1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480
|
.. _whatsnew_0161:
Version 0.16.1 (May 11, 2015)
-----------------------------
{{ header }}
This is a minor bug-fix release from 0.16.0 and includes a large number of
bug fixes along several new features, enhancements, and performance improvements.
We recommend that all users upgrade to this version.
Highlights include:
- Support for a ``CategoricalIndex``, a category based index, see :ref:`here <whatsnew_0161.enhancements.categoricalindex>`
- New section on how-to-contribute to *pandas*, see :ref:`here <contributing>`
- Revised "Merge, join, and concatenate" documentation, including graphical examples to make it easier to understand each operations, see :ref:`here <merging>`
- New method ``sample`` for drawing random samples from Series, DataFrames and Panels. See :ref:`here <whatsnew_0161.enhancements.sample>`
- The default ``Index`` printing has changed to a more uniform format, see :ref:`here <whatsnew_0161.index_repr>`
- ``BusinessHour`` datetime-offset is now supported, see :ref:`here <timeseries.businesshour>`
- Further enhancement to the ``.str`` accessor to make string operations easier, see :ref:`here <whatsnew_0161.enhancements.string>`
.. contents:: What's new in v0.16.1
:local:
:backlinks: none
.. _whatsnew_0161.enhancements:
.. warning::
In pandas 0.17.0, the sub-package ``pandas.io.data`` will be removed in favor of a separately installable package (:issue:`8961`).
Enhancements
~~~~~~~~~~~~
.. _whatsnew_0161.enhancements.categoricalindex:
CategoricalIndex
^^^^^^^^^^^^^^^^
We introduce a ``CategoricalIndex``, a new type of index object that is useful for supporting
indexing with duplicates. This is a container around a ``Categorical`` (introduced in v0.15.0)
and allows efficient indexing and storage of an index with a large number of duplicated elements. Prior to 0.16.1,
setting the index of a ``DataFrame/Series`` with a ``category`` dtype would convert this to regular object-based ``Index``.
.. code-block:: ipython
In [1]: df = pd.DataFrame({'A': np.arange(6),
...: 'B': pd.Series(list('aabbca'))
...: .astype('category', categories=list('cab'))
...: })
...:
In [2]: df
Out[2]:
A B
0 0 a
1 1 a
2 2 b
3 3 b
4 4 c
5 5 a
In [3]: df.dtypes
Out[3]:
A int64
B category
dtype: object
In [4]: df.B.cat.categories
Out[4]: Index(['c', 'a', 'b'], dtype='object')
setting the index, will create a ``CategoricalIndex``
.. code-block:: ipython
In [5]: df2 = df.set_index('B')
In [6]: df2.index
Out[6]: CategoricalIndex(['a', 'a', 'b', 'b', 'c', 'a'], categories=['c', 'a', 'b'], ordered=False, name='B', dtype='category')
indexing with ``__getitem__/.iloc/.loc/.ix`` works similarly to an Index with duplicates.
The indexers MUST be in the category or the operation will raise.
.. code-block:: ipython
In [7]: df2.loc['a']
Out[7]:
A
B
a 0
a 1
a 5
and preserves the ``CategoricalIndex``
.. code-block:: ipython
In [8]: df2.loc['a'].index
Out[8]: CategoricalIndex(['a', 'a', 'a'], categories=['c', 'a', 'b'], ordered=False, name='B', dtype='category')
sorting will order by the order of the categories
.. code-block:: ipython
In [9]: df2.sort_index()
Out[9]:
A
B
c 4
a 0
a 1
a 5
b 2
b 3
groupby operations on the index will preserve the index nature as well
.. code-block:: ipython
In [10]: df2.groupby(level=0).sum()
Out[10]:
A
B
c 4
a 6
b 5
In [11]: df2.groupby(level=0).sum().index
Out[11]: CategoricalIndex(['c', 'a', 'b'], categories=['c', 'a', 'b'], ordered=False, name='B', dtype='category')
reindexing operations, will return a resulting index based on the type of the passed
indexer, meaning that passing a list will return a plain-old-``Index``; indexing with
a ``Categorical`` will return a ``CategoricalIndex``, indexed according to the categories
of the PASSED ``Categorical`` dtype. This allows one to arbitrarily index these even with
values NOT in the categories, similarly to how you can reindex ANY pandas index.
