File: v0.19.0.rst

package info (click to toggle)
pandas 2.2.3%2Bdfsg-9
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 66,784 kB
  • sloc: python: 422,228; ansic: 9,190; sh: 270; xml: 102; makefile: 83
file content (1625 lines) | stat: -rw-r--r-- 73,823 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
.. _whatsnew_0190:

Version 0.19.0 (October 2, 2016)
--------------------------------

{{ header }}

This is a major release from 0.18.1 and includes number of API changes, several new features,
enhancements, and performance improvements along with a large number of bug fixes. We recommend that all
users upgrade to this version.

Highlights include:

- :func:`merge_asof` for asof-style time-series joining, see :ref:`here <whatsnew_0190.enhancements.asof_merge>`
- ``.rolling()`` is now time-series aware, see :ref:`here <whatsnew_0190.enhancements.rolling_ts>`
- :func:`read_csv` now supports parsing ``Categorical`` data, see :ref:`here <whatsnew_0190.enhancements.read_csv_categorical>`
- A function :func:`union_categorical` has been added for combining categoricals, see :ref:`here <whatsnew_0190.enhancements.union_categoricals>`
- ``PeriodIndex`` now has its own ``period`` dtype, and changed to be more consistent with other ``Index`` classes. See :ref:`here <whatsnew_0190.api.period>`
- Sparse data structures gained enhanced support of ``int`` and ``bool`` dtypes, see :ref:`here <whatsnew_0190.sparse>`
- Comparison operations with ``Series`` no longer ignores the index, see :ref:`here <whatsnew_0190.api.series_ops>` for an overview of the API changes.
- Introduction of a pandas development API for utility functions, see :ref:`here <whatsnew_0190.dev_api>`.
- Deprecation of ``Panel4D`` and ``PanelND``. We recommend to represent these types of n-dimensional data with the `xarray package <http://xarray.pydata.org/en/stable/>`__.
- Removal of the previously deprecated modules ``pandas.io.data``, ``pandas.io.wb``, ``pandas.tools.rplot``.

.. warning::

    pandas >= 0.19.0 will no longer silence numpy ufunc warnings upon import, see :ref:`here <whatsnew_0190.errstate>`.

.. contents:: What's new in v0.19.0
    :local:
    :backlinks: none

.. _whatsnew_0190.new_features:

New features
~~~~~~~~~~~~

.. _whatsnew_0190.enhancements.asof_merge:

Function ``merge_asof`` for asof-style time-series joining
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

A long-time requested feature has been added through the :func:`merge_asof` function, to
support asof style joining of time-series (:issue:`1870`, :issue:`13695`, :issue:`13709`, :issue:`13902`). Full documentation is
:ref:`here <merging.merge_asof>`.

The :func:`merge_asof` performs an asof merge, which is similar to a left-join
except that we match on nearest key rather than equal keys.

.. ipython:: python

   left = pd.DataFrame({"a": [1, 5, 10], "left_val": ["a", "b", "c"]})
   right = pd.DataFrame({"a": [1, 2, 3, 6, 7], "right_val": [1, 2, 3, 6, 7]})

   left
   right

We typically want to match exactly when possible, and use the most
recent value otherwise.

.. ipython:: python

   pd.merge_asof(left, right, on="a")

We can also match rows ONLY with prior data, and not an exact match.

.. ipython:: python

   pd.merge_asof(left, right, on="a", allow_exact_matches=False)


In a typical time-series example, we have ``trades`` and ``quotes`` and we want to ``asof-join`` them.
This also illustrates using the ``by`` parameter to group data before merging.

.. ipython:: python

   trades = pd.DataFrame(
       {
           "time": pd.to_datetime(
               [
                   "20160525 13:30:00.023",
                   "20160525 13:30:00.038",
                   "20160525 13:30:00.048",
                   "20160525 13:30:00.048",
                   "20160525 13:30:00.048",
               ]
           ),
           "ticker": ["MSFT", "MSFT", "GOOG", "GOOG", "AAPL"],
           "price": [51.95, 51.95, 720.77, 720.92, 98.00],
           "quantity": [75, 155, 100, 100, 100],
       },
       columns=["time", "ticker", "price", "quantity"],
   )

   quotes = pd.DataFrame(
       {
           "time": pd.to_datetime(
               [
                   "20160525 13:30:00.023",
                   "20160525 13:30:00.023",
                   "20160525 13:30:00.030",
                   "20160525 13:30:00.041",
                   "20160525 13:30:00.048",
                   "20160525 13:30:00.049",
                   "20160525 13:30:00.072",
                   "20160525 13:30:00.075",
               ]
           ),
           "ticker": ["GOOG", "MSFT", "MSFT", "MSFT", "GOOG", "AAPL", "GOOG", "MSFT"],
           "bid": [720.50, 51.95, 51.97, 51.99, 720.50, 97.99, 720.50, 52.01],
           "ask": [720.93, 51.96, 51.98, 52.00, 720.93, 98.01, 720.88, 52.03],
       },
       columns=["time", "ticker", "bid", "ask"],
   )

.. ipython:: python

   trades
   quotes

An asof merge joins on the ``on``, typically a datetimelike field, which is ordered, and
in this case we are using a grouper in the ``by`` field. This is like a left-outer join, except
that forward filling happens automatically taking the most recent non-NaN value.

.. ipython:: python

   pd.merge_asof(trades, quotes, on="time", by="ticker")

This returns a merged DataFrame with the entries in the same order as the original left
passed DataFrame (``trades`` in this case), with the fields of the ``quotes`` merged.

.. _whatsnew_0190.enhancements.rolling_ts:

Method ``.rolling()`` is now time-series aware
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

``.rolling()`` objects are now time-series aware and can accept a time-series offset (or convertible) for the ``window`` argument (:issue:`13327`, :issue:`12995`).
See the full documentation :ref:`here <window.generic>`.

.. ipython:: python

   dft = pd.DataFrame(
       {"B": [0, 1, 2, np.nan, 4]},
       index=pd.date_range("20130101 09:00:00", periods=5, freq="s"),
   )
   dft

This is a regular frequency index. Using an integer window parameter works to roll along the window frequency.

.. ipython:: python

   dft.rolling(2).sum()
   dft.rolling(2, min_periods=1).sum()

Specifying an offset allows a more intuitive specification of the rolling frequency.

.. ipython:: python

   dft.rolling("2s").sum()

