1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625
|
.. _whatsnew_0190:
Version 0.19.0 (October 2, 2016)
--------------------------------
{{ header }}
This is a major release from 0.18.1 and includes number of API changes, several new features,
enhancements, and performance improvements along with a large number of bug fixes. We recommend that all
users upgrade to this version.
Highlights include:
- :func:`merge_asof` for asof-style time-series joining, see :ref:`here <whatsnew_0190.enhancements.asof_merge>`
- ``.rolling()`` is now time-series aware, see :ref:`here <whatsnew_0190.enhancements.rolling_ts>`
- :func:`read_csv` now supports parsing ``Categorical`` data, see :ref:`here <whatsnew_0190.enhancements.read_csv_categorical>`
- A function :func:`union_categorical` has been added for combining categoricals, see :ref:`here <whatsnew_0190.enhancements.union_categoricals>`
- ``PeriodIndex`` now has its own ``period`` dtype, and changed to be more consistent with other ``Index`` classes. See :ref:`here <whatsnew_0190.api.period>`
- Sparse data structures gained enhanced support of ``int`` and ``bool`` dtypes, see :ref:`here <whatsnew_0190.sparse>`
- Comparison operations with ``Series`` no longer ignores the index, see :ref:`here <whatsnew_0190.api.series_ops>` for an overview of the API changes.
- Introduction of a pandas development API for utility functions, see :ref:`here <whatsnew_0190.dev_api>`.
- Deprecation of ``Panel4D`` and ``PanelND``. We recommend to represent these types of n-dimensional data with the `xarray package <http://xarray.pydata.org/en/stable/>`__.
- Removal of the previously deprecated modules ``pandas.io.data``, ``pandas.io.wb``, ``pandas.tools.rplot``.
.. warning::
pandas >= 0.19.0 will no longer silence numpy ufunc warnings upon import, see :ref:`here <whatsnew_0190.errstate>`.
.. contents:: What's new in v0.19.0
:local:
:backlinks: none
.. _whatsnew_0190.new_features:
New features
~~~~~~~~~~~~
.. _whatsnew_0190.enhancements.asof_merge:
Function ``merge_asof`` for asof-style time-series joining
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
A long-time requested feature has been added through the :func:`merge_asof` function, to
support asof style joining of time-series (:issue:`1870`, :issue:`13695`, :issue:`13709`, :issue:`13902`). Full documentation is
:ref:`here <merging.merge_asof>`.
The :func:`merge_asof` performs an asof merge, which is similar to a left-join
except that we match on nearest key rather than equal keys.
.. ipython:: python
left = pd.DataFrame({"a": [1, 5, 10], "left_val": ["a", "b", "c"]})
right = pd.DataFrame({"a": [1, 2, 3, 6, 7], "right_val": [1, 2, 3, 6, 7]})
left
right
We typically want to match exactly when possible, and use the most
recent value otherwise.
.. ipython:: python
pd.merge_asof(left, right, on="a")
We can also match rows ONLY with prior data, and not an exact match.
.. ipython:: python
pd.merge_asof(left, right, on="a", allow_exact_matches=False)
In a typical time-series example, we have ``trades`` and ``quotes`` and we want to ``asof-join`` them.
This also illustrates using the ``by`` parameter to group data before merging.
.. ipython:: python
trades = pd.DataFrame(
{
"time": pd.to_datetime(
[
"20160525 13:30:00.023",
"20160525 13:30:00.038",
"20160525 13:30:00.048",
"20160525 13:30:00.048",
"20160525 13:30:00.048",
]
),
"ticker": ["MSFT", "MSFT", "GOOG", "GOOG", "AAPL"],
"price": [51.95, 51.95, 720.77, 720.92, 98.00],
"quantity": [75, 155, 100, 100, 100],
},
columns=["time", "ticker", "price", "quantity"],
)
quotes = pd.DataFrame(
{
"time": pd.to_datetime(
[
"20160525 13:30:00.023",
"20160525 13:30:00.023",
"20160525 13:30:00.030",
"20160525 13:30:00.041",
"20160525 13:30:00.048",
"20160525 13:30:00.049",
"20160525 13:30:00.072",
"20160525 13:30:00.075",
]
),
"ticker": ["GOOG", "MSFT", "MSFT", "MSFT", "GOOG", "AAPL", "GOOG", "MSFT"],
"bid": [720.50, 51.95, 51.97, 51.99, 720.50, 97.99, 720.50, 52.01],
"ask": [720.93, 51.96, 51.98, 52.00, 720.93, 98.01, 720.88, 52.03],
},
columns=["time", "ticker", "bid", "ask"],
)
.. ipython:: python
trades
quotes
An asof merge joins on the ``on``, typically a datetimelike field, which is ordered, and
in this case we are using a grouper in the ``by`` field. This is like a left-outer join, except
that forward filling happens automatically taking the most recent non-NaN value.
.. ipython:: python
pd.merge_asof(trades, quotes, on="time", by="ticker")
This returns a merged DataFrame with the entries in the same order as the original left
passed DataFrame (``trades`` in this case), with the fields of the ``quotes`` merged.
.. _whatsnew_0190.enhancements.rolling_ts:
Method ``.rolling()`` is now time-series aware
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
``.rolling()`` objects are now time-series aware and can accept a time-series offset (or convertible) for the ``window`` argument (:issue:`13327`, :issue:`12995`).
See the full documentation :ref:`here <window.generic>`.
.. ipython:: python
dft = pd.DataFrame(
{"B": [0, 1, 2, np.nan, 4]},
index=pd.date_range("20130101 09:00:00", periods=5, freq="s"),
)
dft
This is a regular frequency index. Using an integer window parameter works to roll along the window frequency.
.. ipython:: python
dft.rolling(2).sum()
dft.rolling(2, min_periods=1).sum()
Specifying an offset allows a more intuitive specification of the rolling frequency.
.. ipython:: python
dft.rolling("2s").sum()
Using a non-regular, but still monotonic index, rolling with an integer window does not impart any special calculation.
.. ipython:: python
dft = pd.DataFrame(
{"B": [0, 1, 2, np.nan, 4]},
index=pd.Index(
[
pd.Timestamp("20130101 09:00:00"),
pd.Timestamp("20130101 09:00:02"),
pd.Timestamp("20130101 09:00:03"),
pd.Timestamp("20130101 09:00:05"),
pd.Timestamp("20130101 09:00:06"),
],
name="foo",
),
)
dft
dft.rolling(2).sum()
Using the time-specification generates variable windows for this sparse data.
.. ipython:: python
dft.rolling("2s").sum()
Furthermore, we now allow an optional ``on`` parameter to specify a column (rather than the
default of the index) in a DataFrame.
.. ipython:: python
dft = dft.reset_index()
dft
dft.rolling("2s", on="foo").sum()
.. _whatsnew_0190.enhancements.read_csv_dupe_col_names_support:
Method ``read_csv`` has improved support for duplicate column names
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.. ipython:: python
:suppress:
from io import StringIO
:ref:`Duplicate column names <io.dupe_names>` are now supported in :func:`read_csv` whether
they are in the file or passed in as the ``names`` parameter (:issue:`7160`, :issue:`9424`)
.. ipython:: python
data = "0,1,2\n3,4,5"
names = ["a", "b", "a"]
**Previous behavior**:
.. code-block:: ipython
In [2]: pd.read_csv(StringIO(data), names=names)
Out[2]:
a b a
0 2 1 2
1 5 4 5
The first ``a`` column contained the same data as the second ``a`` column, when it should have
contained the values ``[0, 3]``.
**New behavior**:
.. ipython:: python
:okexcept:
pd.read_csv(StringIO(data), names=names)
.. _whatsnew_0190.enhancements.read_csv_categorical:
Method ``read_csv`` supports parsing ``Categorical`` directly
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
The :func:`read_csv` function now supports parsing a ``Categorical`` column when
specified as a dtype (:issue:`10153`). Depending on the structure of the data,
this can result in a faster parse time and lower memory usage compared to
converting to ``Categorical`` after parsing. See the io :ref:`docs here <io.categorical>`.
.. ipython:: python
data = """
col1,col2,col3
a,b,1
a,b,2
c,d,3
"""
pd.read_csv(StringIO(data))
pd.read_csv(StringIO(data)).dtypes
pd.read_csv(StringIO(data), dtype="category").dtypes
Individual columns can be parsed as a ``Categorical`` using a dict specification
.. ipython:: python
pd.read_csv(StringIO(data), dtype={"col1": "category"}).dtypes
.. note::
The resulting categories will always be parsed as strings (object dtype).
If the categories are numeric they can be converted using the
:func:`to_numeric` function, or as appropriate, another converter
such as :func:`to_datetime`.
.. ipython:: python
df = pd.read_csv(StringIO(data), dtype="category")
df.dtypes
df["col3"]
new_categories = pd.to_numeric(df["col3"].cat.categories)
df["col3"] = df["col3"].cat.rename_categories(new_categories)
df["col3"]
.. _whatsnew_0190.enhancements.union_categoricals:
Categorical concatenation
^^^^^^^^^^^^^^^^^^^^^^^^^
- A function :func:`union_categoricals` has been added for combining categoricals, see :ref:`Unioning Categoricals<categorical.union>` (:issue:`13361`, :issue:`13763`, :issue:`13846`, :issue:`14173`)
.. ipython:: python
from pandas.api.types import union_categoricals
a = pd.Categorical(["b", "c"])
b = pd.Categorical(["a", "b"])
union_categoricals([a, b])
- ``concat`` and ``append`` now can concat ``category`` dtypes with different ``categories`` as ``object`` dtype (:issue:`13524`)
.. ipython:: python
s1 = pd.Series(["a", "b"], dtype="category")
s2 = pd.Series(["b", "c"], dtype="category")
**Previous behavior**:
.. code-block:: ipython
In [1]: pd.concat([s1, s2])
ValueError: incompatible categories in categorical concat
**New behavior**:
.. ipython:: python
pd.concat([s1, s2])
.. _whatsnew_0190.enhancements.semi_month_offsets:
Semi-month offsets
^^^^^^^^^^^^^^^^^^
pandas has gained new frequency offsets, ``SemiMonthEnd`` ('SM') and ``SemiMonthBegin`` ('SMS').
