1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333
|
.. _whatsnew_0180:
Version 0.18.0 (March 13, 2016)
-------------------------------
{{ header }}
This is a major release from 0.17.1 and includes a small number of API changes, several new features,
enhancements, and performance improvements along with a large number of bug fixes. We recommend that all
users upgrade to this version.
.. warning::
pandas >= 0.18.0 no longer supports compatibility with Python version 2.6
and 3.3 (:issue:`7718`, :issue:`11273`)
.. warning::
``numexpr`` version 2.4.4 will now show a warning and not be used as a computation back-end for pandas because of some buggy behavior. This does not affect other versions (>= 2.1 and >= 2.4.6). (:issue:`12489`)
Highlights include:
- Moving and expanding window functions are now methods on Series and DataFrame,
similar to ``.groupby``, see :ref:`here <whatsnew_0180.enhancements.moments>`.
- Adding support for a ``RangeIndex`` as a specialized form of the ``Int64Index``
for memory savings, see :ref:`here <whatsnew_0180.enhancements.rangeindex>`.
- API breaking change to the ``.resample`` method to make it more ``.groupby``
like, see :ref:`here <whatsnew_0180.breaking.resample>`.
- Removal of support for positional indexing with floats, which was deprecated
since 0.14.0. This will now raise a ``TypeError``, see :ref:`here <whatsnew_0180.float_indexers>`.
- The ``.to_xarray()`` function has been added for compatibility with the
`xarray package <http://xarray.pydata.org/en/stable/>`__, see :ref:`here <whatsnew_0180.enhancements.xarray>`.
- The ``read_sas`` function has been enhanced to read ``sas7bdat`` files, see :ref:`here <whatsnew_0180.enhancements.sas>`.
- Addition of the :ref:`.str.extractall() method <whatsnew_0180.enhancements.extract>`,
and API changes to the :ref:`.str.extract() method <whatsnew_0180.enhancements.extract>`
and :ref:`.str.cat() method <whatsnew_0180.enhancements.strcat>`.
- ``pd.test()`` top-level nose test runner is available (:issue:`4327`).
Check the :ref:`API Changes <whatsnew_0180.api_breaking>` and :ref:`deprecations <whatsnew_0180.deprecations>` before updating.
.. contents:: What's new in v0.18.0
:local:
:backlinks: none
.. _whatsnew_0180.enhancements:
New features
~~~~~~~~~~~~
.. _whatsnew_0180.enhancements.moments:
Window functions are now methods
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Window functions have been refactored to be methods on ``Series/DataFrame`` objects, rather than top-level functions, which are now deprecated. This allows these window-type functions, to have a similar API to that of ``.groupby``. See the full documentation :ref:`here <window.overview>` (:issue:`11603`, :issue:`12373`)
.. ipython:: python
np.random.seed(1234)
df = pd.DataFrame({'A': range(10), 'B': np.random.randn(10)})
df
Previous behavior:
.. code-block:: ipython
In [8]: pd.rolling_mean(df, window=3)
FutureWarning: pd.rolling_mean is deprecated for DataFrame and will be removed in a future version, replace with
DataFrame.rolling(window=3,center=False).mean()
Out[8]:
A B
0 NaN NaN
1 NaN NaN
2 1 0.237722
3 2 -0.023640
4 3 0.133155
5 4 -0.048693
6 5 0.342054
7 6 0.370076
8 7 0.079587
9 8 -0.954504
New behavior:
.. ipython:: python
r = df.rolling(window=3)
These show a descriptive repr
.. ipython:: python
r
with tab-completion of available methods and properties.
.. code-block:: ipython
In [9]: r.<TAB> # noqa E225, E999
r.A r.agg r.apply r.count r.exclusions r.max r.median r.name r.skew r.sum
r.B r.aggregate r.corr r.cov r.kurt r.mean r.min r.quantile r.std r.var
The methods operate on the ``Rolling`` object itself
.. ipython:: python
r.mean()
They provide getitem accessors
.. ipython:: python
r['A'].mean()
And multiple aggregations
.. ipython:: python
r.agg({'A': ['mean', 'std'],
'B': ['mean', 'std']})
.. _whatsnew_0180.enhancements.rename:
Changes to rename
^^^^^^^^^^^^^^^^^
``Series.rename`` and ``NDFrame.rename_axis`` can now take a scalar or list-like
argument for altering the Series or axis *name*, in addition to their old behaviors of altering labels. (:issue:`9494`, :issue:`11965`)
.. ipython:: python
s = pd.Series(np.random.randn(5))
s.rename('newname')
.. ipython:: python
df = pd.DataFrame(np.random.randn(5, 2))
(df.rename_axis("indexname")
.rename_axis("columns_name", axis="columns"))
The new functionality works well in method chains. Previously these methods only accepted functions or dicts mapping a *label* to a new label.
This continues to work as before for function or dict-like values.
.. _whatsnew_0180.enhancements.rangeindex:
Range Index
^^^^^^^^^^^
A ``RangeIndex`` has been added to the ``Int64Index`` sub-classes to support a memory saving alternative for common use cases. This has a similar implementation to the python ``range`` object (``xrange`` in python 2), in that it only stores the start, stop, and step values for the index. It will transparently interact with the user API, converting to ``Int64Index`` if needed.
This will now be the default constructed index for ``NDFrame`` objects, rather than previous an ``Int64Index``. (:issue:`939`, :issue:`12070`, :issue:`12071`, :issue:`12109`, :issue:`12888`)
Previous behavior:
.. code-block:: ipython
In [3]: s = pd.Series(range(1000))
In [4]: s.index
Out[4]:
Int64Index([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,
...
990, 991, 992, 993, 994, 995, 996, 997, 998, 999], dtype='int64', length=1000)
In [6]: s.index.nbytes
Out[6]: 8000
New behavior:
.. ipython:: python
s = pd.Series(range(1000))
s.index
s.index.nbytes
.. _whatsnew_0180.enhancements.extract:
Changes to str.extract
^^^^^^^^^^^^^^^^^^^^^^
The :ref:`.str.extract <text.extract>` method takes a regular
expression with capture groups, finds the first match in each subject
string, and returns the contents of the capture groups
(:issue:`11386`).
In v0.18.0, the ``expand`` argument was added to
``extract``.
- ``expand=False``: it returns a ``Series``, ``Index``, or ``DataFrame``, depending on the subject and regular expression pattern (same behavior as pre-0.18.0).
- ``expand=True``: it always returns a ``DataFrame``, which is more consistent and less confusing from the perspective of a user.
