1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325
|
.. _whatsnew_0151:
Version 0.15.1 (November 9, 2014)
---------------------------------
{{ header }}
This is a minor bug-fix release from 0.15.0 and includes a small number of API changes, several new features,
enhancements, and performance improvements along with a large number of bug fixes. We recommend that all
users upgrade to this version.
- :ref:`Enhancements <whatsnew_0151.enhancements>`
- :ref:`API Changes <whatsnew_0151.api>`
- :ref:`Bug Fixes <whatsnew_0151.bug_fixes>`
.. _whatsnew_0151.api:
API changes
~~~~~~~~~~~
- ``s.dt.hour`` and other ``.dt`` accessors will now return ``np.nan`` for missing values (rather than previously -1), (:issue:`8689`)
.. ipython:: python
s = pd.Series(pd.date_range("20130101", periods=5, freq="D"))
s.iloc[2] = np.nan
s
previous behavior:
.. code-block:: ipython
In [6]: s.dt.hour
Out[6]:
0 0
1 0
2 -1
3 0
4 0
dtype: int64
current behavior:
.. ipython:: python
s.dt.hour
- ``groupby`` with ``as_index=False`` will not add erroneous extra columns to
result (:issue:`8582`):
.. ipython:: python
np.random.seed(2718281)
df = pd.DataFrame(np.random.randint(0, 100, (10, 2)), columns=["jim", "joe"])
df.head()
ts = pd.Series(5 * np.random.randint(0, 3, 10))
previous behavior:
.. code-block:: ipython
In [4]: df.groupby(ts, as_index=False).max()
Out[4]:
NaN jim joe
0 0 72 83
1 5 77 84
2 10 96 65
current behavior:
.. code-block:: ipython
In [4]: df.groupby(ts, as_index=False).max()
Out[4]:
jim joe
0 72 83
1 77 84
2 96 65
- ``groupby`` will not erroneously exclude columns if the column name conflicts
with the grouper name (:issue:`8112`):
.. ipython:: python
df = pd.DataFrame({"jim": range(5), "joe": range(5, 10)})
df
gr = df.groupby(df["jim"] < 2)
previous behavior (excludes 1st column from output):
.. code-block:: ipython
In [4]: gr.apply(sum)
Out[4]:
joe
jim
False 24
True 11
current behavior:
.. ipython:: python
:okwarning:
gr.apply(sum)
- Support for slicing with monotonic decreasing indexes, even if ``start`` or ``stop`` is
not found in the index (:issue:`7860`):
.. ipython:: python
s = pd.Series(["a", "b", "c", "d"], [4, 3, 2, 1])
s
previous behavior:
.. code-block:: ipython
In [8]: s.loc[3.5:1.5]
KeyError: 3.5
current behavior:
.. ipython:: python
s.loc[3.5:1.5]
- ``io.data.Options`` has been fixed for a change in the format of the Yahoo Options page (:issue:`8612`), (:issue:`8741`)
.. note::
As a result of a change in Yahoo's option page layout, when an expiry date is given,
``Options`` methods now return data for a single expiry date. Previously, methods returned all
data for the selected month.
The ``month`` and ``year`` parameters have been undeprecated and can be used to get all
options data for a given month.
If an expiry date that is not valid is given, data for the next expiry after the given
date is returned.
Option data frames are now saved on the instance as ``callsYYMMDD`` or ``putsYYMMDD``. Previously
they were saved as ``callsMMYY`` and ``putsMMYY``. The next expiry is saved as ``calls`` and ``puts``.
New features:
- The expiry parameter can now be a single date or a list-like object containing dates.
- A new property ``expiry_dates`` was added, which returns all available expiry dates.