These provide date offsets anchored (by default) to the 15th and end of month, and 15th and 1st of month respectively.
(:issue:`1543`)
.. ipython:: python
from pandas.tseries.offsets import SemiMonthEnd, SemiMonthBegin
**SemiMonthEnd**:
.. code-block:: python
In [46]: pd.Timestamp("2016-01-01") + SemiMonthEnd()
Out[46]: Timestamp('2016-01-15 00:00:00')
In [47]: pd.date_range("2015-01-01", freq="SM", periods=4)
Out[47]: DatetimeIndex(['2015-01-15', '2015-01-31', '2015-02-15', '2015-02-28'], dtype='datetime64[ns]', freq='SM-15')
**SemiMonthBegin**:
.. ipython:: python
pd.Timestamp("2016-01-01") + SemiMonthBegin()
pd.date_range("2015-01-01", freq="SMS", periods=4)
Using the anchoring suffix, you can also specify the day of month to use instead of the 15th.
.. code-block:: python
In [50]: pd.date_range("2015-01-01", freq="SMS-16", periods=4)
Out[50]: DatetimeIndex(['2015-01-01', '2015-01-16', '2015-02-01', '2015-02-16'], dtype='datetime64[ns]', freq='SMS-16')
In [51]: pd.date_range("2015-01-01", freq="SM-14", periods=4)
Out[51]: DatetimeIndex(['2015-01-14', '2015-01-31', '2015-02-14', '2015-02-28'], dtype='datetime64[ns]', freq='SM-14')
.. _whatsnew_0190.enhancements.index:
New Index methods
^^^^^^^^^^^^^^^^^
The following methods and options are added to ``Index``, to be more consistent with the ``Series`` and ``DataFrame`` API.
``Index`` now supports the ``.where()`` function for same shape indexing (:issue:`13170`)
.. ipython:: python
idx = pd.Index(["a", "b", "c"])
idx.where([True, False, True])
``Index`` now supports ``.dropna()`` to exclude missing values (:issue:`6194`)
.. ipython:: python
idx = pd.Index([1, 2, np.nan, 4])
idx.dropna()
For ``MultiIndex``, values are dropped if any level is missing by default. Specifying
``how='all'`` only drops values where all levels are missing.
.. ipython:: python
midx = pd.MultiIndex.from_arrays([[1, 2, np.nan, 4], [1, 2, np.nan, np.nan]])
midx
midx.dropna()
midx.dropna(how="all")
``Index`` now supports ``.str.extractall()`` which returns a ``DataFrame``, see the :ref:`docs here <text.extractall>` (:issue:`10008`, :issue:`13156`)
.. ipython:: python
idx = pd.Index(["a1a2", "b1", "c1"])
idx.str.extractall(r"[ab](?P<digit>\d)")
``Index.astype()`` now accepts an optional boolean argument ``copy``, which allows optional copying if the requirements on dtype are satisfied (:issue:`13209`)
.. _whatsnew_0190.gbq:
Google BigQuery enhancements
^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- The :func:`read_gbq` method has gained the ``dialect`` argument to allow users to specify whether to use BigQuery's legacy SQL or BigQuery's standard SQL. See the `docs <https://pandas-gbq.readthedocs.io/en/latest/reading.html>`__ for more details (:issue:`13615`).
- The :func:`~DataFrame.to_gbq` method now allows the DataFrame column order to differ from the destination table schema (:issue:`11359`).
.. _whatsnew_0190.errstate:
Fine-grained NumPy errstate
^^^^^^^^^^^^^^^^^^^^^^^^^^^
Previous versions of pandas would permanently silence numpy's ufunc error handling when ``pandas`` was imported. pandas did this in order to silence the warnings that would arise from using numpy ufuncs on missing data, which are usually represented as ``NaN`` s. Unfortunately, this silenced legitimate warnings arising in non-pandas code in the application. Starting with 0.19.0, pandas will use the ``numpy.errstate`` context manager to silence these warnings in a more fine-grained manner, only around where these operations are actually used in the pandas code base. (:issue:`13109`, :issue:`13145`)
After upgrading pandas, you may see *new* ``RuntimeWarnings`` being issued from your code. These are likely legitimate, and the underlying cause likely existed in the code when using previous versions of pandas that simply silenced the warning. Use `numpy.errstate <https://numpy.org/doc/stable/reference/generated/numpy.errstate.html>`__ around the source of the ``RuntimeWarning`` to control how these conditions are handled.
.. _whatsnew_0190.get_dummies_dtypes:
Method ``get_dummies`` now returns integer dtypes
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
The ``pd.get_dummies`` function now returns dummy-encoded columns as small integers, rather than floats (:issue:`8725`). This should provide an improved memory footprint.
**Previous behavior**:
.. code-block:: ipython
In [1]: pd.get_dummies(['a', 'b', 'a', 'c']).dtypes
Out[1]:
a float64
b float64
c float64
dtype: object
**New behavior**:
.. ipython:: python
pd.get_dummies(["a", "b", "a", "c"]).dtypes
.. _whatsnew_0190.enhancements.to_numeric_downcast:
Downcast values to smallest possible dtype in ``to_numeric``
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
``pd.to_numeric()`` now accepts a ``downcast`` parameter, which will downcast the data if possible to smallest specified numerical dtype (:issue:`13352`)
.. ipython:: python
s = ["1", 2, 3]
pd.to_numeric(s, downcast="unsigned")
pd.to_numeric(s, downcast="integer")
.. _whatsnew_0190.dev_api:
pandas development API
^^^^^^^^^^^^^^^^^^^^^^
As part of making pandas API more uniform and accessible in the future, we have created a standard
sub-package of pandas, ``pandas.api`` to hold public API's. We are starting by exposing type
introspection functions in ``pandas.api.types``. More sub-packages and officially sanctioned API's
will be published in future versions of pandas (:issue:`13147`, :issue:`13634`)
The following are now part of this API:
.. ipython:: python
import pprint
from pandas.api import types
funcs = [f for f in dir(types) if not f.startswith("_")]
pprint.pprint(funcs)
.. note::
Calling these functions from the internal module ``pandas.core.common`` will now show a ``DeprecationWarning`` (:issue:`13990`)
.. _whatsnew_0190.enhancements.other:
Other enhancements
^^^^^^^^^^^^^^^^^^
- ``Timestamp`` can now accept positional and keyword parameters similar to :func:`datetime.datetime` (:issue:`10758`, :issue:`11630`)
.. ipython:: python
pd.Timestamp(2012, 1, 1)
pd.Timestamp(year=2012, month=1, day=1, hour=8, minute=30)
- The ``.resample()`` function now accepts a ``on=`` or ``level=`` parameter for resampling on a datetimelike column or ``MultiIndex`` level (:issue:`13500`)
.. ipython:: python
df = pd.DataFrame(
{"date": pd.date_range("2015-01-01", freq="W", periods=5), "a": np.arange(5)},
index=pd.MultiIndex.from_arrays(
[[1, 2, 3, 4, 5], pd.date_range("2015-01-01", freq="W", periods=5)],
names=["v", "d"],
),
)
df
.. code-block:: ipython
In [74]: df.resample("M", on="date")[["a"]].sum()
Out[74]:
a
date
2015-01-31 6
2015-02-28 4
[2 rows x 1 columns]
In [75]: df.resample("M", level="d")[["a"]].sum()
Out[75]:
a
d
2015-01-31 6
2015-02-28 4
[2 rows x 1 columns]
- The ``.get_credentials()`` method of ``GbqConnector`` can now first try to fetch `the application default credentials <https://developers.google.com/identity/protocols/application-default-credentials>`__. See the docs for more details (:issue:`13577`).
- The ``.tz_localize()`` method of ``DatetimeIndex`` and ``Timestamp`` has gained the ``errors`` keyword, so you can potentially coerce nonexistent timestamps to ``NaT``. The default behavior remains to raising a ``NonExistentTimeError`` (:issue:`13057`)
- ``.to_hdf/read_hdf()`` now accept path objects (e.g. ``pathlib.Path``, ``py.path.local``) for the file path (:issue:`11773`)
- The ``pd.read_csv()`` with ``engine='python'`` has gained support for the
``decimal`` (:issue:`12933`), ``na_filter`` (:issue:`13321`) and the ``memory_map`` option (:issue:`13381`).
- Consistent with the Python API, ``pd.read_csv()`` will now interpret ``+inf`` as positive infinity (:issue:`13274`)
- The ``pd.read_html()`` has gained support for the ``na_values``, ``converters``, ``keep_default_na`` options (:issue:`13461`)
- ``Categorical.astype()`` now accepts an optional boolean argument ``copy``, effective when dtype is categorical (:issue:`13209`)
- ``DataFrame`` has gained the ``.asof()`` method to return the last non-NaN values according to the selected subset (:issue:`13358`)
- The ``DataFrame`` constructor will now respect key ordering if a list of ``OrderedDict`` objects are passed in (:issue:`13304`)
- ``pd.read_html()`` has gained support for the ``decimal`` option (:issue:`12907`)
- ``Series`` has gained the properties ``.is_monotonic``, ``.is_monotonic_increasing``, ``.is_monotonic_decreasing``, similar to ``Index`` (:issue:`13336`)
- ``DataFrame.to_sql()`` now allows a single value as the SQL type for all columns (:issue:`11886`).