Currently the default is ``expand=None`` which gives a ``FutureWarning`` and uses ``expand=False``. To avoid this warning, please explicitly specify ``expand``.
.. code-block:: ipython
In [1]: pd.Series(['a1', 'b2', 'c3']).str.extract(r'[ab](\d)', expand=None)
FutureWarning: currently extract(expand=None) means expand=False (return Index/Series/DataFrame)
but in a future version of pandas this will be changed to expand=True (return DataFrame)
Out[1]:
0 1
1 2
2 NaN
dtype: object
Extracting a regular expression with one group returns a Series if
``expand=False``.
.. ipython:: python
pd.Series(['a1', 'b2', 'c3']).str.extract(r'[ab](\d)', expand=False)
It returns a ``DataFrame`` with one column if ``expand=True``.
.. ipython:: python
pd.Series(['a1', 'b2', 'c3']).str.extract(r'[ab](\d)', expand=True)
Calling on an ``Index`` with a regex with exactly one capture group
returns an ``Index`` if ``expand=False``.
.. ipython:: python
s = pd.Series(["a1", "b2", "c3"], ["A11", "B22", "C33"])
s.index
s.index.str.extract("(?P<letter>[a-zA-Z])", expand=False)
It returns a ``DataFrame`` with one column if ``expand=True``.
.. ipython:: python
s.index.str.extract("(?P<letter>[a-zA-Z])", expand=True)
Calling on an ``Index`` with a regex with more than one capture group
raises ``ValueError`` if ``expand=False``.
.. code-block:: python
>>> s.index.str.extract("(?P<letter>[a-zA-Z])([0-9]+)", expand=False)
ValueError: only one regex group is supported with Index
It returns a ``DataFrame`` if ``expand=True``.
.. ipython:: python
s.index.str.extract("(?P<letter>[a-zA-Z])([0-9]+)", expand=True)
In summary, ``extract(expand=True)`` always returns a ``DataFrame``
with a row for every subject string, and a column for every capture
group.
.. _whatsnew_0180.enhancements.extractall:
Addition of str.extractall
^^^^^^^^^^^^^^^^^^^^^^^^^^
The :ref:`.str.extractall <text.extractall>` method was added
(:issue:`11386`). Unlike ``extract``, which returns only the first
match.
.. ipython:: python
s = pd.Series(["a1a2", "b1", "c1"], ["A", "B", "C"])
s
s.str.extract(r"(?P<letter>[ab])(?P<digit>\d)", expand=False)
The ``extractall`` method returns all matches.
.. ipython:: python
s.str.extractall(r"(?P<letter>[ab])(?P<digit>\d)")
.. _whatsnew_0180.enhancements.strcat:
Changes to str.cat
^^^^^^^^^^^^^^^^^^
The method ``.str.cat()`` concatenates the members of a ``Series``. Before, if ``NaN`` values were present in the Series, calling ``.str.cat()`` on it would return ``NaN``, unlike the rest of the ``Series.str.*`` API. This behavior has been amended to ignore ``NaN`` values by default. (:issue:`11435`).
A new, friendlier ``ValueError`` is added to protect against the mistake of supplying the ``sep`` as an arg, rather than as a kwarg. (:issue:`11334`).
.. ipython:: python
pd.Series(['a', 'b', np.nan, 'c']).str.cat(sep=' ')
pd.Series(['a', 'b', np.nan, 'c']).str.cat(sep=' ', na_rep='?')
.. code-block:: ipython
In [2]: pd.Series(['a', 'b', np.nan, 'c']).str.cat(' ')
ValueError: Did you mean to supply a ``sep`` keyword?
.. _whatsnew_0180.enhancements.rounding:
Datetimelike rounding
^^^^^^^^^^^^^^^^^^^^^
``DatetimeIndex``, ``Timestamp``, ``TimedeltaIndex``, ``Timedelta`` have gained the ``.round()``, ``.floor()`` and ``.ceil()`` method for datetimelike rounding, flooring and ceiling. (:issue:`4314`, :issue:`11963`)
Naive datetimes
.. ipython:: python
dr = pd.date_range('20130101 09:12:56.1234', periods=3)
dr
dr.round('s')
# Timestamp scalar
dr[0]
dr[0].round('10s')
Tz-aware are rounded, floored and ceiled in local times
.. ipython:: python
dr = dr.tz_localize('US/Eastern')
dr
dr.round('s')
Timedeltas
.. ipython:: python
t = pd.timedelta_range('1 days 2 hr 13 min 45 us', periods=3, freq='d')
t
t.round('10min')
# Timedelta scalar
t[0]
t[0].round('2h')
In addition, ``.round()``, ``.floor()`` and ``.ceil()`` will be available through the ``.dt`` accessor of ``Series``.
.. ipython:: python
s = pd.Series(dr)
s
s.dt.round('D')
Formatting of integers in FloatIndex
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Integers in ``FloatIndex``, e.g. 1., are now formatted with a decimal point and a ``0`` digit, e.g. ``1.0`` (:issue:`11713`)
This change not only affects the display to the console, but also the output of IO methods like ``.to_csv`` or ``.to_html``.
Previous behavior:
.. code-block:: ipython
In [2]: s = pd.Series([1, 2, 3], index=np.arange(3.))
In [3]: s
Out[3]:
0 1
1 2
2 3
dtype: int64
In [4]: s.index
Out[4]: Float64Index([0.0, 1.0, 2.0], dtype='float64')
In [5]: print(s.to_csv(path=None))
0,1
1,2
2,3
New behavior:
.. ipython:: python
s = pd.Series([1, 2, 3], index=np.arange(3.))
s
s.index
print(s.to_csv(path_or_buf=None, header=False))
Changes to dtype assignment behaviors
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
When a DataFrame's slice is updated with a new slice of the same dtype, the dtype of the DataFrame will now remain the same. (:issue:`10503`)
Previous behavior:
.. code-block:: ipython
In [5]: df = pd.DataFrame({'a': [0, 1, 1],
'b': pd.Series([100, 200, 300], dtype='uint32')})
In [7]: df.dtypes
Out[7]:
a int64
b uint32
dtype: object
In [8]: ix = df['a'] == 1
In [9]: df.loc[ix, 'b'] = df.loc[ix, 'b']
In [11]: df.dtypes
Out[11]:
a int64
b int64
dtype: object
New behavior:
.. ipython:: python
df = pd.DataFrame({'a': [0, 1, 1],
'b': pd.Series([100, 200, 300], dtype='uint32')})
df.dtypes
ix = df['a'] == 1
df.loc[ix, 'b'] = df.loc[ix, 'b']
df.dtypes
When a DataFrame's integer slice is partially updated with a new slice of floats that could potentially be down-casted to integer without losing precision, the dtype of the slice will be set to float instead of integer.