Current behavior:
.. code-block:: ipython
In [17]: from pandas.io.data import Options
In [18]: aapl = Options('aapl', 'yahoo')
In [19]: aapl.get_call_data().iloc[0:5, 0:1]
Out[19]:
Last
Strike Expiry Type Symbol
80 2014-11-14 call AAPL141114C00080000 29.05
84 2014-11-14 call AAPL141114C00084000 24.80
85 2014-11-14 call AAPL141114C00085000 24.05
86 2014-11-14 call AAPL141114C00086000 22.76
87 2014-11-14 call AAPL141114C00087000 21.74
In [20]: aapl.expiry_dates
Out[20]:
[datetime.date(2014, 11, 14),
datetime.date(2014, 11, 22),
datetime.date(2014, 11, 28),
datetime.date(2014, 12, 5),
datetime.date(2014, 12, 12),
datetime.date(2014, 12, 20),
datetime.date(2015, 1, 17),
datetime.date(2015, 2, 20),
datetime.date(2015, 4, 17),
datetime.date(2015, 7, 17),
datetime.date(2016, 1, 15),
datetime.date(2017, 1, 20)]
In [21]: aapl.get_near_stock_price(expiry=aapl.expiry_dates[0:3]).iloc[0:5, 0:1]
Out[21]:
Last
Strike Expiry Type Symbol
109 2014-11-22 call AAPL141122C00109000 1.48
2014-11-28 call AAPL141128C00109000 1.79
110 2014-11-14 call AAPL141114C00110000 0.55
2014-11-22 call AAPL141122C00110000 1.02
2014-11-28 call AAPL141128C00110000 1.32
.. _whatsnew_0151.datetime64_plotting:
- pandas now also registers the ``datetime64`` dtype in matplotlib's units registry
to plot such values as datetimes. This is activated once pandas is imported. In
previous versions, plotting an array of ``datetime64`` values will have resulted
in plotted integer values. To keep the previous behaviour, you can do
``del matplotlib.units.registry[np.datetime64]`` (:issue:`8614`).
.. _whatsnew_0151.enhancements:
Enhancements
~~~~~~~~~~~~
- ``concat`` permits a wider variety of iterables of pandas objects to be
passed as the first parameter (:issue:`8645`):
.. ipython:: python
from collections import deque
df1 = pd.DataFrame([1, 2, 3])
df2 = pd.DataFrame([4, 5, 6])
previous behavior:
.. code-block:: ipython
In [7]: pd.concat(deque((df1, df2)))
TypeError: first argument must be a list-like of pandas objects, you passed an object of type "deque"
current behavior:
.. ipython:: python
pd.concat(deque((df1, df2)))
- Represent ``MultiIndex`` labels with a dtype that utilizes memory based on the level size. In prior versions, the memory usage was a constant 8 bytes per element in each level. In addition, in prior versions, the *reported* memory usage was incorrect as it didn't show the usage for the memory occupied by the underling data array. (:issue:`8456`)
.. ipython:: python
dfi = pd.DataFrame(
1, index=pd.MultiIndex.from_product([["a"], range(1000)]), columns=["A"]
)
previous behavior:
.. code-block:: ipython
# this was underreported in prior versions
In [1]: dfi.memory_usage(index=True)
Out[1]:
Index 8000 # took about 24008 bytes in < 0.15.1
A 8000
dtype: int64
current behavior:
.. ipython:: python
dfi.memory_usage(index=True)
- Added Index properties ``is_monotonic_increasing`` and ``is_monotonic_decreasing`` (:issue:`8680`).
- Added option to select columns when importing Stata files (:issue:`7935`)
- Qualify memory usage in ``DataFrame.info()`` by adding ``+`` if it is a lower bound (:issue:`8578`)
- Raise errors in certain aggregation cases where an argument such as ``numeric_only`` is not handled (:issue:`8592`).