.. code-block:: ipython
In [12]: df2.reindex(['a', 'e'])
Out[12]:
A
B
a 0.0
a 1.0
a 5.0
e NaN
In [13]: df2.reindex(['a', 'e']).index
Out[13]: pd.Index(['a', 'a', 'a', 'e'], dtype='object', name='B')
In [14]: df2.reindex(pd.Categorical(['a', 'e'], categories=list('abcde')))
Out[14]:
A
B
a 0.0
a 1.0
a 5.0
e NaN
In [15]: df2.reindex(pd.Categorical(['a', 'e'], categories=list('abcde'))).index
Out[15]: pd.CategoricalIndex(['a', 'a', 'a', 'e'],
categories=['a', 'b', 'c', 'd', 'e'],
ordered=False, name='B',
dtype='category')
See the :ref:`documentation <advanced.categoricalindex>` for more. (:issue:`7629`, :issue:`10038`, :issue:`10039`)
.. _whatsnew_0161.enhancements.sample:
Sample
^^^^^^
Series, DataFrames, and Panels now have a new method: :meth:`~pandas.DataFrame.sample`.
The method accepts a specific number of rows or columns to return, or a fraction of the
total number or rows or columns. It also has options for sampling with or without replacement,
for passing in a column for weights for non-uniform sampling, and for setting seed values to
facilitate replication. (:issue:`2419`)
.. ipython:: python
example_series = pd.Series([0, 1, 2, 3, 4, 5])
# When no arguments are passed, returns 1
example_series.sample()
# One may specify either a number of rows:
example_series.sample(n=3)
# Or a fraction of the rows:
example_series.sample(frac=0.5)
# weights are accepted.
example_weights = [0, 0, 0.2, 0.2, 0.2, 0.4]
example_series.sample(n=3, weights=example_weights)
# weights will also be normalized if they do not sum to one,
# and missing values will be treated as zeros.
example_weights2 = [0.5, 0, 0, 0, None, np.nan]
example_series.sample(n=1, weights=example_weights2)
When applied to a DataFrame, one may pass the name of a column to specify sampling weights
when sampling from rows.
.. ipython:: python
df = pd.DataFrame({"col1": [9, 8, 7, 6], "weight_column": [0.5, 0.4, 0.1, 0]})
df.sample(n=3, weights="weight_column")
.. _whatsnew_0161.enhancements.string:
String methods enhancements
^^^^^^^^^^^^^^^^^^^^^^^^^^^
:ref:`Continuing from v0.16.0 <whatsnew_0160.enhancements.string>`, the following
enhancements make string operations easier and more consistent with standard python string operations.
- Added ``StringMethods`` (``.str`` accessor) to ``Index`` (:issue:`9068`)
The ``.str`` accessor is now available for both ``Series`` and ``Index``.
.. ipython:: python
idx = pd.Index([" jack", "jill ", " jesse ", "frank"])
idx.str.strip()
One special case for the ``.str`` accessor on ``Index`` is that if a string method returns ``bool``, the ``.str`` accessor
will return a ``np.array`` instead of a boolean ``Index`` (:issue:`8875`). This enables the following expression
to work naturally:
.. ipython:: python
idx = pd.Index(["a1", "a2", "b1", "b2"])
s = pd.Series(range(4), index=idx)
s
idx.str.startswith("a")
s[s.index.str.startswith("a")]
- The following new methods are accessible via ``.str`` accessor to apply the function to each values. (:issue:`9766`, :issue:`9773`, :issue:`10031`, :issue:`10045`, :issue:`10052`)
================ =============== =============== =============== ================
.. .. Methods .. ..