Previous behavior:
.. code-block:: ipython
In [4]: df = pd.DataFrame(np.array(range(1,10)).reshape(3,3),
columns=list('abc'),
index=[[4,4,8], [8,10,12]])
In [5]: df
Out[5]:
a b c
4 8 1 2 3
10 4 5 6
8 12 7 8 9
In [7]: df.ix[4, 'c'] = np.array([0., 1.])
In [8]: df
Out[8]:
a b c
4 8 1 2 0
10 4 5 1
8 12 7 8 9
New behavior:
.. ipython:: python
df = pd.DataFrame(np.array(range(1,10)).reshape(3,3),
columns=list('abc'),
index=[[4,4,8], [8,10,12]])
df
df.loc[4, 'c'] = np.array([0., 1.])
df
.. _whatsnew_0180.enhancements.xarray:
Method to_xarray
^^^^^^^^^^^^^^^^
In a future version of pandas, we will be deprecating ``Panel`` and other > 2 ndim objects. In order to provide for continuity,
all ``NDFrame`` objects have gained the ``.to_xarray()`` method in order to convert to ``xarray`` objects, which has
a pandas-like interface for > 2 ndim. (:issue:`11972`)
See the `xarray full-documentation here <http://xarray.pydata.org/en/stable/>`__.
.. code-block:: ipython
In [1]: p = Panel(np.arange(2*3*4).reshape(2,3,4))
In [2]: p.to_xarray()
Out[2]:
<xarray.DataArray (items: 2, major_axis: 3, minor_axis: 4)>
array([[[ 0, 1, 2, 3],
[ 4, 5, 6, 7],
[ 8, 9, 10, 11]],
[[12, 13, 14, 15],
[16, 17, 18, 19],
[20, 21, 22, 23]]])
Coordinates:
* items (items) int64 0 1
* major_axis (major_axis) int64 0 1 2
* minor_axis (minor_axis) int64 0 1 2 3
Latex representation
^^^^^^^^^^^^^^^^^^^^
``DataFrame`` has gained a ``._repr_latex_()`` method in order to allow for conversion to latex in a ipython/jupyter notebook using nbconvert. (:issue:`11778`)
Note that this must be activated by setting the option ``pd.display.latex.repr=True`` (:issue:`12182`)
For example, if you have a jupyter notebook you plan to convert to latex using nbconvert, place the statement ``pd.display.latex.repr=True`` in the first cell to have the contained DataFrame output also stored as latex.
The options ``display.latex.escape`` and ``display.latex.longtable`` have also been added to the configuration and are used automatically by the ``to_latex``
method. See the :ref:`available options docs <options.available>` for more info.
.. _whatsnew_0180.enhancements.sas:
``pd.read_sas()`` changes
^^^^^^^^^^^^^^^^^^^^^^^^^
``read_sas`` has gained the ability to read SAS7BDAT files, including compressed files. The files can be read in entirety, or incrementally. For full details see :ref:`here <io.sas>`. (:issue:`4052`)
.. _whatsnew_0180.enhancements.other:
Other enhancements
^^^^^^^^^^^^^^^^^^
- Handle truncated floats in SAS xport files (:issue:`11713`)
- Added option to hide index in ``Series.to_string`` (:issue:`11729`)
- ``read_excel`` now supports s3 urls of the format ``s3://bucketname/filename`` (:issue:`11447`)
- add support for ``AWS_S3_HOST`` env variable when reading from s3 (:issue:`12198`)
- A simple version of ``Panel.round()`` is now implemented (:issue:`11763`)
- For Python 3.x, ``round(DataFrame)``, ``round(Series)``, ``round(Panel)`` will work (:issue:`11763`)
- ``sys.getsizeof(obj)`` returns the memory usage of a pandas object, including the
values it contains (:issue:`11597`)
- ``Series`` gained an ``is_unique`` attribute (:issue:`11946`)
- ``DataFrame.quantile`` and ``Series.quantile`` now accept ``interpolation`` keyword (:issue:`10174`).
- Added ``DataFrame.style.format`` for more flexible formatting of cell values (:issue:`11692`)
- ``DataFrame.select_dtypes`` now allows the ``np.float16`` type code (:issue:`11990`)
- ``pivot_table()`` now accepts most iterables for the ``values`` parameter (:issue:`12017`)
- Added Google ``BigQuery`` service account authentication support, which enables authentication on remote servers. (:issue:`11881`, :issue:`12572`). For further details see `here <https://pandas-gbq.readthedocs.io/en/latest/intro.html>`__
- ``HDFStore`` is now iterable: ``for k in store`` is equivalent to ``for k in store.keys()`` (:issue:`12221`).
- Add missing methods/fields to ``.dt`` for ``Period`` (:issue:`8848`)
- The entire code base has been ``PEP``-ified (:issue:`12096`)
.. _whatsnew_0180.api_breaking:
Backwards incompatible API changes
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
- the leading white spaces have been removed from the output of ``.to_string(index=False)`` method (:issue:`11833`)
- the ``out`` parameter has been removed from the ``Series.round()`` method. (:issue:`11763`)
- ``DataFrame.round()`` leaves non-numeric columns unchanged in its return, rather than raises. (:issue:`11885`)
- ``DataFrame.head(0)`` and ``DataFrame.tail(0)`` return empty frames, rather than ``self``. (:issue:`11937`)
- ``Series.head(0)`` and ``Series.tail(0)`` return empty series, rather than ``self``. (:issue:`11937`)
- ``to_msgpack`` and ``read_msgpack`` encoding now defaults to ``'utf-8'``. (:issue:`12170`)
- the order of keyword arguments to text file parsing functions (``.read_csv()``, ``.read_table()``, ``.read_fwf()``) changed to group related arguments. (:issue:`11555`)
- ``NaTType.isoformat`` now returns the string ``'NaT`` to allow the result to
be passed to the constructor of ``Timestamp``. (:issue:`12300`)
NaT and Timedelta operations
^^^^^^^^^^^^^^^^^^^^^^^^^^^^
``NaT`` and ``Timedelta`` have expanded arithmetic operations, which are extended to ``Series``
arithmetic where applicable. Operations defined for ``datetime64[ns]`` or ``timedelta64[ns]``
are now also defined for ``NaT`` (:issue:`11564`).