- ``Series.append`` now supports the ``ignore_index`` option (:issue:`13677`)
- ``.to_stata()`` and ``StataWriter`` can now write variable labels to Stata dta files using a dictionary to make column names to labels (:issue:`13535`, :issue:`13536`)
- ``.to_stata()`` and ``StataWriter`` will automatically convert ``datetime64[ns]`` columns to Stata format ``%tc``, rather than raising a ``ValueError`` (:issue:`12259`)
- ``read_stata()`` and ``StataReader`` raise with a more explicit error message when reading Stata files with repeated value labels when ``convert_categoricals=True`` (:issue:`13923`)
- ``DataFrame.style`` will now render sparsified MultiIndexes (:issue:`11655`)
- ``DataFrame.style`` will now show column level names (e.g. ``DataFrame.columns.names``) (:issue:`13775`)
- ``DataFrame`` has gained support to re-order the columns based on the values
in a row using ``df.sort_values(by='...', axis=1)`` (:issue:`10806`)
.. ipython:: python
df = pd.DataFrame({"A": [2, 7], "B": [3, 5], "C": [4, 8]}, index=["row1", "row2"])
df
df.sort_values(by="row2", axis=1)
- Added documentation to :ref:`I/O<io.dtypes>` regarding the perils of reading in columns with mixed dtypes and how to handle it (:issue:`13746`)
- :meth:`~DataFrame.to_html` now has a ``border`` argument to control the value in the opening ``<table>`` tag. The default is the value of the ``html.border`` option, which defaults to 1. This also affects the notebook HTML repr, but since Jupyter's CSS includes a border-width attribute, the visual effect is the same. (:issue:`11563`).
- Raise ``ImportError`` in the sql functions when ``sqlalchemy`` is not installed and a connection string is used (:issue:`11920`).
- Compatibility with matplotlib 2.0. Older versions of pandas should also work with matplotlib 2.0 (:issue:`13333`)
- ``Timestamp``, ``Period``, ``DatetimeIndex``, ``PeriodIndex`` and ``.dt`` accessor have gained a ``.is_leap_year`` property to check whether the date belongs to a leap year. (:issue:`13727`)
- ``astype()`` will now accept a dict of column name to data types mapping as the ``dtype`` argument. (:issue:`12086`)
- The ``pd.read_json`` and ``DataFrame.to_json`` has gained support for reading and writing json lines with ``lines`` option see :ref:`Line delimited json <io.jsonl>` (:issue:`9180`)
- :func:`read_excel` now supports the true_values and false_values keyword arguments (:issue:`13347`)
- ``groupby()`` will now accept a scalar and a single-element list for specifying ``level`` on a non-``MultiIndex`` grouper. (:issue:`13907`)
- Non-convertible dates in an excel date column will be returned without conversion and the column will be ``object`` dtype, rather than raising an exception (:issue:`10001`).
- ``pd.Timedelta(None)`` is now accepted and will return ``NaT``, mirroring ``pd.Timestamp`` (:issue:`13687`)
- ``pd.read_stata()`` can now handle some format 111 files, which are produced by SAS when generating Stata dta files (:issue:`11526`)
- ``Series`` and ``Index`` now support ``divmod`` which will return a tuple of
series or indices. This behaves like a standard binary operator with regards
to broadcasting rules (:issue:`14208`).
.. _whatsnew_0190.api:
API changes
~~~~~~~~~~~
``Series.tolist()`` will now return Python types
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
``Series.tolist()`` will now return Python types in the output, mimicking NumPy ``.tolist()`` behavior (:issue:`10904`)
.. ipython:: python
s = pd.Series([1, 2, 3])
**Previous behavior**:
.. code-block:: ipython
In [7]: type(s.tolist()[0])
Out[7]:
<class 'numpy.int64'>
**New behavior**:
.. ipython:: python
type(s.tolist()[0])
.. _whatsnew_0190.api.series_ops:
``Series`` operators for different indexes
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Following ``Series`` operators have been changed to make all operators consistent,
including ``DataFrame`` (:issue:`1134`, :issue:`4581`, :issue:`13538`)
- ``Series`` comparison operators now raise ``ValueError`` when ``index`` are different.
- ``Series`` logical operators align both ``index`` of left and right hand side.
.. warning::
Until 0.18.1, comparing ``Series`` with the same length, would succeed even if
the ``.index`` are different (the result ignores ``.index``). As of 0.19.0, this will raises ``ValueError`` to be more strict. This section also describes how to keep previous behavior or align different indexes, using the flexible comparison methods like ``.eq``.
As a result, ``Series`` and ``DataFrame`` operators behave as below:
Arithmetic operators
""""""""""""""""""""
Arithmetic operators align both ``index`` (no changes).
.. ipython:: python
s1 = pd.Series([1, 2, 3], index=list("ABC"))
s2 = pd.Series([2, 2, 2], index=list("ABD"))
s1 + s2
df1 = pd.DataFrame([1, 2, 3], index=list("ABC"))
df2 = pd.DataFrame([2, 2, 2], index=list("ABD"))
df1 + df2
Comparison operators
""""""""""""""""""""
Comparison operators raise ``ValueError`` when ``.index`` are different.
**Previous behavior** (``Series``):
``Series`` compared values ignoring the ``.index`` as long as both had the same length:
.. code-block:: ipython
In [1]: s1 == s2
Out[1]:
A False
B True
C False
dtype: bool
**New behavior** (``Series``):
.. code-block:: ipython
In [2]: s1 == s2
Out[2]:
ValueError: Can only compare identically-labeled Series objects
.. note::
To achieve the same result as previous versions (compare values based on locations ignoring ``.index``), compare both ``.values``.
.. ipython:: python
s1.values == s2.values
If you want to compare ``Series`` aligning its ``.index``, see flexible comparison methods section below:
.. ipython:: python
s1.eq(s2)
**Current behavior** (``DataFrame``, no change):
.. code-block:: ipython
In [3]: df1 == df2
Out[3]:
ValueError: Can only compare identically-labeled DataFrame objects
Logical operators
"""""""""""""""""
Logical operators align both ``.index`` of left and right hand side.
**Previous behavior** (``Series``), only left hand side ``index`` was kept:
.. code-block:: ipython
In [4]: s1 = pd.Series([True, False, True], index=list('ABC'))
In [5]: s2 = pd.Series([True, True, True], index=list('ABD'))
In [6]: s1 & s2
Out[6]:
A True
B False
C False
dtype: bool
**New behavior** (``Series``):
.. ipython:: python
s1 = pd.Series([True, False, True], index=list("ABC"))
s2 = pd.Series([True, True, True], index=list("ABD"))
s1 & s2
.. note::
``Series`` logical operators fill a ``NaN`` result with ``False``.
.. note::
To achieve the same result as previous versions (compare values based on only left hand side index), you can use ``reindex_like``:
.. ipython:: python
s1 & s2.reindex_like(s1)
**Current behavior** (``DataFrame``, no change):
.. ipython:: python
df1 = pd.DataFrame([True, False, True], index=list("ABC"))
df2 = pd.DataFrame([True, True, True], index=list("ABD"))
df1 & df2
Flexible comparison methods
"""""""""""""""""""""""""""
``Series`` flexible comparison methods like ``eq``, ``ne``, ``le``, ``lt``, ``ge`` and ``gt`` now align both ``index``. Use these operators if you want to compare two ``Series``
which has the different ``index``.
.. ipython:: python
s1 = pd.Series([1, 2, 3], index=["a", "b", "c"])
s2 = pd.Series([2, 2, 2], index=["b", "c", "d"])
s1.eq(s2)
s1.ge(s2)
Previously, this worked the same as comparison operators (see above).
.. _whatsnew_0190.api.promote:
``Series`` type promotion on assignment
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
A ``Series`` will now correctly promote its dtype for assignment with incompat values to the current dtype (:issue:`13234`)
.. ipython:: python
:okwarning:
s = pd.Series()
**Previous behavior**:
.. code-block:: ipython
In [2]: s["a"] = pd.Timestamp("2016-01-01")
In [3]: s["b"] = 3.0
TypeError: invalid type promotion
**New behavior**:
.. ipython:: python
s["a"] = pd.Timestamp("2016-01-01")
s["b"] = 3.0
s
s.dtype
.. _whatsnew_0190.api.to_datetime_coerce:
Function ``.to_datetime()`` changes
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Previously if ``.to_datetime()`` encountered mixed integers/floats and strings, but no datetimes with ``errors='coerce'`` it would convert all to ``NaT``.
**Previous behavior**:
.. code-block:: ipython
In [2]: pd.to_datetime([1, 'foo'], errors='coerce')
Out[2]: DatetimeIndex(['NaT', 'NaT'], dtype='datetime64[ns]', freq=None)
**Current behavior**:
This will now convert integers/floats with the default unit of ``ns``.
.. ipython:: python
pd.to_datetime([1, "foo"], errors="coerce")
Bug fixes related to ``.to_datetime()``:
- Bug in ``pd.to_datetime()`` when passing integers or floats, and no ``unit`` and ``errors='coerce'`` (:issue:`13180`).
- Bug in ``pd.to_datetime()`` when passing invalid data types (e.g. bool); will now respect the ``errors`` keyword (:issue:`13176`)
- Bug in ``pd.to_datetime()`` which overflowed on ``int8``, and ``int16`` dtypes (:issue:`13451`)
- Bug in ``pd.to_datetime()`` raise ``AttributeError`` with ``NaN`` and the other string is not valid when ``errors='ignore'`` (:issue:`12424`)
- Bug in ``pd.to_datetime()`` did not cast floats correctly when ``unit`` was specified, resulting in truncated datetime (:issue:`13834`)
.. _whatsnew_0190.api.merging:
Merging changes
^^^^^^^^^^^^^^^
Merging will now preserve the dtype of the join keys (:issue:`8596`)
.. ipython:: python
df1 = pd.DataFrame({"key": [1], "v1": [10]})
df1
df2 = pd.DataFrame({"key": [1, 2], "v1": [20, 30]})
df2
**Previous behavior**:
.. code-block:: ipython
In [5]: pd.merge(df1, df2, how='outer')
Out[5]:
key v1
0 1.0 10.0
1 1.0 20.0
2 2.0 30.0
In [6]: pd.merge(df1, df2, how='outer').dtypes
Out[6]:
key float64
v1 float64
dtype: object
**New behavior**:
We are able to preserve the join keys
.. ipython:: python
pd.merge(df1, df2, how="outer")
pd.merge(df1, df2, how="outer").dtypes
Of course if you have missing values that are introduced, then the
resulting dtype will be upcast, which is unchanged from previous.
