)
- ``pandas.tseries.holiday.Holiday`` now supports a days_of_week parameter (:issue:`7070`)
- ``GroupBy.nth()`` now supports selecting multiple nth values (:issue:`7910`)
.. ipython:: python
business_dates = pd.date_range(start='4/1/2014', end='6/30/2014', freq='B')
df = pd.DataFrame(1, index=business_dates, columns=['a', 'b'])
# get the first, 4th, and last date index for each month
df.groupby([df.index.year, df.index.month]).nth([0, 3, -1])
- ``Period`` and ``PeriodIndex`` supports addition/subtraction with ``timedelta``-likes (:issue:`7966`)
If ``Period`` freq is ``D``, ``H``, ``T``, ``S``, ``L``, ``U``, ``N``, ``Timedelta``-like can be added if the result can have same freq. Otherwise, only the same ``offsets`` can be added.
.. code-block:: ipython
In [104]: idx = pd.period_range('2014-07-01 09:00', periods=5, freq='H')
In [105]: idx
Out[105]:
PeriodIndex(['2014-07-01 09:00', '2014-07-01 10:00', '2014-07-01 11:00',
'2014-07-01 12:00', '2014-07-01 13:00'],
dtype='period[H]')
In [106]: idx + pd.offsets.Hour(2)
Out[106]:
PeriodIndex(['2014-07-01 11:00', '2014-07-01 12:00', '2014-07-01 13:00',
'2014-07-01 14:00', '2014-07-01 15:00'],
dtype='period[H]')
In [107]: idx + pd.Timedelta('120m')
Out[107]:
PeriodIndex(['2014-07-01 11:00', '2014-07-01 12:00', '2014-07-01 13:00',
'2014-07-01 14:00', '2014-07-01 15:00'],
dtype='period[H]')
In [108]: idx = pd.period_range('2014-07', periods=5, freq='M')
In [109]: idx
Out[109]: PeriodIndex(['2014-07', '2014-08', '2014-09', '2014-10', '2014-11'], dtype='period[M]')
In [110]: idx + pd.offsets.MonthEnd(3)
Out[110]: PeriodIndex(['2014-10', '2014-11', '2014-12', '2015-01', '2015-02'], dtype='period[M]')
- Added experimental compatibility with ``openpyxl`` for versions >= 2.0. The ``DataFrame.to_excel``
method ``engine`` keyword now recognizes ``openpyxl1`` and ``openpyxl2``
which will explicitly require openpyxl v1 and v2 respectively, failing if
the requested version is not available. The ``openpyxl`` engine is a now a
meta-engine that automatically uses whichever version of openpyxl is
installed. (:issue:`7177`)
- ``DataFrame.fillna`` can now accept a ``DataFrame`` as a fill value (:issue:`8377`)
- Passing multiple levels to :meth:`~pandas.DataFrame.stack()` will now work when multiple level
numbers are passed (:issue:`7660`). See
:ref:`Reshaping by stacking and unstacking <reshaping.stack_multiple>`.
- :func:`set_names`, :func:`set_labels`, and :func:`set_levels` methods now take an optional ``level`` keyword argument to all modification of specific level(s) of a MultiIndex. Additionally :func:`set_names` now accepts a scalar string value when operating on an ``Index`` or on a specific level of a ``MultiIndex`` (:issue:`7792`)
.. ipython:: python
idx = pd.MultiIndex.from_product([['a'], range(3), list("pqr")],
names=['foo', 'bar', 'baz'])
idx.set_names('qux', level=0)
idx.set_names(['qux', 'corge'], level=[0, 1])
idx.set_levels(['a', 'b', 'c'], level='bar')
idx.set_levels([['a', 'b', 'c'], [1, 2, 3]], level=[1, 2])
- ``Index.isin`` now supports a ``level`` argument to specify which index level
to use for membership tests (:issue:`7892`, :issue:`7890`)
.. code-block:: ipython
In [1]: idx = pd.MultiIndex.from_product([[0, 1], ['a', 'b', 'c']])
In [2]: idx.values
Out[2]: array([(0, 'a'), (0, 'b'), (0, 'c'), (1, 'a'), (1, 'b'), (1, 'c')], dtype=object)
In [3]: idx.isin(['a', 'c', 'e'], level=1)
Out[3]: array([ True, False, True, True, False, True], dtype=bool)
- ``Index`` now supports ``duplicated`` and ``drop_duplicates``. (:issue:`4060`)
.. ipython:: python
idx = pd.Index([1, 2, 3, 4, 1, 2])
idx
idx.duplicated()
idx.drop_duplicates()
- add ``copy=True`` argument to ``pd.concat`` to enable pass through of complete blocks (:issue:`8252`)
- Added support for numpy 1.8+ data types (``bool_``, ``int_``, ``float_``, ``string_``) for conversion to R dataframe (:issue:`8400`)
.. _whatsnew_0150.performance:
Performance
~~~~~~~~~~~
- Performance improvements in ``DatetimeIndex.__iter__`` to allow faster iteration (:issue:`7683`)
- Performance improvements in ``Period`` creation (and ``PeriodIndex`` setitem) (:issue:`5155`)
- Improvements in Series.transform for significant performance gains (revised) (:issue:`6496`)
- Performance improvements in ``StataReader`` when reading large files (:issue:`8040`, :issue:`8073`)
- Performance improvements in ``StataWriter`` when writing large files (:issue:`8079`)
- Performance and memory usage improvements in multi-key ``groupby`` (:issue:`8128`)
- Performance improvements in groupby ``.agg`` and ``.apply`` where builtins max/min were not mapped to numpy/cythonized versions (:issue:`7722`)
- Performance improvement in writing to sql (``to_sql``) of up to 50% (:issue:`8208`).