``NaT`` now supports arithmetic operations with integers and floats.
.. ipython:: python
pd.NaT * 1
pd.NaT * 1.5
pd.NaT / 2
pd.NaT * np.nan
``NaT`` defines more arithmetic operations with ``datetime64[ns]`` and ``timedelta64[ns]``.
.. ipython:: python
pd.NaT / pd.NaT
pd.Timedelta('1s') / pd.NaT
``NaT`` may represent either a ``datetime64[ns]`` null or a ``timedelta64[ns]`` null.
Given the ambiguity, it is treated as a ``timedelta64[ns]``, which allows more operations
to succeed.
.. ipython:: python
pd.NaT + pd.NaT
# same as
pd.Timedelta('1s') + pd.Timedelta('1s')
as opposed to
.. code-block:: ipython
In [3]: pd.Timestamp('19900315') + pd.Timestamp('19900315')
TypeError: unsupported operand type(s) for +: 'Timestamp' and 'Timestamp'
However, when wrapped in a ``Series`` whose ``dtype`` is ``datetime64[ns]`` or ``timedelta64[ns]``,
the ``dtype`` information is respected.
.. code-block:: ipython
In [1]: pd.Series([pd.NaT], dtype='<M8[ns]') + pd.Series([pd.NaT], dtype='<M8[ns]')
TypeError: can only operate on a datetimes for subtraction,
but the operator [__add__] was passed
.. ipython:: python
pd.Series([pd.NaT], dtype='<m8[ns]') + pd.Series([pd.NaT], dtype='<m8[ns]')
``Timedelta`` division by ``floats`` now works.
.. ipython:: python
pd.Timedelta('1s') / 2.0
Subtraction by ``Timedelta`` in a ``Series`` by a ``Timestamp`` works (:issue:`11925`)
.. ipython:: python
ser = pd.Series(pd.timedelta_range('1 day', periods=3))
ser
pd.Timestamp('2012-01-01') - ser
``NaT.isoformat()`` now returns ``'NaT'``. This change allows
``pd.Timestamp`` to rehydrate any timestamp like object from its isoformat
(:issue:`12300`).
Changes to msgpack
^^^^^^^^^^^^^^^^^^
Forward incompatible changes in ``msgpack`` writing format were made over 0.17.0 and 0.18.0; older versions of pandas cannot read files packed by newer versions (:issue:`12129`, :issue:`10527`)
Bugs in ``to_msgpack`` and ``read_msgpack`` introduced in 0.17.0 and fixed in 0.18.0, caused files packed in Python 2 unreadable by Python 3 (:issue:`12142`). The following table describes the backward and forward compat of msgpacks.
.. warning::
+----------------------+------------------------+
| Packed with | Can be unpacked with |
+======================+========================+
| pre-0.17 / Python 2 | any |
+----------------------+------------------------+
| pre-0.17 / Python 3 | any |
+----------------------+------------------------+
| 0.17 / Python 2 | - ==0.17 / Python 2 |
| | - >=0.18 / any Python |
+----------------------+------------------------+
| 0.17 / Python 3 | >=0.18 / any Python |
+----------------------+------------------------+
| 0.18 | >= 0.18 |
+----------------------+------------------------+
0.18.0 is backward-compatible for reading files packed by older versions, except for files packed with 0.17 in Python 2, in which case only they can only be unpacked in Python 2.
Signature change for .rank
^^^^^^^^^^^^^^^^^^^^^^^^^^
``Series.rank`` and ``DataFrame.rank`` now have the same signature (:issue:`11759`)
Previous signature
.. code-block:: ipython
In [3]: pd.Series([0,1]).rank(method='average', na_option='keep',
ascending=True, pct=False)
Out[3]:
0 1
1 2
dtype: float64
In [4]: pd.DataFrame([0,1]).rank(axis=0, numeric_only=None,
method='average', na_option='keep',
ascending=True, pct=False)
Out[4]:
0
0 1
1 2
New signature
.. ipython:: python
pd.Series([0,1]).rank(axis=0, method='average', numeric_only=False,
na_option='keep', ascending=True, pct=False)
pd.DataFrame([0,1]).rank(axis=0, method='average', numeric_only=False,
na_option='keep', ascending=True, pct=False)
Bug in QuarterBegin with n=0
^^^^^^^^^^^^^^^^^^^^^^^^^^^^
In previous versions, the behavior of the QuarterBegin offset was inconsistent
depending on the date when the ``n`` parameter was 0. (:issue:`11406`)
The general semantics of anchored offsets for ``n=0`` is to not move the date
when it is an anchor point (e.g., a quarter start date), and otherwise roll
forward to the next anchor point.
.. ipython:: python
d = pd.Timestamp('2014-02-01')
d
d + pd.offsets.QuarterBegin(n=0, startingMonth=2)
d + pd.offsets.QuarterBegin(n=0, startingMonth=1)
For the ``QuarterBegin`` offset in previous versions, the date would be rolled
*backwards* if date was in the same month as the quarter start date.
.. code-block:: ipython
In [3]: d = pd.Timestamp('2014-02-15')
In [4]: d + pd.offsets.QuarterBegin(n=0, startingMonth=2)
Out[4]: Timestamp('2014-02-01 00:00:00')
This behavior has been corrected in version 0.18.0, which is consistent with
other anchored offsets like ``MonthBegin`` and ``YearBegin``.
.. ipython:: python
d = pd.Timestamp('2014-02-15')
d + pd.offsets.QuarterBegin(n=0, startingMonth=2)
.. _whatsnew_0180.breaking.resample:
Resample API
^^^^^^^^^^^^
Like the change in the window functions API :ref:`above <whatsnew_0180.enhancements.moments>`, ``.resample(...)`` is changing to have a more groupby-like API. (:issue:`11732`, :issue:`12702`, :issue:`12202`, :issue:`12332`, :issue:`12334`, :issue:`12348`, :issue:`12448`).
.. ipython:: python
np.random.seed(1234)
df = pd.DataFrame(np.random.rand(10,4),
columns=list('ABCD'),
index=pd.date_range('2010-01-01 09:00:00',
periods=10, freq='s'))
df
**Previous API**:
You would write a resampling operation that immediately evaluates. If a ``how`` parameter was not provided, it
would default to ``how='mean'``.