.. ipython:: python
pd.merge(df1, df2, how="outer", on="key")
pd.merge(df1, df2, how="outer", on="key").dtypes
.. _whatsnew_0190.api.describe:
Method ``.describe()`` changes
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Percentile identifiers in the index of a ``.describe()`` output will now be rounded to the least precision that keeps them distinct (:issue:`13104`)
.. ipython:: python
s = pd.Series([0, 1, 2, 3, 4])
df = pd.DataFrame([0, 1, 2, 3, 4])
**Previous behavior**:
The percentiles were rounded to at most one decimal place, which could raise ``ValueError`` for a data frame if the percentiles were duplicated.
.. code-block:: ipython
In [3]: s.describe(percentiles=[0.0001, 0.0005, 0.001, 0.999, 0.9995, 0.9999])
Out[3]:
count 5.000000
mean 2.000000
std 1.581139
min 0.000000
0.0% 0.000400
0.1% 0.002000
0.1% 0.004000
50% 2.000000
99.9% 3.996000
100.0% 3.998000
100.0% 3.999600
max 4.000000
dtype: float64
In [4]: df.describe(percentiles=[0.0001, 0.0005, 0.001, 0.999, 0.9995, 0.9999])
Out[4]:
...
ValueError: cannot reindex from a duplicate axis
**New behavior**:
.. ipython:: python
s.describe(percentiles=[0.0001, 0.0005, 0.001, 0.999, 0.9995, 0.9999])
df.describe(percentiles=[0.0001, 0.0005, 0.001, 0.999, 0.9995, 0.9999])
Furthermore:
- Passing duplicated ``percentiles`` will now raise a ``ValueError``.
- Bug in ``.describe()`` on a DataFrame with a mixed-dtype column index, which would previously raise a ``TypeError`` (:issue:`13288`)
.. _whatsnew_0190.api.period:
``Period`` changes
^^^^^^^^^^^^^^^^^^
The ``PeriodIndex`` now has ``period`` dtype
""""""""""""""""""""""""""""""""""""""""""""
``PeriodIndex`` now has its own ``period`` dtype. The ``period`` dtype is a
pandas extension dtype like ``category`` or the :ref:`timezone aware dtype <timeseries.timezone_series>` (``datetime64[ns, tz]``) (:issue:`13941`).
As a consequence of this change, ``PeriodIndex`` no longer has an integer dtype:
**Previous behavior**:
.. code-block:: ipython
In [1]: pi = pd.PeriodIndex(['2016-08-01'], freq='D')
In [2]: pi
Out[2]: PeriodIndex(['2016-08-01'], dtype='int64', freq='D')
In [3]: pd.api.types.is_integer_dtype(pi)
Out[3]: True
In [4]: pi.dtype
Out[4]: dtype('int64')
**New behavior**:
.. ipython:: python
:okwarning:
pi = pd.PeriodIndex(["2016-08-01"], freq="D")
pi
pd.api.types.is_integer_dtype(pi)
pd.api.types.is_period_dtype(pi)
pi.dtype
type(pi.dtype)
.. _whatsnew_0190.api.periodnat:
``Period('NaT')`` now returns ``pd.NaT``
""""""""""""""""""""""""""""""""""""""""
Previously, ``Period`` has its own ``Period('NaT')`` representation different from ``pd.NaT``. Now ``Period('NaT')`` has been changed to return ``pd.NaT``. (:issue:`12759`, :issue:`13582`)
**Previous behavior**:
.. code-block:: ipython
In [5]: pd.Period('NaT', freq='D')
Out[5]: Period('NaT', 'D')
**New behavior**:
These result in ``pd.NaT`` without providing ``freq`` option.
.. ipython:: python
pd.Period("NaT")
pd.Period(None)
To be compatible with ``Period`` addition and subtraction, ``pd.NaT`` now supports addition and subtraction with ``int``. Previously it raised ``ValueError``.
**Previous behavior**:
.. code-block:: ipython
In [5]: pd.NaT + 1
...
ValueError: Cannot add integral value to Timestamp without freq.
**New behavior**:
.. ipython:: python
pd.NaT + 1
pd.NaT - 1
``PeriodIndex.values`` now returns array of ``Period`` object
"""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
``.values`` is changed to return an array of ``Period`` objects, rather than an array
of integers (:issue:`13988`).
**Previous behavior**:
.. code-block:: ipython
In [6]: pi = pd.PeriodIndex(['2011-01', '2011-02'], freq='M')
In [7]: pi.values
Out[7]: array([492, 493])
**New behavior**:
.. ipython:: python
pi = pd.PeriodIndex(["2011-01", "2011-02"], freq="M")
pi.values
.. _whatsnew_0190.api.setops:
Index ``+`` / ``-`` no longer used for set operations
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Addition and subtraction of the base Index type and of DatetimeIndex
(not the numeric index types)
previously performed set operations (set union and difference). This
behavior was already deprecated since 0.15.0 (in favor using the specific
``.union()`` and ``.difference()`` methods), and is now disabled. When
possible, ``+`` and ``-`` are now used for element-wise operations, for
example for concatenating strings or subtracting datetimes
(:issue:`8227`, :issue:`14127`).
Previous behavior:
.. code-block:: ipython
In [1]: pd.Index(['a', 'b']) + pd.Index(['a', 'c'])
FutureWarning: using '+' to provide set union with Indexes is deprecated, use '|' or .union()
Out[1]: Index(['a', 'b', 'c'], dtype='object')
**New behavior**: the same operation will now perform element-wise addition:
.. ipython:: python
pd.Index(["a", "b"]) + pd.Index(["a", "c"])
Note that numeric Index objects already performed element-wise operations.
For example, the behavior of adding two integer Indexes is unchanged.
The base ``Index`` is now made consistent with this behavior.
.. ipython:: python
pd.Index([1, 2, 3]) + pd.Index([2, 3, 4])
Further, because of this change, it is now possible to subtract two
DatetimeIndex objects resulting in a TimedeltaIndex:
**Previous behavior**:
.. code-block:: ipython
In [1]: (pd.DatetimeIndex(['2016-01-01', '2016-01-02'])
...: - pd.DatetimeIndex(['2016-01-02', '2016-01-03']))
FutureWarning: using '-' to provide set differences with datetimelike Indexes is deprecated, use .difference()
Out[1]: DatetimeIndex(['2016-01-01'], dtype='datetime64[ns]', freq=None)
**New behavior**:
.. ipython:: python
(
pd.DatetimeIndex(["2016-01-01", "2016-01-02"])
- pd.DatetimeIndex(["2016-01-02", "2016-01-03"])
)
.. _whatsnew_0190.api.difference:
``Index.difference`` and ``.symmetric_difference`` changes
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
``Index.difference`` and ``Index.symmetric_difference`` will now, more consistently, treat ``NaN`` values as any other values. (:issue:`13514`)
.. ipython:: python
idx1 = pd.Index([1, 2, 3, np.nan])
idx2 = pd.Index([0, 1, np.nan])
**Previous behavior**:
.. code-block:: ipython
In [3]: idx1.difference(idx2)
Out[3]: Float64Index([nan, 2.0, 3.0], dtype='float64')
In [4]: idx1.symmetric_difference(idx2)
Out[4]: Float64Index([0.0, nan, 2.0, 3.0], dtype='float64')
**New behavior**:
.. ipython:: python
idx1.difference(idx2)
idx1.symmetric_difference(idx2)
.. _whatsnew_0190.api.unique_index:
``Index.unique`` consistently returns ``Index``
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
``Index.unique()`` now returns unique values as an
``Index`` of the appropriate ``dtype``. (:issue:`13395`).
Previously, most ``Index`` classes returned ``np.ndarray``, and ``DatetimeIndex``,
``TimedeltaIndex`` and ``PeriodIndex`` returned ``Index`` to keep metadata like timezone.
**Previous behavior**:
.. code-block:: ipython
In [1]: pd.Index([1, 2, 3]).unique()
Out[1]: array([1, 2, 3])
In [2]: pd.DatetimeIndex(['2011-01-01', '2011-01-02',
...: '2011-01-03'], tz='Asia/Tokyo').unique()
Out[2]:
DatetimeIndex(['2011-01-01 00:00:00+09:00', '2011-01-02 00:00:00+09:00',
'2011-01-03 00:00:00+09:00'],
dtype='datetime64[ns, Asia/Tokyo]', freq=None)
**New behavior**:
.. ipython:: python
pd.Index([1, 2, 3]).unique()
pd.DatetimeIndex(
["2011-01-01", "2011-01-02", "2011-01-03"], tz="Asia/Tokyo"
).unique()
.. _whatsnew_0190.api.multiindex:
``MultiIndex`` constructors, ``groupby`` and ``set_index`` preserve categorical dtypes
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
``MultiIndex.from_arrays`` and ``MultiIndex.from_product`` will now preserve categorical dtype
in ``MultiIndex`` levels (:issue:`13743`, :issue:`13854`).
.. ipython:: python
cat = pd.Categorical(["a", "b"], categories=list("bac"))
lvl1 = ["foo", "bar"]
midx = pd.MultiIndex.from_arrays([cat, lvl1])
midx
**Previous behavior**:
.. code-block:: ipython
In [4]: midx.levels[0]
Out[4]: Index(['b', 'a', 'c'], dtype='object')
In [5]: midx.get_level_values[0]
Out[5]: Index(['a', 'b'], dtype='object')
**New behavior**: the single level is now a ``CategoricalIndex``:
.. ipython:: python
midx.levels[0]
midx.get_level_values(0)
An analogous change has been made to ``MultiIndex.from_product``.