Using a non-regular, but still monotonic index, rolling with an integer window does not impart any special calculation.

.. ipython:: python


   dft = pd.DataFrame(
       {"B": [0, 1, 2, np.nan, 4]},
       index=pd.Index(
           [
               pd.Timestamp("20130101 09:00:00"),
               pd.Timestamp("20130101 09:00:02"),
               pd.Timestamp("20130101 09:00:03"),
               pd.Timestamp("20130101 09:00:05"),
               pd.Timestamp("20130101 09:00:06"),
           ],
           name="foo",
       ),
   )

   dft
   dft.rolling(2).sum()

Using the time-specification generates variable windows for this sparse data.

.. ipython:: python

   dft.rolling("2s").sum()

Furthermore, we now allow an optional ``on`` parameter to specify a column (rather than the
default of the index) in a DataFrame.

.. ipython:: python

   dft = dft.reset_index()
   dft
   dft.rolling("2s", on="foo").sum()

.. _whatsnew_0190.enhancements.read_csv_dupe_col_names_support:

Method ``read_csv`` has improved support for duplicate column names
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.. ipython:: python
   :suppress:

   from io import StringIO

:ref:`Duplicate column names <io.dupe_names>` are now supported in :func:`read_csv` whether
they are in the file or passed in as the ``names`` parameter (:issue:`7160`, :issue:`9424`)

.. ipython:: python

   data = "0,1,2\n3,4,5"
   names = ["a", "b", "a"]

**Previous behavior**:

.. code-block:: ipython

   In [2]: pd.read_csv(StringIO(data), names=names)
   Out[2]:
      a  b  a
   0  2  1  2
   1  5  4  5

The first ``a`` column contained the same data as the second ``a`` column, when it should have
contained the values ``[0, 3]``.

**New behavior**:

.. ipython:: python
   :okexcept:

   pd.read_csv(StringIO(data), names=names)


.. _whatsnew_0190.enhancements.read_csv_categorical:

Method ``read_csv`` supports parsing ``Categorical`` directly
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

The :func:`read_csv` function now supports parsing a ``Categorical`` column when
specified as a dtype (:issue:`10153`).  Depending on the structure of the data,
this can result in a faster parse time and lower memory usage compared to
converting to ``Categorical`` after parsing.  See the io :ref:`docs here <io.categorical>`.

.. ipython:: python

   data = """
   col1,col2,col3
   a,b,1
   a,b,2
   c,d,3
   """

   pd.read_csv(StringIO(data))
   pd.read_csv(StringIO(data)).dtypes
   pd.read_csv(StringIO(data), dtype="category").dtypes

Individual columns can be parsed as a ``Categorical`` using a dict specification

.. ipython:: python

   pd.read_csv(StringIO(data), dtype={"col1": "category"}).dtypes

.. note::

   The resulting categories will always be parsed as strings (object dtype).
   If the categories are numeric they can be converted using the
   :func:`to_numeric` function, or as appropriate, another converter
   such as :func:`to_datetime`.

   .. ipython:: python

      df = pd.read_csv(StringIO(data), dtype="category")
      df.dtypes
      df["col3"]
      new_categories = pd.to_numeric(df["col3"].cat.categories)
      df["col3"] = df["col3"].cat.rename_categories(new_categories)
      df["col3"]

.. _whatsnew_0190.enhancements.union_categoricals:

Categorical concatenation
^^^^^^^^^^^^^^^^^^^^^^^^^

- A function :func:`union_categoricals` has been added for combining categoricals, see :ref:`Unioning Categoricals<categorical.union>` (:issue:`13361`, :issue:`13763`, :issue:`13846`, :issue:`14173`)

  .. ipython:: python

     from pandas.api.types import union_categoricals

     a = pd.Categorical(["b", "c"])
     b = pd.Categorical(["a", "b"])
     union_categoricals([a, b])

- ``concat`` and ``append`` now can concat ``category`` dtypes with different ``categories`` as ``object`` dtype (:issue:`13524`)

  .. ipython:: python

     s1 = pd.Series(["a", "b"], dtype="category")
     s2 = pd.Series(["b", "c"], dtype="category")

**Previous behavior**:

.. code-block:: ipython

   In [1]: pd.concat([s1, s2])
   ValueError: incompatible categories in categorical concat

**New behavior**:

.. ipython:: python