.. code-block:: ipython
In [6]: df.resample('2s')
Out[6]:
A B C D
2010-01-01 09:00:00 0.485748 0.447351 0.357096 0.793615
2010-01-01 09:00:02 0.820801 0.794317 0.364034 0.531096
2010-01-01 09:00:04 0.433985 0.314582 0.424104 0.625733
2010-01-01 09:00:06 0.624988 0.609738 0.633165 0.612452
2010-01-01 09:00:08 0.510470 0.534317 0.573201 0.806949
You could also specify a ``how`` directly
.. code-block:: ipython
In [7]: df.resample('2s', how='sum')
Out[7]:
A B C D
2010-01-01 09:00:00 0.971495 0.894701 0.714192 1.587231
2010-01-01 09:00:02 1.641602 1.588635 0.728068 1.062191
2010-01-01 09:00:04 0.867969 0.629165 0.848208 1.251465
2010-01-01 09:00:06 1.249976 1.219477 1.266330 1.224904
2010-01-01 09:00:08 1.020940 1.068634 1.146402 1.613897
**New API**:
Now, you can write ``.resample(..)`` as a 2-stage operation like ``.groupby(...)``, which
yields a ``Resampler``.
.. ipython:: python
:okwarning:
r = df.resample('2s')
r
Downsampling
""""""""""""
You can then use this object to perform operations.
These are downsampling operations (going from a higher frequency to a lower one).
.. ipython:: python
r.mean()
.. ipython:: python
r.sum()
Furthermore, resample now supports ``getitem`` operations to perform the resample on specific columns.
.. ipython:: python
r[['A','C']].mean()
and ``.aggregate`` type operations.
.. ipython:: python
r.agg({'A' : 'mean', 'B' : 'sum'})
These accessors can of course, be combined
.. ipython:: python
r[['A','B']].agg(['mean','sum'])
Upsampling
""""""""""
.. currentmodule:: pandas.tseries.resample
Upsampling operations take you from a lower frequency to a higher frequency. These are now
performed with the ``Resampler`` objects with :meth:`~Resampler.backfill`,
:meth:`~Resampler.ffill`, :meth:`~Resampler.fillna` and :meth:`~Resampler.asfreq` methods.
.. code-block:: ipython
In [89]: s = pd.Series(np.arange(5, dtype='int64'),
index=pd.date_range('2010-01-01', periods=5, freq='Q'))
In [90]: s
Out[90]:
2010-03-31 0
2010-06-30 1
2010-09-30 2
2010-12-31 3
2011-03-31 4
Freq: Q-DEC, Length: 5, dtype: int64
Previously
.. code-block:: ipython
In [6]: s.resample('M', fill_method='ffill')
Out[6]:
2010-03-31 0
2010-04-30 0
2010-05-31 0
2010-06-30 1
2010-07-31 1
2010-08-31 1
2010-09-30 2
2010-10-31 2
2010-11-30 2
2010-12-31 3
2011-01-31 3
2011-02-28 3
2011-03-31 4
Freq: M, dtype: int64
New API
.. code-block:: ipython
In [91]: s.resample('M').ffill()
Out[91]:
2010-03-31 0
2010-04-30 0
2010-05-31 0
2010-06-30 1
2010-07-31 1
2010-08-31 1
2010-09-30 2
2010-10-31 2
2010-11-30 2
2010-12-31 3
2011-01-31 3
2011-02-28 3
2011-03-31 4
Freq: M, Length: 13, dtype: int64
.. note::
In the new API, you can either downsample OR upsample. The prior implementation would allow you to pass an aggregator function (like ``mean``) even though you were upsampling, providing a bit of confusion.
Previous API will work but with deprecations
""""""""""""""""""""""""""""""""""""""""""""
.. warning::
This new API for resample includes some internal changes for the prior-to-0.18.0 API, to work with a deprecation warning in most cases, as the resample operation returns a deferred object. We can intercept operations and just do what the (pre 0.18.0) API did (with a warning). Here is a typical use case:
.. code-block:: ipython
In [4]: r = df.resample('2s')
In [6]: r*10
pandas/tseries/resample.py:80: FutureWarning: .resample() is now a deferred operation
use .resample(...).mean() instead of .resample(...)
Out[6]:
A B C D
2010-01-01 09:00:00 4.857476 4.473507 3.570960 7.936154
2010-01-01 09:00:02 8.208011 7.943173 3.640340 5.310957
2010-01-01 09:00:04 4.339846 3.145823 4.241039 6.257326
2010-01-01 09:00:06 6.249881 6.097384 6.331650 6.124518
2010-01-01 09:00:08 5.104699 5.343172 5.732009 8.069486
However, getting and assignment operations directly on a ``Resampler`` will raise a ``ValueError``:
.. code-block:: ipython
In [7]: r.iloc[0] = 5
ValueError: .resample() is now a deferred operation
use .resample(...).mean() instead of .resample(...)
There is a situation where the new API can not perform all the operations when using original code.
This code is intending to resample every 2s, take the ``mean`` AND then take the ``min`` of those results.
.. code-block:: ipython
In [4]: df.resample('2s').min()
Out[4]:
A 0.433985
B 0.314582
C 0.357096
D 0.531096
dtype: float64
The new API will:
.. ipython:: python
df.resample('2s').min()
The good news is the return dimensions will differ between the new API and the old API, so this should loudly raise
an exception.
To replicate the original operation
.. ipython:: python
df.resample('2s').mean().min()
Changes to eval
^^^^^^^^^^^^^^^
In prior versions, new columns assignments in an ``eval`` expression resulted
in an inplace change to the ``DataFrame``. (:issue:`9297`, :issue:`8664`, :issue:`10486`)
.. ipython:: python
df = pd.DataFrame({'a': np.linspace(0, 10, 5), 'b': range(5)})
df
.. ipython:: python
:suppress:
df.eval('c = a + b', inplace=True)
.. code-block:: ipython
In [12]: df.eval('c = a + b')
FutureWarning: eval expressions containing an assignment currentlydefault to operating inplace.
This will change in a future version of pandas, use inplace=True to avoid this warning.
In [13]: df
Out[13]:
a b c
0 0.0 0 0.0
1 2.5 1 3.5
2 5.0 2 7.0
3 7.5 3 10.5
4 10.0 4 14.0
In version 0.18.0, a new ``inplace`` keyword was added to choose whether the
assignment should be done inplace or return a copy.
.. ipython:: python
df
df.eval('d = c - b', inplace=False)
df
df.eval('d = c - b', inplace=True)
df
.. warning::
For backwards compatibility, ``inplace`` defaults to ``True`` if not specified.