As a consequence, ``groupby`` and ``set_index`` also preserve categorical dtypes in indexes
.. ipython:: python
df = pd.DataFrame({"A": [0, 1], "B": [10, 11], "C": cat})
df_grouped = df.groupby(by=["A", "C"], observed=False).first()
df_set_idx = df.set_index(["A", "C"])
**Previous behavior**:
.. code-block:: ipython
In [11]: df_grouped.index.levels[1]
Out[11]: Index(['b', 'a', 'c'], dtype='object', name='C')
In [12]: df_grouped.reset_index().dtypes
Out[12]:
A int64
C object
B float64
dtype: object
In [13]: df_set_idx.index.levels[1]
Out[13]: Index(['b', 'a', 'c'], dtype='object', name='C')
In [14]: df_set_idx.reset_index().dtypes
Out[14]:
A int64
C object
B int64
dtype: object
**New behavior**:
.. ipython:: python
df_grouped.index.levels[1]
df_grouped.reset_index().dtypes
df_set_idx.index.levels[1]
df_set_idx.reset_index().dtypes
.. _whatsnew_0190.api.autogenerated_chunksize_index:
Function ``read_csv`` will progressively enumerate chunks
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
When :func:`read_csv` is called with ``chunksize=n`` and without specifying an index,
each chunk used to have an independently generated index from ``0`` to ``n-1``.
They are now given instead a progressive index, starting from ``0`` for the first chunk,
from ``n`` for the second, and so on, so that, when concatenated, they are identical to
the result of calling :func:`read_csv` without the ``chunksize=`` argument
(:issue:`12185`).
.. ipython:: python
data = "A,B\n0,1\n2,3\n4,5\n6,7"
**Previous behavior**:
.. code-block:: ipython
In [2]: pd.concat(pd.read_csv(StringIO(data), chunksize=2))
Out[2]:
A B
0 0 1
1 2 3
0 4 5
1 6 7
**New behavior**:
.. ipython:: python
pd.concat(pd.read_csv(StringIO(data), chunksize=2))
.. _whatsnew_0190.sparse:
Sparse changes
^^^^^^^^^^^^^^
These changes allow pandas to handle sparse data with more dtypes, and for work to make a smoother experience with data handling.
Types ``int64`` and ``bool`` support enhancements
"""""""""""""""""""""""""""""""""""""""""""""""""
Sparse data structures now gained enhanced support of ``int64`` and ``bool`` ``dtype`` (:issue:`667`, :issue:`13849`).
Previously, sparse data were ``float64`` dtype by default, even if all inputs were of ``int`` or ``bool`` dtype. You had to specify ``dtype`` explicitly to create sparse data with ``int64`` dtype. Also, ``fill_value`` had to be specified explicitly because the default was ``np.nan`` which doesn't appear in ``int64`` or ``bool`` data.
.. code-block:: ipython
In [1]: pd.SparseArray([1, 2, 0, 0])
Out[1]:
[1.0, 2.0, 0.0, 0.0]
Fill: nan
IntIndex
Indices: array([0, 1, 2, 3], dtype=int32)
# specifying int64 dtype, but all values are stored in sp_values because
# fill_value default is np.nan
In [2]: pd.SparseArray([1, 2, 0, 0], dtype=np.int64)
Out[2]:
[1, 2, 0, 0]
Fill: nan
IntIndex
Indices: array([0, 1, 2, 3], dtype=int32)
In [3]: pd.SparseArray([1, 2, 0, 0], dtype=np.int64, fill_value=0)
Out[3]:
[1, 2, 0, 0]
Fill: 0
IntIndex
Indices: array([0, 1], dtype=int32)
As of v0.19.0, sparse data keeps the input dtype, and uses more appropriate ``fill_value`` defaults (``0`` for ``int64`` dtype, ``False`` for ``bool`` dtype).
.. ipython:: python
pd.arrays.SparseArray([1, 2, 0, 0], dtype=np.int64)
pd.arrays.SparseArray([True, False, False, False])
See the :ref:`docs <sparse.dtype>` for more details.
Operators now preserve dtypes
"""""""""""""""""""""""""""""
- Sparse data structure now can preserve ``dtype`` after arithmetic ops (:issue:`13848`)
.. code-block:: python
s = pd.SparseSeries([0, 2, 0, 1], fill_value=0, dtype=np.int64)
s.dtype
s + 1
- Sparse data structure now support ``astype`` to convert internal ``dtype`` (:issue:`13900`)
.. code-block:: python
s = pd.SparseSeries([1.0, 0.0, 2.0, 0.0], fill_value=0)
s
s.astype(np.int64)
``astype`` fails if data contains values which cannot be converted to specified ``dtype``.
Note that the limitation is applied to ``fill_value`` which default is ``np.nan``.
.. code-block:: ipython
In [7]: pd.SparseSeries([1., np.nan, 2., np.nan], fill_value=np.nan).astype(np.int64)
Out[7]:
ValueError: unable to coerce current fill_value nan to int64 dtype
Other sparse fixes
""""""""""""""""""
- Subclassed ``SparseDataFrame`` and ``SparseSeries`` now preserve class types when slicing or transposing. (:issue:`13787`)
- ``SparseArray`` with ``bool`` dtype now supports logical (bool) operators (:issue:`14000`)
- Bug in ``SparseSeries`` with ``MultiIndex`` ``[]`` indexing may raise ``IndexError`` (:issue:`13144`)
- Bug in ``SparseSeries`` with ``MultiIndex`` ``[]`` indexing result may have normal ``Index`` (:issue:`13144`)
- Bug in ``SparseDataFrame`` in which ``axis=None`` did not default to ``axis=0`` (:issue:`13048`)
- Bug in ``SparseSeries`` and ``SparseDataFrame`` creation with ``object`` dtype may raise ``TypeError`` (:issue:`11633`)
- Bug in ``SparseDataFrame`` doesn't respect passed ``SparseArray`` or ``SparseSeries`` 's dtype and ``fill_value`` (:issue:`13866`)
- Bug in ``SparseArray`` and ``SparseSeries`` don't apply ufunc to ``fill_value`` (:issue:`13853`)
- Bug in ``SparseSeries.abs`` incorrectly keeps negative ``fill_value`` (:issue:`13853`)
- Bug in single row slicing on multi-type ``SparseDataFrame`` s, types were previously forced to float (:issue:`13917`)
- Bug in ``SparseSeries`` slicing changes integer dtype to float (:issue:`8292`)
- Bug in ``SparseDataFarme`` comparison ops may raise ``TypeError`` (:issue:`13001`)
- Bug in ``SparseDataFarme.isnull`` raises ``ValueError`` (:issue:`8276`)
- Bug in ``SparseSeries`` representation with ``bool`` dtype may raise ``IndexError`` (:issue:`13110`)
- Bug in ``SparseSeries`` and ``SparseDataFrame`` of ``bool`` or ``int64`` dtype may display its values like ``float64`` dtype (:issue:`13110`)
- Bug in sparse indexing using ``SparseArray`` with ``bool`` dtype may return incorrect result (:issue:`13985`)
- Bug in ``SparseArray`` created from ``SparseSeries`` may lose ``dtype`` (:issue:`13999`)
- Bug in ``SparseSeries`` comparison with dense returns normal ``Series`` rather than ``SparseSeries`` (:issue:`13999`)
.. _whatsnew_0190.indexer_dtype:
Indexer dtype changes
^^^^^^^^^^^^^^^^^^^^^
.. note::
This change only affects 64 bit python running on Windows, and only affects relatively advanced
indexing operations
Methods such as ``Index.get_indexer`` that return an indexer array, coerce that array to a "platform int", so that it can be
directly used in 3rd party library operations like ``numpy.take``. Previously, a platform int was defined as ``np.int_``
which corresponds to a C integer, but the correct type, and what is being used now, is ``np.intp``, which corresponds
to the C integer size that can hold a pointer (:issue:`3033`, :issue:`13972`).
These types are the same on many platform, but for 64 bit python on Windows,
``np.int_`` is 32 bits, and ``np.intp`` is 64 bits. Changing this behavior improves performance for many
operations on that platform.
**Previous behavior**:
.. code-block:: ipython
In [1]: i = pd.Index(['a', 'b', 'c'])
In [2]: i.get_indexer(['b', 'b', 'c']).dtype
Out[2]: dtype('int32')
**New behavior**:
.. code-block:: ipython
In [1]: i = pd.Index(['a', 'b', 'c'])
In [2]: i.get_indexer(['b', 'b', 'c']).dtype
Out[2]: dtype('int64')
.. _whatsnew_0190.api.other:
Other API changes
^^^^^^^^^^^^^^^^^
- ``Timestamp.to_pydatetime`` will issue a ``UserWarning`` when ``warn=True``, and the instance has a non-zero number of nanoseconds, previously this would print a message to stdout (:issue:`14101`).
- ``Series.unique()`` with datetime and timezone now returns return array of ``Timestamp`` with timezone (:issue:`13565`).
- ``Panel.to_sparse()`` will raise a ``NotImplementedError`` exception when called (:issue:`13778`).
- ``Index.reshape()`` will raise a ``NotImplementedError`` exception when called (:issue:`12882`).
- ``.filter()`` enforces mutual exclusion of the keyword arguments (:issue:`12399`).
- ``eval``'s upcasting rules for ``float32`` types have been updated to be more consistent with NumPy's rules. New behavior will not upcast to ``float64`` if you multiply a pandas ``float32`` object by a scalar float64 (:issue:`12388`).
- An ``UnsupportedFunctionCall`` error is now raised if NumPy ufuncs like ``np.mean`` are called on groupby or resample objects (:issue:`12811`).
- ``__setitem__`` will no longer apply a callable rhs as a function instead of storing it. Call ``where`` directly to get the previous behavior (:issue:`13299`).