- Performance benchmarking of groupby for large value of ngroups (:issue:`6787`)
- Performance improvement in ``CustomBusinessDay``, ``CustomBusinessMonth`` (:issue:`8236`)
- Performance improvement for ``MultiIndex.values`` for multi-level indexes containing datetimes (:issue:`8543`)
.. _whatsnew_0150.bug_fixes:
Bug fixes
~~~~~~~~~
- Bug in pivot_table, when using margins and a dict aggfunc (:issue:`8349`)
- Bug in ``read_csv`` where ``squeeze=True`` would return a view (:issue:`8217`)
- Bug in checking of table name in ``read_sql`` in certain cases (:issue:`7826`).
- Bug in ``DataFrame.groupby`` where ``Grouper`` does not recognize level when frequency is specified (:issue:`7885`)
- Bug in multiindexes dtypes getting mixed up when DataFrame is saved to SQL table (:issue:`8021`)
- Bug in ``Series`` 0-division with a float and integer operand dtypes (:issue:`7785`)
- Bug in ``Series.astype("unicode")`` not calling ``unicode`` on the values correctly (:issue:`7758`)
- Bug in ``DataFrame.as_matrix()`` with mixed ``datetime64[ns]`` and ``timedelta64[ns]`` dtypes (:issue:`7778`)
- Bug in ``HDFStore.select_column()`` not preserving UTC timezone info when selecting a ``DatetimeIndex`` (:issue:`7777`)
- Bug in ``to_datetime`` when ``format='%Y%m%d'`` and ``coerce=True`` are specified, where previously an object array was returned (rather than
a coerced time-series with ``NaT``), (:issue:`7930`)
- Bug in ``DatetimeIndex`` and ``PeriodIndex`` in-place addition and subtraction cause different result from normal one (:issue:`6527`)
- Bug in adding and subtracting ``PeriodIndex`` with ``PeriodIndex`` raise ``TypeError`` (:issue:`7741`)
- Bug in ``combine_first`` with ``PeriodIndex`` data raises ``TypeError`` (:issue:`3367`)
- Bug in MultiIndex slicing with missing indexers (:issue:`7866`)
- Bug in MultiIndex slicing with various edge cases (:issue:`8132`)
- Regression in MultiIndex indexing with a non-scalar type object (:issue:`7914`)
- Bug in ``Timestamp`` comparisons with ``==`` and ``int64`` dtype (:issue:`8058`)
- Bug in pickles contains ``DateOffset`` may raise ``AttributeError`` when ``normalize`` attribute is referred internally (:issue:`7748`)
- Bug in ``Panel`` when using ``major_xs`` and ``copy=False`` is passed (deprecation warning fails because of missing ``warnings``) (:issue:`8152`).