This will change in a future version of pandas. If your code depends on an
inplace assignment you should update to explicitly set ``inplace=True``
The ``inplace`` keyword parameter was also added the ``query`` method.
.. ipython:: python
df.query('a > 5')
df.query('a > 5', inplace=True)
df
.. warning::
Note that the default value for ``inplace`` in a ``query``
is ``False``, which is consistent with prior versions.
``eval`` has also been updated to allow multi-line expressions for multiple
assignments. These expressions will be evaluated one at a time in order. Only
assignments are valid for multi-line expressions.
.. ipython:: python
df
df.eval("""
e = d + a
f = e - 22
g = f / 2.0""", inplace=True)
df
.. _whatsnew_0180.api:
Other API changes
^^^^^^^^^^^^^^^^^
- ``DataFrame.between_time`` and ``Series.between_time`` now only parse a fixed set of time strings. Parsing of date strings is no longer supported and raises a ``ValueError``. (:issue:`11818`)
.. code-block:: ipython
In [107]: s = pd.Series(range(10), pd.date_range('2015-01-01', freq='H', periods=10))
In [108]: s.between_time("7:00am", "9:00am")
Out[108]:
2015-01-01 07:00:00 7
2015-01-01 08:00:00 8
2015-01-01 09:00:00 9
Freq: H, Length: 3, dtype: int64
This will now raise.
.. code-block:: ipython
In [2]: s.between_time('20150101 07:00:00','20150101 09:00:00')
ValueError: Cannot convert arg ['20150101 07:00:00'] to a time.
- ``.memory_usage()`` now includes values in the index, as does memory_usage in ``.info()`` (:issue:`11597`)
- ``DataFrame.to_latex()`` now supports non-ascii encodings (eg ``utf-8``) in Python 2 with the parameter ``encoding`` (:issue:`7061`)
- ``pandas.merge()`` and ``DataFrame.merge()`` will show a specific error message when trying to merge with an object that is not of type ``DataFrame`` or a subclass (:issue:`12081`)
- ``DataFrame.unstack`` and ``Series.unstack`` now take ``fill_value`` keyword to allow direct replacement of missing values when an unstack results in missing values in the resulting ``DataFrame``. As an added benefit, specifying ``fill_value`` will preserve the data type of the original stacked data. (:issue:`9746`)
- As part of the new API for :ref:`window functions <whatsnew_0180.enhancements.moments>` and :ref:`resampling <whatsnew_0180.breaking.resample>`, aggregation functions have been clarified, raising more informative error messages on invalid aggregations. (:issue:`9052`). A full set of examples are presented in :ref:`groupby <groupby.aggregate>`.
- Statistical functions for ``NDFrame`` objects (like ``sum(), mean(), min()``) will now raise if non-numpy-compatible arguments are passed in for ``**kwargs`` (:issue:`12301`)
- ``.to_latex`` and ``.to_html`` gain a ``decimal`` parameter like ``.to_csv``; the default is ``'.'`` (:issue:`12031`)
- More helpful error message when constructing a ``DataFrame`` with empty data but with indices (:issue:`8020`)
- ``.describe()`` will now properly handle bool dtype as a categorical (:issue:`6625`)
- More helpful error message with an invalid ``.transform`` with user defined input (:issue:`10165`)
- Exponentially weighted functions now allow specifying alpha directly (:issue:`10789`) and raise ``ValueError`` if parameters violate ``0 < alpha <= 1`` (:issue:`12492`)
.. _whatsnew_0180.deprecations:
Deprecations
^^^^^^^^^^^^
.. _whatsnew_0180.window_deprecations:
- The functions ``pd.rolling_*``, ``pd.expanding_*``, and ``pd.ewm*`` are deprecated and replaced by the corresponding method call. Note that
the new suggested syntax includes all of the arguments (even if default) (:issue:`11603`)
.. code-block:: ipython
In [1]: s = pd.Series(range(3))
In [2]: pd.rolling_mean(s,window=2,min_periods=1)
FutureWarning: pd.rolling_mean is deprecated for Series and
will be removed in a future version, replace with
Series.rolling(min_periods=1,window=2,center=False).mean()
Out[2]:
0 0.0
1 0.5
2 1.5
dtype: float64
In [3]: pd.rolling_cov(s, s, window=2)
FutureWarning: pd.rolling_cov is deprecated for Series and
will be removed in a future version, replace with
Series.rolling(window=2).cov(other=<Series>)
Out[3]:
0 NaN
1 0.5
2 0.5
dtype: float64
- The ``freq`` and ``how`` arguments to the ``.rolling``, ``.expanding``, and ``.ewm`` (new) functions are deprecated, and will be removed in a future version. You can simply resample the input prior to creating a window function. (:issue:`11603`).
For example, instead of ``s.rolling(window=5,freq='D').max()`` to get the max value on a rolling 5 Day window, one could use ``s.resample('D').mean().rolling(window=5).max()``, which first resamples the data to daily data, then provides a rolling 5 day window.
- ``pd.tseries.frequencies.get_offset_name`` function is deprecated. Use offset's ``.freqstr`` property as alternative (:issue:`11192`)
- ``pandas.stats.fama_macbeth`` routines are deprecated and will be removed in a future version (:issue:`6077`)
- ``pandas.stats.ols``, ``pandas.stats.plm`` and ``pandas.stats.var`` routines are deprecated and will be removed in a future version (:issue:`6077`)
- show a ``FutureWarning`` rather than a ``DeprecationWarning`` on using long-time deprecated syntax in ``HDFStore.select``, where the ``where`` clause is not a string-like (:issue:`12027`)
- The ``pandas.options.display.mpl_style`` configuration has been deprecated
and will be removed in a future version of pandas. This functionality
is better handled by matplotlib's `style sheets`_ (:issue:`11783`).
.. _style sheets: http://matplotlib.org/users/style_sheets.html
.. _whatsnew_0180.float_indexers:
Removal of deprecated float indexers
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
In :issue:`4892` indexing with floating point numbers on a non-``Float64Index`` was deprecated (in version 0.14.0).