================ =============== =============== =============== ================
``capitalize()`` ``swapcase()`` ``normalize()`` ``partition()`` ``rpartition()``
``index()`` ``rindex()`` ``translate()``
================ =============== =============== =============== ================
- ``split`` now takes ``expand`` keyword to specify whether to expand dimensionality. ``return_type`` is deprecated. (:issue:`9847`)
.. ipython:: python
s = pd.Series(["a,b", "a,c", "b,c"])
# return Series
s.str.split(",")
# return DataFrame
s.str.split(",", expand=True)
idx = pd.Index(["a,b", "a,c", "b,c"])
# return Index
idx.str.split(",")
# return MultiIndex
idx.str.split(",", expand=True)
- Improved ``extract`` and ``get_dummies`` methods for ``Index.str`` (:issue:`9980`)
.. _whatsnew_0161.enhancements.other:
Other enhancements
^^^^^^^^^^^^^^^^^^
- ``BusinessHour`` offset is now supported, which represents business hours starting from 09:00 - 17:00 on ``BusinessDay`` by default. See :ref:`Here <timeseries.businesshour>` for details. (:issue:`7905`)
.. ipython:: python
pd.Timestamp("2014-08-01 09:00") + pd.tseries.offsets.BusinessHour()
pd.Timestamp("2014-08-01 07:00") + pd.tseries.offsets.BusinessHour()
pd.Timestamp("2014-08-01 16:30") + pd.tseries.offsets.BusinessHour()
- ``DataFrame.diff`` now takes an ``axis`` parameter that determines the direction of differencing (:issue:`9727`)
- Allow ``clip``, ``clip_lower``, and ``clip_upper`` to accept array-like arguments as thresholds (This is a regression from 0.11.0). These methods now have an ``axis`` parameter which determines how the Series or DataFrame will be aligned with the threshold(s). (:issue:`6966`)
- ``DataFrame.mask()`` and ``Series.mask()`` now support same keywords as ``where`` (:issue:`8801`)
- ``drop`` function can now accept ``errors`` keyword to suppress ``ValueError`` raised when any of label does not exist in the target data. (:issue:`6736`)
.. ipython:: python
df = pd.DataFrame(np.random.randn(3, 3), columns=["A", "B", "C"])
df.drop(["A", "X"], axis=1, errors="ignore")
- Add support for separating years and quarters using dashes, for
example 2014-Q1. (:issue:`9688`)
- Allow conversion of values with dtype ``datetime64`` or ``timedelta64`` to strings using ``astype(str)`` (:issue:`9757`)
- ``get_dummies`` function now accepts ``sparse`` keyword. If set to ``True``, the return ``DataFrame`` is sparse, e.g. ``SparseDataFrame``. (:issue:`8823`)
- ``Period`` now accepts ``datetime64`` as value input. (:issue:`9054`)
- Allow timedelta string conversion when leading zero is missing from time definition, ie ``0:00:00`` vs ``00:00:00``. (:issue:`9570`)
- Allow ``Panel.shift`` with ``axis='items'`` (:issue:`9890`)
- Trying to write an excel file now raises ``NotImplementedError`` if the ``DataFrame`` has a ``MultiIndex`` instead of writing a broken Excel file. (:issue:`9794`)
- Allow ``Categorical.add_categories`` to accept ``Series`` or ``np.array``. (:issue:`9927`)
- Add/delete ``str/dt/cat`` accessors dynamically from ``__dir__``. (:issue:`9910`)
- Add ``normalize`` as a ``dt`` accessor method. (:issue:`10047`)
- ``DataFrame`` and ``Series`` now have ``_constructor_expanddim`` property as overridable constructor for one higher dimensionality data. This should be used only when it is really needed, see :ref:`here <extending.subclassing-pandas>`
- ``pd.lib.infer_dtype`` now returns ``'bytes'`` in Python 3 where appropriate. (:issue:`10032`)
.. _whatsnew_0161.api:
API changes
~~~~~~~~~~~
- When passing in an ax to ``df.plot( ..., ax=ax)``, the ``sharex`` kwarg will now default to ``False``.
The result is that the visibility of xlabels and xticklabels will not anymore be changed. You
have to do that by yourself for the right axes in your figure or set ``sharex=True`` explicitly
(but this changes the visible for all axes in the figure, not only the one which is passed in!).
If pandas creates the subplots itself (e.g. no passed in ``ax`` kwarg), then the
default is still ``sharex=True`` and the visibility changes are applied.
- :meth:`~pandas.DataFrame.assign` now inserts new columns in alphabetical order. Previously
the order was arbitrary. (:issue:`9777`)
- By default, ``read_csv`` and ``read_table`` will now try to infer the compression type based on the file extension. Set ``compression=None`` to restore the previous behavior (no decompression). (:issue:`9770`)
.. _whatsnew_0161.deprecations:
Deprecations
^^^^^^^^^^^^
- ``Series.str.split``'s ``return_type`` keyword was removed in favor of ``expand`` (:issue:`9847`)
.. _whatsnew_0161.index_repr:
Index representation
~~~~~~~~~~~~~~~~~~~~
The string representation of ``Index`` and its sub-classes have now been unified. These will show a single-line display if there are few values; a wrapped multi-line display for a lot of values (but less than ``display.max_seq_items``; if lots of items (> ``display.max_seq_items``) will show a truncated display (the head and tail of the data). The formatting for ``MultiIndex`` is unchanged (a multi-line wrapped display). The display width responds to the option ``display.max_seq_items``, which is defaulted to 100. (:issue:`6482`)
Previous behavior
.. code-block:: ipython
In [2]: pd.Index(range(4), name='foo')
Out[2]: Int64Index([0, 1, 2, 3], dtype='int64')
In [3]: pd.Index(range(104), name='foo')
Out[3]: Int64Index([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, ...], dtype='int64')
In [4]: pd.date_range('20130101', periods=4, name='foo', tz='US/Eastern')
Out[4]:
<class 'pandas.tseries.index.DatetimeIndex'>
[2013-01-01 00:00:00-05:00, ..., 2013-01-04 00:00:00-05:00]
Length: 4, Freq: D, Timezone: US/Eastern
In [5]: pd.date_range('20130101', periods=104, name='foo', tz='US/Eastern')
Out[5]:
<class 'pandas.tseries.index.DatetimeIndex'>
[2013-01-01 00:00:00-05:00, ..., 2013-04-14 00:00:00-04:00]
Length: 104, Freq: D, Timezone: US/Eastern
New behavior
.. ipython:: python
pd.set_option("display.width", 80)
pd.Index(range(4), name="foo")
pd.Index(range(30), name="foo")
pd.Index(range(104), name="foo")
pd.CategoricalIndex(["a", "bb", "ccc", "dddd"], ordered=True, name="foobar")
pd.CategoricalIndex(["a", "bb", "ccc", "dddd"] * 10, ordered=True, name="foobar")
pd.CategoricalIndex(["a", "bb", "ccc", "dddd"] * 100, ordered=True, name="foobar")
pd.date_range("20130101", periods=4, name="foo", tz="US/Eastern")
pd.date_range("20130101", periods=25, freq="D")
pd.date_range("20130101", periods=104, name="foo", tz="US/Eastern")
.. _whatsnew_0161.performance:
Performance improvements
~~~~~~~~~~~~~~~~~~~~~~~~
- Improved csv write performance with mixed dtypes, including datetimes by up to 5x (:issue:`9940`)
- Improved csv write performance generally by 2x (:issue:`9940`)
- Improved the performance of ``pd.lib.max_len_string_array`` by 5-7x (:issue:`10024`)
.. _whatsnew_0161.bug_fixes:
Bug fixes
~~~~~~~~~
- Bug where labels did not appear properly in the legend of ``DataFrame.plot()``, passing ``label=`` arguments works, and Series indices are no longer mutated. (:issue:`9542`)
- Bug in json serialization causing a segfault when a frame had zero length. (:issue:`9805`)
- Bug in ``read_csv`` where missing trailing delimiters would cause segfault. (:issue:`5664`)
- Bug in retaining index name on appending (:issue:`9862`)
- Bug in ``scatter_matrix`` draws unexpected axis ticklabels (:issue:`5662`)
- Fixed bug in ``StataWriter`` resulting in changes to input ``DataFrame`` upon save (:issue:`9795`).
- Bug in ``transform`` causing length mismatch when null entries were present and a fast aggregator was being used (:issue:`9697`)
- Bug in ``equals`` causing false negatives when block order differed (:issue:`9330`)
- Bug in grouping with multiple ``pd.Grouper`` where one is non-time based (:issue:`10063`)
- Bug in ``read_sql_table`` error when reading postgres table with timezone (:issue:`7139`)
- Bug in ``DataFrame`` slicing may not retain metadata (:issue:`9776`)
- Bug where ``TimdeltaIndex`` were not properly serialized in fixed ``HDFStore`` (:issue:`9635`)
- Bug with ``TimedeltaIndex`` constructor ignoring ``name`` when given another ``TimedeltaIndex`` as data (:issue:`10025`).
- Bug in ``DataFrameFormatter._get_formatted_index`` with not applying ``max_colwidth`` to the ``DataFrame`` index (:issue:`7856`)
- Bug in ``.loc`` with a read-only ndarray data source (:issue:`10043`)
- Bug in ``groupby.apply()`` that would raise if a passed user defined function either returned only ``None`` (for all input). (:issue:`9685`)
- Always use temporary files in pytables tests (:issue:`9992`)
- Bug in plotting continuously using ``secondary_y`` may not show legend properly. (:issue:`9610`, :issue:`9779`)
- Bug in ``DataFrame.plot(kind="hist")`` results in ``TypeError`` when ``DataFrame`` contains non-numeric columns (:issue:`9853`)
- Bug where repeated plotting of ``DataFrame`` with a ``DatetimeIndex`` may raise ``TypeError`` (:issue:`9852`)
- Bug in ``setup.py`` that would allow an incompat cython version to build (:issue:`9827`)
- Bug in plotting ``secondary_y`` incorrectly attaches ``right_ax`` property to secondary axes specifying itself recursively. (:issue:`9861`)