   pd.concat([s1, s2])

.. _whatsnew_0190.enhancements.semi_month_offsets:

Semi-month offsets
^^^^^^^^^^^^^^^^^^

pandas has gained new frequency offsets, ``SemiMonthEnd`` ('SM') and ``SemiMonthBegin`` ('SMS').
These provide date offsets anchored (by default) to the 15th and end of month, and 15th and 1st of month respectively.
(:issue:`1543`)

.. ipython:: python

   from pandas.tseries.offsets import SemiMonthEnd, SemiMonthBegin

**SemiMonthEnd**:

.. code-block:: python

   In [46]: pd.Timestamp("2016-01-01") + SemiMonthEnd()
   Out[46]: Timestamp('2016-01-15 00:00:00')

   In [47]: pd.date_range("2015-01-01", freq="SM", periods=4)
   Out[47]: DatetimeIndex(['2015-01-15', '2015-01-31', '2015-02-15', '2015-02-28'], dtype='datetime64[ns]', freq='SM-15')

**SemiMonthBegin**:

.. ipython:: python

   pd.Timestamp("2016-01-01") + SemiMonthBegin()

   pd.date_range("2015-01-01", freq="SMS", periods=4)

Using the anchoring suffix, you can also specify the day of month to use instead of the 15th.

.. code-block:: python

   In [50]: pd.date_range("2015-01-01", freq="SMS-16", periods=4)
   Out[50]: DatetimeIndex(['2015-01-01', '2015-01-16', '2015-02-01', '2015-02-16'], dtype='datetime64[ns]', freq='SMS-16')

   In [51]: pd.date_range("2015-01-01", freq="SM-14", periods=4)
   Out[51]: DatetimeIndex(['2015-01-14', '2015-01-31', '2015-02-14', '2015-02-28'], dtype='datetime64[ns]', freq='SM-14')

.. _whatsnew_0190.enhancements.index:

New Index methods
^^^^^^^^^^^^^^^^^

The following methods and options are added to ``Index``, to be more consistent with the ``Series`` and ``DataFrame`` API.

``Index`` now supports the ``.where()`` function for same shape indexing (:issue:`13170`)

.. ipython:: python

   idx = pd.Index(["a", "b", "c"])
   idx.where([True, False, True])


``Index`` now supports ``.dropna()`` to exclude missing values (:issue:`6194`)

.. ipython:: python

   idx = pd.Index([1, 2, np.nan, 4])
   idx.dropna()

For ``MultiIndex``, values are dropped if any level is missing by default. Specifying
``how='all'`` only drops values where all levels are missing.

.. ipython:: python

   midx = pd.MultiIndex.from_arrays([[1, 2, np.nan, 4], [1, 2, np.nan, np.nan]])
   midx
   midx.dropna()
   midx.dropna(how="all")

``Index`` now supports ``.str.extractall()`` which returns a ``DataFrame``, see the :ref:`docs here <text.extractall>` (:issue:`10008`, :issue:`13156`)

.. ipython:: python

   idx = pd.Index(["a1a2", "b1", "c1"])
   idx.str.extractall(r"[ab](?P<digit>\d)")

``Index.astype()`` now accepts an optional boolean argument ``copy``, which allows optional copying if the requirements on dtype are satisfied (:issue:`13209`)

.. _whatsnew_0190.gbq:

Google BigQuery enhancements
^^^^^^^^^^^^^^^^^^^^^^^^^^^^

- The :func:`read_gbq` method has gained the ``dialect`` argument to allow users to specify whether to use BigQuery's legacy SQL or BigQuery's standard SQL. See the `docs <https://pandas-gbq.readthedocs.io/en/latest/reading.html>`__ for more details (:issue:`13615`).
- The :func:`~DataFrame.to_gbq` method now allows the DataFrame column order to differ from the destination table schema (:issue:`11359`).

.. _whatsnew_0190.errstate:

Fine-grained NumPy errstate
^^^^^^^^^^^^^^^^^^^^^^^^^^^

Previous versions of pandas would permanently silence numpy's ufunc error handling when ``pandas`` was imported. pandas did this in order to silence the warnings that would arise from using numpy ufuncs on missing data, which are usually represented as ``NaN`` s. Unfortunately, this silenced legitimate warnings arising in non-pandas code in the application. Starting with 0.19.0, pandas will use the ``numpy.errstate`` context manager to silence these warnings in a more fine-grained manner, only around where these operations are actually used in the pandas code base. (:issue:`13109`, :issue:`13145`)

After upgrading pandas, you may see *new* ``RuntimeWarnings`` being issued from your code. These are likely legitimate, and the underlying cause likely existed in the code when using previous versions of pandas that simply silenced the warning. Use `numpy.errstate <https://numpy.org/doc/stable/reference/generated/numpy.errstate.html>`__ around the source of the ``RuntimeWarning`` to control how these conditions are handled.