In 0.18.0, this deprecation warning is removed and these will now raise a ``TypeError``. (:issue:`12165`, :issue:`12333`)
.. ipython:: python
s = pd.Series([1, 2, 3], index=[4, 5, 6])
s
s2 = pd.Series([1, 2, 3], index=list('abc'))
s2
Previous behavior:
.. code-block:: ipython
# this is label indexing
In [2]: s[5.0]
FutureWarning: scalar indexers for index type Int64Index should be integers and not floating point
Out[2]: 2
# this is positional indexing
In [3]: s.iloc[1.0]
FutureWarning: scalar indexers for index type Int64Index should be integers and not floating point
Out[3]: 2
# this is label indexing
In [4]: s.loc[5.0]
FutureWarning: scalar indexers for index type Int64Index should be integers and not floating point
Out[4]: 2
# .ix would coerce 1.0 to the positional 1, and index
In [5]: s2.ix[1.0] = 10
FutureWarning: scalar indexers for index type Index should be integers and not floating point
In [6]: s2
Out[6]:
a 1
b 10
c 3
dtype: int64
New behavior:
For iloc, getting & setting via a float scalar will always raise.
.. code-block:: ipython
In [3]: s.iloc[2.0]
TypeError: cannot do label indexing on <class 'pandas.indexes.numeric.Int64Index'> with these indexers [2.0] of <type 'float'>
Other indexers will coerce to a like integer for both getting and setting. The ``FutureWarning`` has been dropped for ``.loc``, ``.ix`` and ``[]``.
.. ipython:: python
s[5.0]
s.loc[5.0]
and setting
.. ipython:: python
s_copy = s.copy()
s_copy[5.0] = 10
s_copy
s_copy = s.copy()
s_copy.loc[5.0] = 10
s_copy
Positional setting with ``.ix`` and a float indexer will ADD this value to the index, rather than previously setting the value by position.
.. code-block:: ipython
In [3]: s2.ix[1.0] = 10
In [4]: s2
Out[4]:
a 1
b 2
c 3
1.0 10
dtype: int64
Slicing will also coerce integer-like floats to integers for a non-``Float64Index``.
.. ipython:: python
s.loc[5.0:6]
Note that for floats that are NOT coercible to ints, the label based bounds will be excluded
.. ipython:: python
s.loc[5.1:6]
Float indexing on a ``Float64Index`` is unchanged.
.. ipython:: python
s = pd.Series([1, 2, 3], index=np.arange(3.))
s[1.0]
s[1.0:2.5]
.. _whatsnew_0180.prior_deprecations:
Removal of prior version deprecations/changes
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- Removal of ``rolling_corr_pairwise`` in favor of ``.rolling().corr(pairwise=True)`` (:issue:`4950`)
- Removal of ``expanding_corr_pairwise`` in favor of ``.expanding().corr(pairwise=True)`` (:issue:`4950`)
- Removal of ``DataMatrix`` module. This was not imported into the pandas namespace in any event (:issue:`12111`)
- Removal of ``cols`` keyword in favor of ``subset`` in ``DataFrame.duplicated()`` and ``DataFrame.drop_duplicates()`` (:issue:`6680`)
- Removal of the ``read_frame`` and ``frame_query`` (both aliases for ``pd.read_sql``)
and ``write_frame`` (alias of ``to_sql``) functions in the ``pd.io.sql`` namespace,
deprecated since 0.14.0 (:issue:`6292`).
- Removal of the ``order`` keyword from ``.factorize()`` (:issue:`6930`)
.. _whatsnew_0180.performance:
Performance improvements
~~~~~~~~~~~~~~~~~~~~~~~~
- Improved performance of ``andrews_curves`` (:issue:`11534`)
- Improved huge ``DatetimeIndex``, ``PeriodIndex`` and ``TimedeltaIndex``'s ops performance including ``NaT`` (:issue:`10277`)
- Improved performance of ``pandas.concat`` (:issue:`11958`)
- Improved performance of ``StataReader`` (:issue:`11591`)
- Improved performance in construction of ``Categoricals`` with ``Series`` of datetimes containing ``NaT`` (:issue:`12077`)
- Improved performance of ISO 8601 date parsing for dates without separators (:issue:`11899`), leading zeros (:issue:`11871`) and with white space preceding the time zone (:issue:`9714`)
.. _whatsnew_0180.bug_fixes:
Bug fixes
~~~~~~~~~
- Bug in ``GroupBy.size`` when data-frame is empty. (:issue:`11699`)
- Bug in ``Period.end_time`` when a multiple of time period is requested (:issue:`11738`)
- Regression in ``.clip`` with tz-aware datetimes (:issue:`11838`)
- Bug in ``date_range`` when the boundaries fell on the frequency (:issue:`11804`, :issue:`12409`)
- Bug in consistency of passing nested dicts to ``.groupby(...).agg(...)`` (:issue:`9052`)
- Accept unicode in ``Timedelta`` constructor (:issue:`11995`)
- Bug in value label reading for ``StataReader`` when reading incrementally (:issue:`12014`)
- Bug in vectorized ``DateOffset`` when ``n`` parameter is ``0`` (:issue:`11370`)
- Compat for numpy 1.11 w.r.t. ``NaT`` comparison changes (:issue:`12049`)
- Bug in ``read_csv`` when reading from a ``StringIO`` in threads (:issue:`11790`)
- Bug in not treating ``NaT`` as a missing value in datetimelikes when factorizing & with ``Categoricals`` (:issue:`12077`)
- Bug in getitem when the values of a ``Series`` were tz-aware (:issue:`12089`)
- Bug in ``Series.str.get_dummies`` when one of the variables was 'name' (:issue:`12180`)
- Bug in ``pd.concat`` while concatenating tz-aware NaT series. (:issue:`11693`, :issue:`11755`, :issue:`12217`)
- Bug in ``pd.read_stata`` with version <= 108 files (:issue:`12232`)
- Bug in ``Series.resample`` using a frequency of ``Nano`` when the index is a ``DatetimeIndex`` and contains non-zero nanosecond parts (:issue:`12037`)
- Bug in resampling with ``.nunique`` and a sparse index (:issue:`12352`)
- Removed some compiler warnings (:issue:`12471`)
- Work around compat issues with ``boto`` in python 3.5 (:issue:`11915`)
- Bug in ``NaT`` subtraction from ``Timestamp`` or ``DatetimeIndex`` with timezones (:issue:`11718`)
- Bug in subtraction of ``Series`` of a single tz-aware ``Timestamp`` (:issue:`12290`)
- Use compat iterators in PY2 to support ``.next()`` (:issue:`12299`)
- Bug in ``Timedelta.round`` with negative values (:issue:`11690`)
- Bug in ``.loc`` against ``CategoricalIndex`` may result in normal ``Index`` (:issue:`11586`)
- Bug in ``DataFrame.info`` when duplicated column names exist (:issue:`11761`)
- Bug in ``.copy`` of datetime tz-aware objects (:issue:`11794`)
- Bug in ``Series.apply`` and ``Series.map`` where ``timedelta64`` was not boxed (:issue:`11349`)
- Bug in ``DataFrame.set_index()`` with tz-aware ``Series`` (:issue:`12358`)
- Bug in subclasses of ``DataFrame`` where ``AttributeError`` did not propagate (:issue:`11808`)
- Bug groupby on tz-aware data where selection not returning ``Timestamp`` (:issue:`11616`)
- Bug in ``pd.read_clipboard`` and ``pd.to_clipboard`` functions not supporting Unicode; upgrade included ``pyperclip`` to v1.5.15 (:issue:`9263`)
- Bug in ``DataFrame.query`` containing an assignment (:issue:`8664`)
- Bug in ``from_msgpack`` where ``__contains__()`` fails for columns of the unpacked ``DataFrame``, if the ``DataFrame`` has object columns. (:issue:`11880`)
- Bug in ``.resample`` on categorical data with ``TimedeltaIndex`` (:issue:`12169`)
- Bug in timezone info lost when broadcasting scalar datetime to ``DataFrame`` (:issue:`11682`)
- Bug in ``Index`` creation from ``Timestamp`` with mixed tz coerces to UTC (:issue:`11488`)
- Bug in ``to_numeric`` where it does not raise if input is more than one dimension (:issue:`11776`)
- Bug in parsing timezone offset strings with non-zero minutes (:issue:`11708`)
- Bug in ``df.plot`` using incorrect colors for bar plots under matplotlib 1.5+ (:issue:`11614`)
- Bug in the ``groupby`` ``plot`` method when using keyword arguments (:issue:`11805`).