- Added support for 3-character ISO and non-standard country codes in :func:`io.wb.download()` (:issue:`8482`)
- World Bank data requests now will warn/raise based
on an ``errors`` argument, as well as a list of hard-coded country codes and
the World Bank's JSON response. In prior versions, the error messages
didn't look at the World Bank's JSON response. Problem-inducing input were
simply dropped prior to the request. The issue was that many good countries
were cropped in the hard-coded approach. All countries will work now, but
some bad countries will raise exceptions because some edge cases break the
entire response. (:issue:`8482`)
- Added option to ``Series.str.split()`` to return a ``DataFrame`` rather than a ``Series`` (:issue:`8428`)
- Added option to ``df.info(null_counts=None|True|False)`` to override the default display options and force showing of the null-counts (:issue:`8701`)
.. _whatsnew_0151.bug_fixes:
Bug fixes
~~~~~~~~~
- Bug in unpickling of a ``CustomBusinessDay`` object (:issue:`8591`)
- Bug in coercing ``Categorical`` to a records array, e.g. ``df.to_records()`` (:issue:`8626`)
- Bug in ``Categorical`` not created properly with ``Series.to_frame()`` (:issue:`8626`)
- Bug in coercing in astype of a ``Categorical`` of a passed ``pd.Categorical`` (this now raises ``TypeError`` correctly), (:issue:`8626`)
- Bug in ``cut``/``qcut`` when using ``Series`` and ``retbins=True`` (:issue:`8589`)
- Bug in writing Categorical columns to an SQL database with ``to_sql`` (:issue:`8624`).
- Bug in comparing ``Categorical`` of datetime raising when being compared to a scalar datetime (:issue:`8687`)
- Bug in selecting from a ``Categorical`` with ``.iloc`` (:issue:`8623`)
- Bug in groupby-transform with a Categorical (:issue:`8623`)
- Bug in duplicated/drop_duplicates with a Categorical (:issue:`8623`)
- Bug in ``Categorical`` reflected comparison operator raising if the first argument was a numpy array scalar (e.g. np.int64) (:issue:`8658`)
- Bug in Panel indexing with a list-like (:issue:`8710`)
- Compat issue is ``DataFrame.dtypes`` when ``options.mode.use_inf_as_null`` is True (:issue:`8722`)
- Bug in ``read_csv``, ``dialect`` parameter would not take a string (:issue:`8703`)
- Bug in slicing a MultiIndex level with an empty-list (:issue:`8737`)
- Bug in numeric index operations of add/sub with Float/Index Index with numpy arrays (:issue:`8608`)
- Bug in setitem with empty indexer and unwanted coercion of dtypes (:issue:`8669`)
- Bug in ix/loc block splitting on setitem (manifests with integer-like dtypes, e.g. datetime64) (:issue:`8607`)
- Bug when doing label based indexing with integers not found in the index for
non-unique but monotonic indexes (:issue:`8680`).
- Bug when indexing a Float64Index with ``np.nan`` on numpy 1.7 (:issue:`8980`).
- Fix ``shape`` attribute for ``MultiIndex`` (:issue:`8609`)
- Bug in ``GroupBy`` where a name conflict between the grouper and columns
would break ``groupby`` operations (:issue:`7115`, :issue:`8112`)
- Fixed a bug where plotting a column ``y`` and specifying a label would mutate the index name of the original DataFrame (:issue:`8494`)
- Fix regression in plotting of a DatetimeIndex directly with matplotlib (:issue:`8614`).
- Bug in ``date_range`` where partially-specified dates would incorporate current date (:issue:`6961`)
- Bug in Setting by indexer to a scalar value with a mixed-dtype ``Panel4d`` was failing (:issue:`8702`)
- Bug where ``DataReader``'s would fail if one of the symbols passed was invalid. Now returns data for valid symbols and np.nan for invalid (:issue:`8494`)
- Bug in ``get_quote_yahoo`` that wouldn't allow non-float return values (:issue:`5229`).
.. _whatsnew_0.15.1.contributors:
Contributors
~~~~~~~~~~~~
.. contributors:: v0.15.0..v0.15.1
|