.. _whatsnew_0190.get_dummies_dtypes:

Method ``get_dummies`` now returns integer dtypes
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

The ``pd.get_dummies`` function now returns dummy-encoded columns as small integers, rather than floats (:issue:`8725`). This should provide an improved memory footprint.

**Previous behavior**:

.. code-block:: ipython

   In [1]: pd.get_dummies(['a', 'b', 'a', 'c']).dtypes

   Out[1]:
   a    float64
   b    float64
   c    float64
   dtype: object

**New behavior**:

.. ipython:: python

   pd.get_dummies(["a", "b", "a", "c"]).dtypes


.. _whatsnew_0190.enhancements.to_numeric_downcast:

Downcast values to smallest possible dtype in ``to_numeric``
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

``pd.to_numeric()`` now accepts a ``downcast`` parameter, which will downcast the data if possible to smallest specified numerical dtype (:issue:`13352`)

.. ipython:: python

   s = ["1", 2, 3]
   pd.to_numeric(s, downcast="unsigned")
   pd.to_numeric(s, downcast="integer")

.. _whatsnew_0190.dev_api:

pandas development API
^^^^^^^^^^^^^^^^^^^^^^

As part of making pandas API more uniform and accessible in the future, we have created a standard
sub-package of pandas, ``pandas.api`` to hold public API's. We are starting by exposing type
introspection functions in ``pandas.api.types``. More sub-packages and officially sanctioned API's
will be published in future versions of pandas (:issue:`13147`, :issue:`13634`)

The following are now part of this API:

.. ipython:: python

   import pprint
   from pandas.api import types

   funcs = [f for f in dir(types) if not f.startswith("_")]
   pprint.pprint(funcs)

.. note::

   Calling these functions from the internal module ``pandas.core.common`` will now show a ``DeprecationWarning`` (:issue:`13990`)


.. _whatsnew_0190.enhancements.other:

Other enhancements
^^^^^^^^^^^^^^^^^^

- ``Timestamp`` can now accept positional and keyword parameters similar to :func:`datetime.datetime` (:issue:`10758`, :issue:`11630`)

  .. ipython:: python

     pd.Timestamp(2012, 1, 1)

     pd.Timestamp(year=2012, month=1, day=1, hour=8, minute=30)

- The ``.resample()`` function now accepts a ``on=`` or ``level=`` parameter for resampling on a datetimelike column or ``MultiIndex`` level (:issue:`13500`)

  .. ipython:: python

     df = pd.DataFrame(
         {"date": pd.date_range("2015-01-01", freq="W", periods=5), "a": np.arange(5)},
         index=pd.MultiIndex.from_arrays(
             [[1, 2, 3, 4, 5], pd.date_range("2015-01-01", freq="W", periods=5)],
             names=["v", "d"],
         ),
     )
     df

  .. code-block:: ipython

     In [74]: df.resample("M", on="date")[["a"]].sum()
     Out[74]:
                 a
     date
     2015-01-31  6
     2015-02-28  4

     [2 rows x 1 columns]

     In [75]: df.resample("M", level="d")[["a"]].sum()
     Out[75]:
                 a
     d
     2015-01-31  6
     2015-02-28  4

     [2 rows x 1 columns]

- The ``.get_credentials()`` method of ``GbqConnector`` can now first try to fetch `the application default credentials <https://developers.google.com/identity/protocols/application-default-credentials>`__. See the docs for more details (:issue:`13577`).
- The ``.tz_localize()`` method of ``DatetimeIndex`` and ``Timestamp`` has gained the ``errors`` keyword, so you can potentially coerce nonexistent timestamps to ``NaT``. The default behavior remains to raising a ``NonExistentTimeError`` (:issue:`13057`)
- ``.to_hdf/read_hdf()`` now accept path objects (e.g. ``pathlib.Path``, ``py.path.local``) for the file path (:issue:`11773`)
- The ``pd.read_csv()`` with ``engine='python'`` has gained support for the
  ``decimal`` (:issue:`12933`), ``na_filter`` (:issue:`13321`) and the ``memory_map`` option (:issue:`13381`).
- Consistent with the Python API, ``pd.read_csv()`` will now interpret ``+inf`` as positive infinity (:issue:`13274`)