- Bug in ``DataFrame.duplicated`` and ``drop_duplicates`` causing spurious matches when setting ``keep=False`` (:issue:`11864`)
- Bug in ``.loc`` result with duplicated key may have ``Index`` with incorrect dtype (:issue:`11497`)
- Bug in ``pd.rolling_median`` where memory allocation failed even with sufficient memory (:issue:`11696`)
- Bug in ``DataFrame.style`` with spurious zeros (:issue:`12134`)
- Bug in ``DataFrame.style`` with integer columns not starting at 0 (:issue:`12125`)
- Bug in ``.style.bar`` may not rendered properly using specific browser (:issue:`11678`)
- Bug in rich comparison of ``Timedelta`` with a ``numpy.array`` of ``Timedelta`` that caused an infinite recursion (:issue:`11835`)
- Bug in ``DataFrame.round`` dropping column index name (:issue:`11986`)
- Bug in ``df.replace`` while replacing value in mixed dtype ``Dataframe`` (:issue:`11698`)
- Bug in ``Index`` prevents copying name of passed ``Index``, when a new name is not provided (:issue:`11193`)
- Bug in ``read_excel`` failing to read any non-empty sheets when empty sheets exist and ``sheetname=None`` (:issue:`11711`)
- Bug in ``read_excel`` failing to raise ``NotImplemented`` error when keywords ``parse_dates`` and ``date_parser`` are provided (:issue:`11544`)
- Bug in ``read_sql`` with ``pymysql`` connections failing to return chunked data (:issue:`11522`)
- Bug in ``.to_csv`` ignoring formatting parameters ``decimal``, ``na_rep``, ``float_format`` for float indexes (:issue:`11553`)
- Bug in ``Int64Index`` and ``Float64Index`` preventing the use of the modulo operator (:issue:`9244`)
- Bug in ``MultiIndex.drop`` for not lexsorted MultiIndexes (:issue:`12078`)
- Bug in ``DataFrame`` when masking an empty ``DataFrame`` (:issue:`11859`)
- Bug in ``.plot`` potentially modifying the ``colors`` input when the number of columns didn't match the number of series provided (:issue:`12039`).
- Bug in ``Series.plot`` failing when index has a ``CustomBusinessDay`` frequency (:issue:`7222`).
- Bug in ``.to_sql`` for ``datetime.time`` values with sqlite fallback (:issue:`8341`)
- Bug in ``read_excel`` failing to read data with one column when ``squeeze=True`` (:issue:`12157`)
- Bug in ``read_excel`` failing to read one empty column (:issue:`12292`, :issue:`9002`)
- Bug in ``.groupby`` where a ``KeyError`` was not raised for a wrong column if there was only one row in the dataframe (:issue:`11741`)
- Bug in ``.read_csv`` with dtype specified on empty data producing an error (:issue:`12048`)
- Bug in ``.read_csv`` where strings like ``'2E'`` are treated as valid floats (:issue:`12237`)
- Bug in building *pandas* with debugging symbols (:issue:`12123`)
- Removed ``millisecond`` property of ``DatetimeIndex``. This would always raise a ``ValueError`` (:issue:`12019`).
- Bug in ``Series`` constructor with read-only data (:issue:`11502`)
- Removed ``pandas._testing.choice()``. Should use ``np.random.choice()``, instead. (:issue:`12386`)
- Bug in ``.loc`` setitem indexer preventing the use of a TZ-aware DatetimeIndex (:issue:`12050`)
- Bug in ``.style`` indexes and MultiIndexes not appearing (:issue:`11655`)
- Bug in ``to_msgpack`` and ``from_msgpack`` which did not correctly serialize or deserialize ``NaT`` (:issue:`12307`).
- Bug in ``.skew`` and ``.kurt`` due to roundoff error for highly similar values (:issue:`11974`)
- Bug in ``Timestamp`` constructor where microsecond resolution was lost if HHMMSS were not separated with ':' (:issue:`10041`)
- Bug in ``buffer_rd_bytes`` src->buffer could be freed more than once if reading failed, causing a segfault (:issue:`12098`)
- Bug in ``crosstab`` where arguments with non-overlapping indexes would return a ``KeyError`` (:issue:`10291`)
- Bug in ``DataFrame.apply`` in which reduction was not being prevented for cases in which ``dtype`` was not a numpy dtype (:issue:`12244`)
- Bug when initializing categorical series with a scalar value. (:issue:`12336`)
- Bug when specifying a UTC ``DatetimeIndex`` by setting ``utc=True`` in ``.to_datetime`` (:issue:`11934`)
- Bug when increasing the buffer size of CSV reader in ``read_csv`` (:issue:`12494`)
- Bug when setting columns of a ``DataFrame`` with duplicate column names (:issue:`12344`)
.. _whatsnew_0.18.0.contributors:
Contributors
~~~~~~~~~~~~
.. contributors:: v0.17.1..v0.18.0
|