- Calls to ``.sample()`` will respect the random seed set via ``numpy.random.seed(n)`` (:issue:`13161`)
- ``Styler.apply`` is now more strict about the outputs your function must return. For ``axis=0`` or ``axis=1``, the output shape must be identical. For ``axis=None``, the output must be a DataFrame with identical columns and index labels (:issue:`13222`).
- ``Float64Index.astype(int)`` will now raise ``ValueError`` if ``Float64Index`` contains ``NaN`` values (:issue:`13149`)
- ``TimedeltaIndex.astype(int)`` and ``DatetimeIndex.astype(int)`` will now return ``Int64Index`` instead of ``np.array`` (:issue:`13209`)
- Passing ``Period`` with multiple frequencies to normal ``Index`` now returns ``Index`` with ``object`` dtype (:issue:`13664`)
- ``PeriodIndex.fillna`` with ``Period`` has different freq now coerces to ``object`` dtype (:issue:`13664`)
- Faceted boxplots from ``DataFrame.boxplot(by=col)`` now return a ``Series`` when ``return_type`` is not None. Previously these returned an ``OrderedDict``. Note that when ``return_type=None``, the default, these still return a 2-D NumPy array (:issue:`12216`, :issue:`7096`).
- ``pd.read_hdf`` will now raise a ``ValueError`` instead of ``KeyError``, if a mode other than ``r``, ``r+`` and ``a`` is supplied. (:issue:`13623`)
- ``pd.read_csv()``, ``pd.read_table()``, and ``pd.read_hdf()`` raise the builtin ``FileNotFoundError`` exception for Python 3.x when called on a nonexistent file; this is back-ported as ``IOError`` in Python 2.x (:issue:`14086`)
- More informative exceptions are passed through the csv parser. The exception type would now be the original exception type instead of ``CParserError`` (:issue:`13652`).
- ``pd.read_csv()`` in the C engine will now issue a ``ParserWarning`` or raise a ``ValueError`` when ``sep`` encoded is more than one character long (:issue:`14065`)
- ``DataFrame.values`` will now return ``float64`` with a ``DataFrame`` of mixed ``int64`` and ``uint64`` dtypes, conforming to ``np.find_common_type`` (:issue:`10364`, :issue:`13917`)
- ``.groupby.groups`` will now return a dictionary of ``Index`` objects, rather than a dictionary of ``np.ndarray`` or ``lists`` (:issue:`14293`)
.. _whatsnew_0190.deprecations:
Deprecations
~~~~~~~~~~~~
- ``Series.reshape`` and ``Categorical.reshape`` have been deprecated and will be removed in a subsequent release (:issue:`12882`, :issue:`12882`)
- ``PeriodIndex.to_datetime`` has been deprecated in favor of ``PeriodIndex.to_timestamp`` (:issue:`8254`)
- ``Timestamp.to_datetime`` has been deprecated in favor of ``Timestamp.to_pydatetime`` (:issue:`8254`)
- ``Index.to_datetime`` and ``DatetimeIndex.to_datetime`` have been deprecated in favor of ``pd.to_datetime`` (:issue:`8254`)
- ``pandas.core.datetools`` module has been deprecated and will be removed in a subsequent release (:issue:`14094`)
- ``SparseList`` has been deprecated and will be removed in a future version (:issue:`13784`)
- ``DataFrame.to_html()`` and ``DataFrame.to_latex()`` have dropped the ``colSpace`` parameter in favor of ``col_space`` (:issue:`13857`)
- ``DataFrame.to_sql()`` has deprecated the ``flavor`` parameter, as it is superfluous when SQLAlchemy is not installed (:issue:`13611`)
- Deprecated ``read_csv`` keywords:
- ``compact_ints`` and ``use_unsigned`` have been deprecated and will be removed in a future version (:issue:`13320`)
- ``buffer_lines`` has been deprecated and will be removed in a future version (:issue:`13360`)
- ``as_recarray`` has been deprecated and will be removed in a future version (:issue:`13373`)
- ``skip_footer`` has been deprecated in favor of ``skipfooter`` and will be removed in a future version (:issue:`13349`)
- top-level ``pd.ordered_merge()`` has been renamed to ``pd.merge_ordered()`` and the original name will be removed in a future version (:issue:`13358`)
- ``Timestamp.offset`` property (and named arg in the constructor), has been deprecated in favor of ``freq`` (:issue:`12160`)
- ``pd.tseries.util.pivot_annual`` is deprecated. Use ``pivot_table`` as alternative, an example is :ref:`here <cookbook.pivot>` (:issue:`736`)
- ``pd.tseries.util.isleapyear`` has been deprecated and will be removed in a subsequent release. Datetime-likes now have a ``.is_leap_year`` property (:issue:`13727`)
- ``Panel4D`` and ``PanelND`` constructors are deprecated and will be removed in a future version. The recommended way to represent these types of n-dimensional data are with the `xarray package <http://xarray.pydata.org/en/stable/>`__. pandas provides a :meth:`~Panel4D.to_xarray` method to automate this conversion (:issue:`13564`).
- ``pandas.tseries.frequencies.get_standard_freq`` is deprecated. Use ``pandas.tseries.frequencies.to_offset(freq).rule_code`` instead (:issue:`13874`)
- ``pandas.tseries.frequencies.to_offset``'s ``freqstr`` keyword is deprecated in favor of ``freq`` (:issue:`13874`)
- ``Categorical.from_array`` has been deprecated and will be removed in a future version (:issue:`13854`)
.. _whatsnew_0190.prior_deprecations:
Removal of prior version deprecations/changes
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
- The ``SparsePanel`` class has been removed (:issue:`13778`)
- The ``pd.sandbox`` module has been removed in favor of the external library ``pandas-qt`` (:issue:`13670`)
- The ``pandas.io.data`` and ``pandas.io.wb`` modules are removed in favor of
the `pandas-datareader package <https://github.com/pydata/pandas-datareader>`__ (:issue:`13724`).
- The ``pandas.tools.rplot`` module has been removed in favor of
the `seaborn package <https://github.com/mwaskom/seaborn>`__ (:issue:`13855`)
- ``DataFrame.to_csv()`` has dropped the ``engine`` parameter, as was deprecated in 0.17.1 (:issue:`11274`, :issue:`13419`)
- ``DataFrame.to_dict()`` has dropped the ``outtype`` parameter in favor of ``orient`` (:issue:`13627`, :issue:`8486`)
- ``pd.Categorical`` has dropped setting of the ``ordered`` attribute directly in favor of the ``set_ordered`` method (:issue:`13671`)
- ``pd.Categorical`` has dropped the ``levels`` attribute in favor of ``categories`` (:issue:`8376`)
- ``DataFrame.to_sql()`` has dropped the ``mysql`` option for the ``flavor`` parameter (:issue:`13611`)
- ``Panel.shift()`` has dropped the ``lags`` parameter in favor of ``periods`` (:issue:`14041`)
- ``pd.Index`` has dropped the ``diff`` method in favor of ``difference`` (:issue:`13669`)
- ``pd.DataFrame`` has dropped the ``to_wide`` method in favor of ``to_panel`` (:issue:`14039`)
- ``Series.to_csv`` has dropped the ``nanRep`` parameter in favor of ``na_rep`` (:issue:`13804`)
- ``Series.xs``, ``DataFrame.xs``, ``Panel.xs``, ``Panel.major_xs``, and ``Panel.minor_xs`` have dropped the ``copy`` parameter (:issue:`13781`)
- ``str.split`` has dropped the ``return_type`` parameter in favor of ``expand`` (:issue:`13701`)
- Removal of the legacy time rules (offset aliases), deprecated since 0.17.0 (this has been alias since 0.8.0) (:issue:`13590`, :issue:`13868`). Now legacy time rules raises ``ValueError``. For the list of currently supported offsets, see :ref:`here <timeseries.offset_aliases>`.
- The default value for the ``return_type`` parameter for ``DataFrame.plot.box`` and ``DataFrame.boxplot`` changed from ``None`` to ``"axes"``. These methods will now return a matplotlib axes by default instead of a dictionary of artists. See :ref:`here <visualization.box.return>` (:issue:`6581`).
- The ``tquery`` and ``uquery`` functions in the ``pandas.io.sql`` module are removed (:issue:`5950`).