- The ``pd.read_html()`` has gained support for the ``na_values``, ``converters``, ``keep_default_na``  options (:issue:`13461`)
- ``Categorical.astype()`` now accepts an optional boolean argument ``copy``, effective when dtype is categorical (:issue:`13209`)
- ``DataFrame`` has gained the ``.asof()`` method to return the last non-NaN values according to the selected subset (:issue:`13358`)
- The ``DataFrame`` constructor will now respect key ordering if a list of ``OrderedDict`` objects are passed in (:issue:`13304`)
- ``pd.read_html()`` has gained support for the ``decimal`` option (:issue:`12907`)
- ``Series`` has gained the properties ``.is_monotonic``, ``.is_monotonic_increasing``, ``.is_monotonic_decreasing``, similar to ``Index`` (:issue:`13336`)
- ``DataFrame.to_sql()`` now allows a single value as the SQL type for all columns (:issue:`11886`).
- ``Series.append`` now supports the ``ignore_index`` option (:issue:`13677`)
- ``.to_stata()`` and ``StataWriter`` can now write variable labels to Stata dta files using a dictionary to make column names to labels (:issue:`13535`, :issue:`13536`)
- ``.to_stata()`` and ``StataWriter`` will automatically convert ``datetime64[ns]`` columns to Stata format ``%tc``, rather than raising a ``ValueError`` (:issue:`12259`)
- ``read_stata()`` and ``StataReader`` raise with a more explicit error message when reading Stata files with repeated value labels when ``convert_categoricals=True`` (:issue:`13923`)
- ``DataFrame.style`` will now render sparsified MultiIndexes (:issue:`11655`)
- ``DataFrame.style`` will now show column level names (e.g. ``DataFrame.columns.names``) (:issue:`13775`)
- ``DataFrame`` has gained support to re-order the columns based on the values
  in a row using ``df.sort_values(by='...', axis=1)`` (:issue:`10806`)

  .. ipython:: python

     df = pd.DataFrame({"A": [2, 7], "B": [3, 5], "C": [4, 8]}, index=["row1", "row2"])
     df
     df.sort_values(by="row2", axis=1)

- Added documentation to :ref:`I/O<io.dtypes>` regarding the perils of reading in columns with mixed dtypes and how to handle it (:issue:`13746`)
- :meth:`~DataFrame.to_html` now has a ``border`` argument to control the value in the opening ``<table>`` tag. The default is the value of the ``html.border`` option, which defaults to 1. This also affects the notebook HTML repr, but since Jupyter's CSS includes a border-width attribute, the visual effect is the same. (:issue:`11563`).
- Raise ``ImportError`` in the sql functions when ``sqlalchemy`` is not installed and a connection string is used (:issue:`11920`).
- Compatibility with matplotlib 2.0. Older versions of pandas should also work with matplotlib 2.0 (:issue:`13333`)
- ``Timestamp``, ``Period``, ``DatetimeIndex``, ``PeriodIndex`` and ``.dt`` accessor have gained a ``.is_leap_year`` property to check whether the date belongs to a leap year. (:issue:`13727`)
- ``astype()`` will now accept a dict of column name to data types mapping as the ``dtype`` argument. (:issue:`12086`)
- The ``pd.read_json`` and ``DataFrame.to_json`` has gained support for reading and writing json lines with ``lines`` option see :ref:`Line delimited json <io.jsonl>` (:issue:`9180`)
- :func:`read_excel` now supports the true_values and false_values keyword arguments (:issue:`13347`)
- ``groupby()`` will now accept a scalar and a single-element list for specifying ``level`` on a non-``MultiIndex`` grouper. (:issue:`13907`)
- Non-convertible dates in an excel date column will be returned without conversion and the column will be ``object`` dtype, rather than raising an exception (:issue:`10001`).
- ``pd.Timedelta(None)`` is now accepted and will return ``NaT``, mirroring ``pd.Timestamp`` (:issue:`13687`)
- ``pd.read_stata()`` can now handle some format 111 files, which are produced by SAS when generating Stata dta files (:issue:`11526`)
- ``Series`` and ``Index`` now support ``divmod`` which will return a tuple of
  series or indices. This behaves like a standard binary operator with regards
  to broadcasting rules (:issue:`14208`).


.. _whatsnew_0190.api:

API changes
~~~~~~~~~~~