- Bug in pickle deserialization that failed for pre-0.14.1 containers with dup items trying to avoid ambiguity
when matching block and manager items, when there's only one block there's no ambiguity (:issue:`7794`)
- Bug in putting a ``PeriodIndex`` into a ``Series`` would convert to ``int64`` dtype, rather than ``object`` of ``Periods`` (:issue:`7932`)
- Bug in ``HDFStore`` iteration when passing a where (:issue:`8014`)
- Bug in ``DataFrameGroupby.transform`` when transforming with a passed non-sorted key (:issue:`8046`, :issue:`8430`)
- Bug in repeated timeseries line and area plot may result in ``ValueError`` or incorrect kind (:issue:`7733`)
- Bug in inference in a ``MultiIndex`` with ``datetime.date`` inputs (:issue:`7888`)
- Bug in ``get`` where an ``IndexError`` would not cause the default value to be returned (:issue:`7725`)
- Bug in ``offsets.apply``, ``rollforward`` and ``rollback`` may reset nanosecond (:issue:`7697`)
- Bug in ``offsets.apply``, ``rollforward`` and ``rollback`` may raise ``AttributeError`` if ``Timestamp`` has ``dateutil`` tzinfo (:issue:`7697`)
- Bug in sorting a MultiIndex frame with a ``Float64Index`` (:issue:`8017`)
- Bug in inconsistent panel setitem with a rhs of a ``DataFrame`` for alignment (:issue:`7763`)
- Bug in ``is_superperiod`` and ``is_subperiod`` cannot handle higher frequencies than ``S`` (:issue:`7760`, :issue:`7772`, :issue:`7803`)
- Bug in 32-bit platforms with ``Series.shift`` (:issue:`8129`)
- Bug in ``PeriodIndex.unique`` returns int64 ``np.ndarray`` (:issue:`7540`)
- Bug in ``groupby.apply`` with a non-affecting mutation in the function (:issue:`8467`)
- Bug in ``DataFrame.reset_index`` which has ``MultiIndex`` contains ``PeriodIndex`` or ``DatetimeIndex`` with tz raises ``ValueError`` (:issue:`7746`, :issue:`7793`)
- Bug in ``DataFrame.plot`` with ``subplots=True`` may draw unnecessary minor xticks and yticks (:issue:`7801`)
- Bug in ``StataReader`` which did not read variable labels in 117 files due to difference between Stata documentation and implementation (:issue:`7816`)
- Bug in ``StataReader`` where strings were always converted to 244 characters-fixed width irrespective of underlying string size (:issue:`7858`)
- Bug in ``DataFrame.plot`` and ``Series.plot`` may ignore ``rot`` and ``fontsize`` keywords (:issue:`7844`)
- Bug in ``DatetimeIndex.value_counts`` doesn't preserve tz (:issue:`7735`)
- Bug in ``PeriodIndex.value_counts`` results in ``Int64Index`` (:issue:`7735`)
- Bug in ``DataFrame.join`` when doing left join on index and there are multiple matches (:issue:`5391`)
- Bug in ``GroupBy.transform()`` where int groups with a transform that
didn't preserve the index were incorrectly truncated (:issue:`7972`).
- Bug in ``groupby`` where callable objects without name attributes would take the wrong path,
and produce a ``DataFrame`` instead of a ``Series`` (:issue:`7929`)
- Bug in ``groupby`` error message when a DataFrame grouping column is duplicated (:issue:`7511`)
- Bug in ``read_html`` where the ``infer_types`` argument forced coercion of
date-likes incorrectly (:issue:`7762`, :issue:`7032`).
- Bug in ``Series.str.cat`` with an index which was filtered as to not include the first item (:issue:`7857`)
- Bug in ``Timestamp`` cannot parse ``nanosecond`` from string (:issue:`7878`)
- Bug in ``Timestamp`` with string offset and ``tz`` results incorrect (:issue:`7833`)
- Bug in ``tslib.tz_convert`` and ``tslib.tz_convert_single`` may return different results (:issue:`7798`)
- Bug in ``DatetimeIndex.intersection`` of non-overlapping timestamps with tz raises ``IndexError`` (:issue:`7880`)
- Bug in alignment with TimeOps and non-unique indexes (:issue:`8363`)
- Bug in ``GroupBy.filter()`` where fast path vs. slow path made the filter
return a non scalar value that appeared valid but wasn't (:issue:`7870`).
- Bug in ``date_range()``/``DatetimeIndex()`` when the timezone was inferred from input dates yet incorrect
times were returned when crossing DST boundaries (:issue:`7835`, :issue:`7901`).
- Bug in ``to_excel()`` where a negative sign was being prepended to positive infinity and was absent for negative infinity (:issue:`7949`)
- Bug in area plot draws legend with incorrect ``alpha`` when ``stacked=True`` (:issue:`8027`)
- ``Period`` and ``PeriodIndex`` addition/subtraction with ``np.timedelta64`` results in incorrect internal representations (:issue:`7740`)
- Bug in ``Holiday`` with no offset or observance (:issue:`7987`)
- Bug in ``DataFrame.to_latex`` formatting when columns or index is a ``MultiIndex`` (:issue:`7982`).
- Bug in ``DateOffset`` around Daylight Savings Time produces unexpected results (:issue:`5175`).
- Bug in ``DataFrame.shift`` where empty columns would throw ``ZeroDivisionError`` on numpy 1.7 (:issue:`8019`)
- Bug in installation where ``html_encoding/*.html`` wasn't installed and
therefore some tests were not running correctly (:issue:`7927`).