.. _whatsnew_0190.performance:
Performance improvements
~~~~~~~~~~~~~~~~~~~~~~~~
- Improved performance of sparse ``IntIndex.intersect`` (:issue:`13082`)
- Improved performance of sparse arithmetic with ``BlockIndex`` when the number of blocks are large, though recommended to use ``IntIndex`` in such cases (:issue:`13082`)
- Improved performance of ``DataFrame.quantile()`` as it now operates per-block (:issue:`11623`)
- Improved performance of float64 hash table operations, fixing some very slow indexing and groupby operations in python 3 (:issue:`13166`, :issue:`13334`)
- Improved performance of ``DataFrameGroupBy.transform`` (:issue:`12737`)
- Improved performance of ``Index`` and ``Series`` ``.duplicated`` (:issue:`10235`)
- Improved performance of ``Index.difference`` (:issue:`12044`)
- Improved performance of ``RangeIndex.is_monotonic_increasing`` and ``is_monotonic_decreasing`` (:issue:`13749`)
- Improved performance of datetime string parsing in ``DatetimeIndex`` (:issue:`13692`)
- Improved performance of hashing ``Period`` (:issue:`12817`)
- Improved performance of ``factorize`` of datetime with timezone (:issue:`13750`)
- Improved performance of by lazily creating indexing hashtables on larger Indexes (:issue:`14266`)
- Improved performance of ``groupby.groups`` (:issue:`14293`)
- Unnecessary materializing of a MultiIndex when introspecting for memory usage (:issue:`14308`)
.. _whatsnew_0190.bug_fixes:
Bug fixes
~~~~~~~~~
- Bug in ``groupby().shift()``, which could cause a segfault or corruption in rare circumstances when grouping by columns with missing values (:issue:`13813`)
- Bug in ``groupby().cumsum()`` calculating ``cumprod`` when ``axis=1``. (:issue:`13994`)
- Bug in ``pd.to_timedelta()`` in which the ``errors`` parameter was not being respected (:issue:`13613`)
- Bug in ``io.json.json_normalize()``, where non-ascii keys raised an exception (:issue:`13213`)
- Bug when passing a not-default-indexed ``Series`` as ``xerr`` or ``yerr`` in ``.plot()`` (:issue:`11858`)
- Bug in area plot draws legend incorrectly if subplot is enabled or legend is moved after plot (matplotlib 1.5.0 is required to draw area plot legend properly) (:issue:`9161`, :issue:`13544`)
- Bug in ``DataFrame`` assignment with an object-dtyped ``Index`` where the resultant column is mutable to the original object. (:issue:`13522`)
- Bug in matplotlib ``AutoDataFormatter``; this restores the second scaled formatting and re-adds micro-second scaled formatting (:issue:`13131`)
- Bug in selection from a ``HDFStore`` with a fixed format and ``start`` and/or ``stop`` specified will now return the selected range (:issue:`8287`)
- Bug in ``Categorical.from_codes()`` where an unhelpful error was raised when an invalid ``ordered`` parameter was passed in (:issue:`14058`)
- Bug in ``Series`` construction from a tuple of integers on windows not returning default dtype (int64) (:issue:`13646`)
- Bug in ``TimedeltaIndex`` addition with a Datetime-like object where addition overflow was not being caught (:issue:`14068`)
- Bug in ``.groupby(..).resample(..)`` when the same object is called multiple times (:issue:`13174`)
- Bug in ``.to_records()`` when index name is a unicode string (:issue:`13172`)
- Bug in calling ``.memory_usage()`` on object which doesn't implement (:issue:`12924`)
- Regression in ``Series.quantile`` with nans (also shows up in ``.median()`` and ``.describe()`` ); furthermore now names the ``Series`` with the quantile (:issue:`13098`, :issue:`13146`)
- Bug in ``SeriesGroupBy.transform`` with datetime values and missing groups (:issue:`13191`)
- Bug where empty ``Series`` were incorrectly coerced in datetime-like numeric operations (:issue:`13844`)
- Bug in ``Categorical`` constructor when passed a ``Categorical`` containing datetimes with timezones (:issue:`14190`)
- Bug in ``Series.str.extractall()`` with ``str`` index raises ``ValueError`` (:issue:`13156`)
- Bug in ``Series.str.extractall()`` with single group and quantifier (:issue:`13382`)
- Bug in ``DatetimeIndex`` and ``Period`` subtraction raises ``ValueError`` or ``AttributeError`` rather than ``TypeError`` (:issue:`13078`)
- Bug in ``Index`` and ``Series`` created with ``NaN`` and ``NaT`` mixed data may not have ``datetime64`` dtype (:issue:`13324`)
- Bug in ``Index`` and ``Series`` may ignore ``np.datetime64('nat')`` and ``np.timdelta64('nat')`` to infer dtype (:issue:`13324`)
- Bug in ``PeriodIndex`` and ``Period`` subtraction raises ``AttributeError`` (:issue:`13071`)
- Bug in ``PeriodIndex`` construction returning a ``float64`` index in some circumstances (:issue:`13067`)
- Bug in ``.resample(..)`` with a ``PeriodIndex`` not changing its ``freq`` appropriately when empty (:issue:`13067`)
- Bug in ``.resample(..)`` with a ``PeriodIndex`` not retaining its type or name with an empty ``DataFrame`` appropriately when empty (:issue:`13212`)
- Bug in ``groupby(..).apply(..)`` when the passed function returns scalar values per group (:issue:`13468`).
- Bug in ``groupby(..).resample(..)`` where passing some keywords would raise an exception (:issue:`13235`)
- Bug in ``.tz_convert`` on a tz-aware ``DateTimeIndex`` that relied on index being sorted for correct results (:issue:`13306`)
- Bug in ``.tz_localize`` with ``dateutil.tz.tzlocal`` may return incorrect result (:issue:`13583`)
- Bug in ``DatetimeTZDtype`` dtype with ``dateutil.tz.tzlocal`` cannot be regarded as valid dtype (:issue:`13583`)
- Bug in ``pd.read_hdf()`` where attempting to load an HDF file with a single dataset, that had one or more categorical columns, failed unless the key argument was set to the name of the dataset. (:issue:`13231`)
- Bug in ``.rolling()`` that allowed a negative integer window in construction of the ``Rolling()`` object, but would later fail on aggregation (:issue:`13383`)
- Bug in ``Series`` indexing with tuple-valued data and a numeric index (:issue:`13509`)
- Bug in printing ``pd.DataFrame`` where unusual elements with the ``object`` dtype were causing segfaults (:issue:`13717`)
- Bug in ranking ``Series`` which could result in segfaults (:issue:`13445`)
- Bug in various index types, which did not propagate the name of passed index (:issue:`12309`)
- Bug in ``DatetimeIndex``, which did not honour the ``copy=True`` (:issue:`13205`)
- Bug in ``DatetimeIndex.is_normalized`` returns incorrectly for normalized date_range in case of local timezones (:issue:`13459`)
- Bug in ``pd.concat`` and ``.append`` may coerces ``datetime64`` and ``timedelta`` to ``object`` dtype containing python built-in ``datetime`` or ``timedelta`` rather than ``Timestamp`` or ``Timedelta`` (:issue:`13626`)
- Bug in ``PeriodIndex.append`` may raises ``AttributeError`` when the result is ``object`` dtype (:issue:`13221`)
- Bug in ``CategoricalIndex.append`` may accept normal ``list`` (:issue:`13626`)
- Bug in ``pd.concat`` and ``.append`` with the same timezone get reset to UTC (:issue:`7795`)
- Bug in ``Series`` and ``DataFrame`` ``.append`` raises ``AmbiguousTimeError`` if data contains datetime near DST boundary (:issue:`13626`)
- Bug in ``DataFrame.to_csv()`` in which float values were being quoted even though quotations were specified for non-numeric values only (:issue:`12922`, :issue:`13259`)
- Bug in ``DataFrame.describe()`` raising ``ValueError`` with only boolean columns (:issue:`13898`)
- Bug in ``MultiIndex`` slicing where extra elements were returned when level is non-unique (:issue:`12896`)
- Bug in ``.str.replace`` does not raise ``TypeError`` for invalid replacement (:issue:`13438`)
- Bug in ``MultiIndex.from_arrays`` which didn't check for input array lengths matching (:issue:`13599`)
- Bug in ``cartesian_product`` and ``MultiIndex.from_product`` which may raise with empty input arrays (:issue:`12258`)
- Bug in ``pd.read_csv()`` which may cause a segfault or corruption when iterating in large chunks over a stream/file under rare circumstances (:issue:`13703`)
- Bug in ``pd.read_csv()`` which caused errors to be raised when a dictionary containing scalars is passed in for ``na_values`` (:issue:`12224`)
- Bug in ``pd.read_csv()`` which caused BOM files to be incorrectly parsed by not ignoring the BOM (:issue:`4793`)
- Bug in ``pd.read_csv()`` with ``engine='python'`` which raised errors when a numpy array was passed in for ``usecols`` (:issue:`12546`)
- Bug in ``pd.read_csv()`` where the index columns were being incorrectly parsed when parsed as dates with a ``thousands`` parameter (:issue:`14066`)
- Bug in ``pd.read_csv()`` with ``engine='python'`` in which ``NaN`` values weren't being detected after data was converted to numeric values (:issue:`13314`)
- Bug in ``pd.read_csv()`` in which the ``nrows`` argument was not properly validated for both engines (:issue:`10476`)
- Bug in ``pd.read_csv()`` with ``engine='python'`` in which infinities of mixed-case forms were not being interpreted properly (:issue:`13274`)
- Bug in ``pd.read_csv()`` with ``engine='python'`` in which trailing ``NaN`` values were not being parsed (:issue:`13320`)
- Bug in ``pd.read_csv()`` with ``engine='python'`` when reading from a ``tempfile.TemporaryFile`` on Windows with Python 3 (:issue:`13398`)
- Bug in ``pd.read_csv()`` that prevents ``usecols`` kwarg from accepting single-byte unicode strings (:issue:`13219`)
- Bug in ``pd.read_csv()`` that prevents ``usecols`` from being an empty set (:issue:`13402`)
- Bug in ``pd.read_csv()`` in the C engine where the NULL character was not being parsed as NULL (:issue:`14012`)
- Bug in ``pd.read_csv()`` with ``engine='c'`` in which NULL ``quotechar`` was not accepted even though ``quoting`` was specified as ``None`` (:issue:`13411`)