``Series.tolist()`` will now return Python types
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

``Series.tolist()`` will now return Python types in the output, mimicking NumPy ``.tolist()`` behavior (:issue:`10904`)


.. ipython:: python

   s = pd.Series([1, 2, 3])

**Previous behavior**:

.. code-block:: ipython

   In [7]: type(s.tolist()[0])
   Out[7]:
    <class 'numpy.int64'>

**New behavior**:

.. ipython:: python

   type(s.tolist()[0])

.. _whatsnew_0190.api.series_ops:

``Series`` operators for different indexes
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Following ``Series`` operators have been changed to make all operators consistent,
including ``DataFrame`` (:issue:`1134`, :issue:`4581`, :issue:`13538`)

- ``Series`` comparison operators now raise ``ValueError`` when ``index`` are different.
- ``Series`` logical operators align both ``index`` of left and right hand side.

.. warning::
   Until 0.18.1, comparing ``Series`` with the same length, would succeed even if
   the ``.index`` are different (the result ignores ``.index``). As of 0.19.0, this will raises ``ValueError`` to be more strict. This section also describes how to keep previous behavior or align different indexes, using the flexible comparison methods like ``.eq``.


As a result, ``Series`` and ``DataFrame`` operators behave as below:

Arithmetic operators
""""""""""""""""""""

Arithmetic operators align both ``index`` (no changes).

.. ipython:: python

   s1 = pd.Series([1, 2, 3], index=list("ABC"))
   s2 = pd.Series([2, 2, 2], index=list("ABD"))
   s1 + s2

   df1 = pd.DataFrame([1, 2, 3], index=list("ABC"))
   df2 = pd.DataFrame([2, 2, 2], index=list("ABD"))
   df1 + df2

Comparison operators
""""""""""""""""""""

Comparison operators raise ``ValueError`` when ``.index`` are different.

**Previous behavior** (``Series``):

``Series`` compared values ignoring the ``.index`` as long as both had the same length:

.. code-block:: ipython

   In [1]: s1 == s2
   Out[1]:
   A    False
   B     True
   C    False
   dtype: bool

**New behavior** (``Series``):

.. code-block:: ipython

   In [2]: s1 == s2
   Out[2]:
   ValueError: Can only compare identically-labeled Series objects

.. note::

   To achieve the same result as previous versions (compare values based on locations ignoring ``.index``), compare both ``.values``.

   .. ipython:: python

      s1.values == s2.values

   If you want to compare ``Series`` aligning its ``.index``, see flexible comparison methods section below:

   .. ipython:: python

      s1.eq(s2)

**Current behavior** (``DataFrame``, no change):

.. code-block:: ipython

   In [3]: df1 == df2
   Out[3]:
   ValueError: Can only compare identically-labeled DataFrame objects

Logical operators
"""""""""""""""""

Logical operators align both ``.index`` of left and right hand side.