- Bug in ``read_html`` where ``bytes`` objects were not tested for in
``_read`` (:issue:`7927`).
- Bug in ``DataFrame.stack()`` when one of the column levels was a datelike (:issue:`8039`)
- Bug in broadcasting numpy scalars with ``DataFrame`` (:issue:`8116`)
- Bug in ``pivot_table`` performed with nameless ``index`` and ``columns`` raises ``KeyError`` (:issue:`8103`)
- Bug in ``DataFrame.plot(kind='scatter')`` draws points and errorbars with different colors when the color is specified by ``c`` keyword (:issue:`8081`)
- Bug in ``Float64Index`` where ``iat`` and ``at`` were not testing and were
failing (:issue:`8092`).
- Bug in ``DataFrame.boxplot()`` where y-limits were not set correctly when
producing multiple axes (:issue:`7528`, :issue:`5517`).
- Bug in ``read_csv`` where line comments were not handled correctly given
a custom line terminator or ``delim_whitespace=True`` (:issue:`8122`).
- Bug in ``read_html`` where empty tables caused a ``StopIteration`` (:issue:`7575`)
- Bug in casting when setting a column in a same-dtype block (:issue:`7704`)
- Bug in accessing groups from a ``GroupBy`` when the original grouper
was a tuple (:issue:`8121`).
- Bug in ``.at`` that would accept integer indexers on a non-integer index and do fallback (:issue:`7814`)
- Bug with kde plot and NaNs (:issue:`8182`)
- Bug in ``GroupBy.count`` with float32 data type were nan values were not excluded (:issue:`8169`).
- Bug with stacked barplots and NaNs (:issue:`8175`).
- Bug in resample with non evenly divisible offsets (e.g. '7s') (:issue:`8371`)
- Bug in interpolation methods with the ``limit`` keyword when no values needed interpolating (:issue:`7173`).
- Bug where ``col_space`` was ignored in ``DataFrame.to_string()`` when ``header=False`` (:issue:`8230`).
- Bug with ``DatetimeIndex.asof`` incorrectly matching partial strings and returning the wrong date (:issue:`8245`).
- Bug in plotting methods modifying the global matplotlib rcParams (:issue:`8242`).
- Bug in ``DataFrame.__setitem__`` that caused errors when setting a dataframe column to a sparse array (:issue:`8131`)
- Bug where ``Dataframe.boxplot()`` failed when entire column was empty (:issue:`8181`).
- Bug with messed variables in ``radviz`` visualization (:issue:`8199`).
- Bug in interpolation methods with the ``limit`` keyword when no values needed interpolating (:issue:`7173`).
- Bug where ``col_space`` was ignored in ``DataFrame.to_string()`` when ``header=False`` (:issue:`8230`).
- Bug in ``to_clipboard`` that would clip long column data (:issue:`8305`)
- Bug in ``DataFrame`` terminal display: Setting max_column/max_rows to zero did not trigger auto-resizing of dfs to fit terminal width/height (:issue:`7180`).
- Bug in OLS where running with "cluster" and "nw_lags" parameters did not work correctly, but also did not throw an error
(:issue:`5884`).
- Bug in ``DataFrame.dropna`` that interpreted non-existent columns in the subset argument as the 'last column' (:issue:`8303`)
- Bug in ``Index.intersection`` on non-monotonic non-unique indexes (:issue:`8362`).
- Bug in masked series assignment where mismatching types would break alignment (:issue:`8387`)
- Bug in ``NDFrame.equals`` gives false negatives with dtype=object (:issue:`8437`)
- Bug in assignment with indexer where type diversity would break alignment (:issue:`8258`)
- Bug in ``NDFrame.loc`` indexing when row/column names were lost when target was a list/ndarray (:issue:`6552`)
- Regression in ``NDFrame.loc`` indexing when rows/columns were converted to Float64Index if target was an empty list/ndarray (:issue:`7774`)
- Bug in ``Series`` that allows it to be indexed by a ``DataFrame`` which has unexpected results. Such indexing is no longer permitted (:issue:`8444`)
- Bug in item assignment of a ``DataFrame`` with MultiIndex columns where right-hand-side columns were not aligned (:issue:`7655`)
- Suppress FutureWarning generated by NumPy when comparing object arrays containing NaN for equality (:issue:`7065`)
- Bug in ``DataFrame.eval()`` where the dtype of the ``not`` operator (``~``)
was not correctly inferred as ``bool``.
.. _whatsnew_0.15.0.contributors:
Contributors
~~~~~~~~~~~~
.. contributors:: v0.14.1..v0.15.0
|