- Bug in ``Series.quantile`` on empty Series of type ``Datetime`` or ``Timedelta`` (:issue:`9675`)
- Bug in ``where`` causing incorrect results when upcasting was required (:issue:`9731`)
- Bug in ``FloatArrayFormatter`` where decision boundary for displaying "small" floats in decimal format is off by one order of magnitude for a given display.precision (:issue:`9764`)
- Fixed bug where ``DataFrame.plot()`` raised an error when both ``color`` and ``style`` keywords were passed and there was no color symbol in the style strings (:issue:`9671`)
- Not showing a ``DeprecationWarning`` on combining list-likes with an ``Index`` (:issue:`10083`)
- Bug in ``read_csv`` and ``read_table`` when using ``skip_rows`` parameter if blank lines are present. (:issue:`9832`)
- Bug in ``read_csv()`` interprets ``index_col=True`` as ``1`` (:issue:`9798`)
- Bug in index equality comparisons using ``==`` failing on Index/MultiIndex type incompatibility (:issue:`9785`)
- Bug in which ``SparseDataFrame`` could not take ``nan`` as a column name (:issue:`8822`)
- Bug in ``to_msgpack`` and ``read_msgpack`` zlib and blosc compression support (:issue:`9783`)
- Bug ``GroupBy.size`` doesn't attach index name properly if grouped by ``TimeGrouper`` (:issue:`9925`)
- Bug causing an exception in slice assignments because ``length_of_indexer`` returns wrong results (:issue:`9995`)
- Bug in csv parser causing lines with initial white space plus one non-space character to be skipped. (:issue:`9710`)
- Bug in C csv parser causing spurious NaNs when data started with newline followed by white space. (:issue:`10022`)
- Bug causing elements with a null group to spill into the final group when grouping by a ``Categorical`` (:issue:`9603`)
- Bug where .iloc and .loc behavior is not consistent on empty dataframes (:issue:`9964`)
- Bug in invalid attribute access on a ``TimedeltaIndex`` incorrectly raised ``ValueError`` instead of ``AttributeError`` (:issue:`9680`)
- Bug in unequal comparisons between categorical data and a scalar, which was not in the categories (e.g. ``Series(Categorical(list("abc"), ordered=True)) > "d"``. This returned ``False`` for all elements, but now raises a ``TypeError``. Equality comparisons also now return ``False`` for ``==`` and ``True`` for ``!=``. (:issue:`9848`)
- Bug in DataFrame ``__setitem__`` when right hand side is a dictionary (:issue:`9874`)
- Bug in ``where`` when dtype is ``datetime64/timedelta64``, but dtype of other is not (:issue:`9804`)
- Bug in ``MultiIndex.sortlevel()`` results in unicode level name breaks (:issue:`9856`)
- Bug in which ``groupby.transform`` incorrectly enforced output dtypes to match input dtypes. (:issue:`9807`)
- Bug in ``DataFrame`` constructor when ``columns`` parameter is set, and ``data`` is an empty list (:issue:`9939`)
- Bug in bar plot with ``log=True`` raises ``TypeError`` if all values are less than 1 (:issue:`9905`)
- Bug in horizontal bar plot ignores ``log=True`` (:issue:`9905`)
- Bug in PyTables queries that did not return proper results using the index (:issue:`8265`, :issue:`9676`)
- Bug where dividing a dataframe containing values of type ``Decimal`` by another ``Decimal`` would raise. (:issue:`9787`)
- Bug where using DataFrames asfreq would remove the name of the index. (:issue:`9885`)
- Bug causing extra index point when resample BM/BQ (:issue:`9756`)
- Changed caching in ``AbstractHolidayCalendar`` to be at the instance level rather than at the class level as the latter can result in unexpected behaviour. (:issue:`9552`)
- Fixed latex output for MultiIndexed dataframes (:issue:`9778`)
- Bug causing an exception when setting an empty range using ``DataFrame.loc`` (:issue:`9596`)
- Bug in hiding ticklabels with subplots and shared axes when adding a new plot to an existing grid of axes (:issue:`9158`)
- Bug in ``transform`` and ``filter`` when grouping on a categorical variable (:issue:`9921`)
- Bug in ``transform`` when groups are equal in number and dtype to the input index (:issue:`9700`)
- Google BigQuery connector now imports dependencies on a per-method basis.(:issue:`9713`)
- Updated BigQuery connector to no longer use deprecated ``oauth2client.tools.run()`` (:issue:`8327`)
- Bug in subclassed ``DataFrame``. It may not return the correct class, when slicing or subsetting it. (:issue:`9632`)
- Bug in ``.median()`` where non-float null values are not handled correctly (:issue:`10040`)
- Bug in Series.fillna() where it raises if a numerically convertible string is given (:issue:`10092`)
.. _whatsnew_0.16.1.contributors:
Contributors
~~~~~~~~~~~~
.. contributors:: v0.16.0..v0.16.1
|