- Bug in ``pd.read_csv()`` with ``engine='c'`` in which fields were not properly cast to float when quoting was specified as non-numeric (:issue:`13411`)
- Bug in ``pd.read_csv()`` in Python 2.x with non-UTF8 encoded, multi-character separated data (:issue:`3404`)
- Bug in ``pd.read_csv()``, where aliases for utf-xx (e.g. UTF-xx, UTF_xx, utf_xx) raised UnicodeDecodeError (:issue:`13549`)
- Bug in ``pd.read_csv``, ``pd.read_table``, ``pd.read_fwf``, ``pd.read_stata`` and ``pd.read_sas`` where files were opened by parsers but not closed if both ``chunksize`` and ``iterator`` were ``None``. (:issue:`13940`)
- Bug in ``StataReader``, ``StataWriter``, ``XportReader`` and ``SAS7BDATReader`` where a file was not properly closed when an error was raised. (:issue:`13940`)
- Bug in ``pd.pivot_table()`` where ``margins_name`` is ignored when ``aggfunc`` is a list (:issue:`13354`)
- Bug in ``pd.Series.str.zfill``, ``center``, ``ljust``, ``rjust``, and ``pad`` when passing non-integers, did not raise ``TypeError`` (:issue:`13598`)
- Bug in checking for any null objects in a ``TimedeltaIndex``, which always returned ``True`` (:issue:`13603`)
- Bug in ``Series`` arithmetic raises ``TypeError`` if it contains datetime-like as ``object`` dtype (:issue:`13043`)
- Bug ``Series.isnull()`` and ``Series.notnull()`` ignore ``Period('NaT')`` (:issue:`13737`)
- Bug ``Series.fillna()`` and ``Series.dropna()`` don't affect to ``Period('NaT')`` (:issue:`13737`
- Bug in ``.fillna(value=np.nan)`` incorrectly raises ``KeyError`` on a ``category`` dtyped ``Series`` (:issue:`14021`)
- Bug in extension dtype creation where the created types were not is/identical (:issue:`13285`)
- Bug in ``.resample(..)`` where incorrect warnings were triggered by IPython introspection (:issue:`13618`)
- Bug in ``NaT`` - ``Period`` raises ``AttributeError`` (:issue:`13071`)
- Bug in ``Series`` comparison may output incorrect result if rhs contains ``NaT`` (:issue:`9005`)
- Bug in ``Series`` and ``Index`` comparison may output incorrect result if it contains ``NaT`` with ``object`` dtype (:issue:`13592`)
- Bug in ``Period`` addition raises ``TypeError`` if ``Period`` is on right hand side (:issue:`13069`)
- Bug in ``Period`` and ``Series`` or ``Index`` comparison raises ``TypeError`` (:issue:`13200`)
- Bug in ``pd.set_eng_float_format()`` that would prevent NaN and Inf from formatting (:issue:`11981`)
- Bug in ``.unstack`` with ``Categorical`` dtype resets ``.ordered`` to ``True`` (:issue:`13249`)
- Clean some compile time warnings in datetime parsing (:issue:`13607`)
- Bug in ``factorize`` raises ``AmbiguousTimeError`` if data contains datetime near DST boundary (:issue:`13750`)
- Bug in ``.set_index`` raises ``AmbiguousTimeError`` if new index contains DST boundary and multi levels (:issue:`12920`)
- Bug in ``.shift`` raises ``AmbiguousTimeError`` if data contains datetime near DST boundary (:issue:`13926`)
- Bug in ``pd.read_hdf()`` returns incorrect result when a ``DataFrame`` with a ``categorical`` column and a query which doesn't match any values (:issue:`13792`)
- Bug in ``.iloc`` when indexing with a non lexsorted MultiIndex (:issue:`13797`)
- Bug in ``.loc`` when indexing with date strings in a reverse sorted ``DatetimeIndex`` (:issue:`14316`)
- Bug in ``Series`` comparison operators when dealing with zero dim NumPy arrays (:issue:`13006`)
- Bug in ``.combine_first`` may return incorrect ``dtype`` (:issue:`7630`, :issue:`10567`)
- Bug in ``groupby`` where ``apply`` returns different result depending on whether first result is ``None`` or not (:issue:`12824`)
- Bug in ``groupby(..).nth()`` where the group key is included inconsistently if called after ``.head()/.tail()`` (:issue:`12839`)
- Bug in ``.to_html``, ``.to_latex`` and ``.to_string`` silently ignore custom datetime formatter passed through the ``formatters`` key word (:issue:`10690`)
- Bug in ``DataFrame.iterrows()``, not yielding a ``Series`` subclasse if defined (:issue:`13977`)
- Bug in ``pd.to_numeric`` when ``errors='coerce'`` and input contains non-hashable objects (:issue:`13324`)
- Bug in invalid ``Timedelta`` arithmetic and comparison may raise ``ValueError`` rather than ``TypeError`` (:issue:`13624`)
- Bug in invalid datetime parsing in ``to_datetime`` and ``DatetimeIndex`` may raise ``TypeError`` rather than ``ValueError`` (:issue:`11169`, :issue:`11287`)
- Bug in ``Index`` created with tz-aware ``Timestamp`` and mismatched ``tz`` option incorrectly coerces timezone (:issue:`13692`)
- Bug in ``DatetimeIndex`` with nanosecond frequency does not include timestamp specified with ``end`` (:issue:`13672`)
- Bug in ``Series`` when setting a slice with a ``np.timedelta64`` (:issue:`14155`)
- Bug in ``Index`` raises ``OutOfBoundsDatetime`` if ``datetime`` exceeds ``datetime64[ns]`` bounds, rather than coercing to ``object`` dtype (:issue:`13663`)
- Bug in ``Index`` may ignore specified ``datetime64`` or ``timedelta64`` passed as ``dtype`` (:issue:`13981`)
- Bug in ``RangeIndex`` can be created without no arguments rather than raises ``TypeError`` (:issue:`13793`)
- Bug in ``.value_counts()`` raises ``OutOfBoundsDatetime`` if data exceeds ``datetime64[ns]`` bounds (:issue:`13663`)
- Bug in ``DatetimeIndex`` may raise ``OutOfBoundsDatetime`` if input ``np.datetime64`` has other unit than ``ns`` (:issue:`9114`)
- Bug in ``Series`` creation with ``np.datetime64`` which has other unit than ``ns`` as ``object`` dtype results in incorrect values (:issue:`13876`)
- Bug in ``resample`` with timedelta data where data was casted to float (:issue:`13119`).
- Bug in ``pd.isnull()`` ``pd.notnull()`` raise ``TypeError`` if input datetime-like has other unit than ``ns`` (:issue:`13389`)
- Bug in ``pd.merge()`` may raise ``TypeError`` if input datetime-like has other unit than ``ns`` (:issue:`13389`)
- Bug in ``HDFStore``/``read_hdf()`` discarded ``DatetimeIndex.name`` if ``tz`` was set (:issue:`13884`)
- Bug in ``Categorical.remove_unused_categories()`` changes ``.codes`` dtype to platform int (:issue:`13261`)
- Bug in ``groupby`` with ``as_index=False`` returns all NaN's when grouping on multiple columns including a categorical one (:issue:`13204`)
- Bug in ``df.groupby(...)[...]`` where getitem with ``Int64Index`` raised an error (:issue:`13731`)
- Bug in the CSS classes assigned to ``DataFrame.style`` for index names. Previously they were assigned ``"col_heading level<n> col<c>"`` where ``n`` was the number of levels + 1. Now they are assigned ``"index_name level<n>"``, where ``n`` is the correct level for that MultiIndex.
- Bug where ``pd.read_gbq()`` could throw ``ImportError: No module named discovery`` as a result of a naming conflict with another python package called apiclient (:issue:`13454`)
- Bug in ``Index.union`` returns an incorrect result with a named empty index (:issue:`13432`)
- Bugs in ``Index.difference`` and ``DataFrame.join`` raise in Python3 when using mixed-integer indexes (:issue:`13432`, :issue:`12814`)
- Bug in subtract tz-aware ``datetime.datetime`` from tz-aware ``datetime64`` series (:issue:`14088`)
- Bug in ``.to_excel()`` when DataFrame contains a MultiIndex which contains a label with a NaN value (:issue:`13511`)
- Bug in invalid frequency offset string like "D1", "-2-3H" may not raise ``ValueError`` (:issue:`13930`)
- Bug in ``concat`` and ``groupby`` for hierarchical frames with ``RangeIndex`` levels (:issue:`13542`).
- Bug in ``Series.str.contains()`` for Series containing only ``NaN`` values of ``object`` dtype (:issue:`14171`)
- Bug in ``agg()`` function on groupby dataframe changes dtype of ``datetime64[ns]`` column to ``float64`` (:issue:`12821`)
- Bug in using NumPy ufunc with ``PeriodIndex`` to add or subtract integer raise ``IncompatibleFrequency``. Note that using standard operator like ``+`` or ``-`` is recommended, because standard operators use more efficient path (:issue:`13980`)
- Bug in operations on ``NaT`` returning ``float`` instead of ``datetime64[ns]`` (:issue:`12941`)
- Bug in ``Series`` flexible arithmetic methods (like ``.add()``) raises ``ValueError`` when ``axis=None`` (:issue:`13894`)
- Bug in ``DataFrame.to_csv()`` with ``MultiIndex`` columns in which a stray empty line was added (:issue:`6618`)
- Bug in ``DatetimeIndex``, ``TimedeltaIndex`` and ``PeriodIndex.equals()`` may return ``True`` when input isn't ``Index`` but contains the same values (:issue:`13107`)
- Bug in assignment against datetime with timezone may not work if it contains datetime near DST boundary (:issue:`14146`)
- Bug in ``pd.eval()`` and ``HDFStore`` query truncating long float literals with python 2 (:issue:`14241`)
- Bug in ``Index`` raises ``KeyError`` displaying incorrect column when column is not in the df and columns contains duplicate values (:issue:`13822`)
- Bug in ``Period`` and ``PeriodIndex`` creating wrong dates when frequency has combined offset aliases (:issue:`13874`)
- Bug in ``.to_string()`` when called with an integer ``line_width`` and ``index=False`` raises an UnboundLocalError exception because ``idx`` referenced before assignment.
- Bug in ``eval()`` where the ``resolvers`` argument would not accept a list (:issue:`14095`)
- Bugs in ``stack``, ``get_dummies``, ``make_axis_dummies`` which don't preserve categorical dtypes in (multi)indexes (:issue:`13854`)
- ``PeriodIndex`` can now accept ``list`` and ``array`` which contains ``pd.NaT`` (:issue:`13430`)
- Bug in ``df.groupby`` where ``.median()`` returns arbitrary values if grouped dataframe contains empty bins (:issue:`13629`)
- Bug in ``Index.copy()`` where ``name`` parameter was ignored (:issue:`14302`)
.. _whatsnew_0.19.0.contributors:
Contributors
~~~~~~~~~~~~
.. contributors:: v0.18.1..v0.19.0
|