**Previous behavior** (``Series``), only left hand side ``index`` was kept:

.. code-block:: ipython

   In [4]: s1 = pd.Series([True, False, True], index=list('ABC'))
   In [5]: s2 = pd.Series([True, True, True], index=list('ABD'))
   In [6]: s1 & s2
   Out[6]:
   A     True
   B    False
   C    False
   dtype: bool

**New behavior** (``Series``):

.. ipython:: python

   s1 = pd.Series([True, False, True], index=list("ABC"))
   s2 = pd.Series([True, True, True], index=list("ABD"))
   s1 & s2

.. note::
   ``Series`` logical operators fill a ``NaN`` result with ``False``.

.. note::
   To achieve the same result as previous versions (compare values based on only left hand side index), you can use ``reindex_like``:

   .. ipython:: python

      s1 & s2.reindex_like(s1)

**Current behavior** (``DataFrame``, no change):

.. ipython:: python

   df1 = pd.DataFrame([True, False, True], index=list("ABC"))
   df2 = pd.DataFrame([True, True, True], index=list("ABD"))
   df1 & df2

Flexible comparison methods
"""""""""""""""""""""""""""

``Series`` flexible comparison methods like ``eq``, ``ne``, ``le``, ``lt``, ``ge`` and ``gt`` now align both ``index``. Use these operators if you want to compare two ``Series``
which has the different ``index``.

.. ipython:: python

   s1 = pd.Series([1, 2, 3], index=["a", "b", "c"])
   s2 = pd.Series([2, 2, 2], index=["b", "c", "d"])
   s1.eq(s2)
   s1.ge(s2)

Previously, this worked the same as comparison operators (see above).

.. _whatsnew_0190.api.promote:

``Series`` type promotion on assignment
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

A ``Series`` will now correctly promote its dtype for assignment with incompat values to the current dtype (:issue:`13234`)


.. ipython:: python
   :okwarning:

   s = pd.Series()

**Previous behavior**:

.. code-block:: ipython

   In [2]: s["a"] = pd.Timestamp("2016-01-01")

   In [3]: s["b"] = 3.0
   TypeError: invalid type promotion

**New behavior**:

.. ipython:: python

   s["a"] = pd.Timestamp("2016-01-01")
   s["b"] = 3.0
   s
   s.dtype

.. _whatsnew_0190.api.to_datetime_coerce:

Function ``.to_datetime()`` changes
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Previously if ``.to_datetime()`` encountered mixed integers/floats and strings, but no datetimes with ``errors='coerce'`` it would convert all to ``NaT``.

**Previous behavior**:

.. code-block:: ipython

   In [2]: pd.to_datetime([1, 'foo'], errors='coerce')
   Out[2]: DatetimeIndex(['NaT', 'NaT'], dtype='datetime64[ns]', freq=None)

**Current behavior**:

This will now convert integers/floats with the default unit of ``ns``.

.. ipython:: python

   pd.to_datetime([1, "foo"], errors="coerce")

Bug fixes related to ``.to_datetime()``:

- Bug in ``pd.to_datetime()`` when passing integers or floats, and no ``unit`` and ``errors='coerce'`` (:issue:`13180`).
- Bug in ``pd.to_datetime()`` when passing invalid data types (e.g. bool); will now respect the ``errors`` keyword (:issue:`13176`)
- Bug in ``pd.to_datetime()`` which overflowed on ``int8``, and ``int16`` dtypes (:issue:`13451`)
- Bug in ``pd.to_datetime()`` raise ``AttributeError`` with ``NaN`` and the other string is not valid when ``errors='ignore'`` (:issue:`12424`)
- Bug in ``pd.to_datetime()`` did not cast floats correctly when ``unit`` was specified, resulting in truncated datetime (:issue:`13834`)

.. _whatsnew_0190.api.merging:

Merging changes
^^^^^^^^^^^^^^^

Merging will now preserve the dtype of the join keys (:issue:`8596`)

.. ipython:: python

   df1 = pd.DataFrame({"key": [1], "v1": [10]})
   df1
   df2 = pd.DataFrame({"key": [1, 2], "v1": [20, 30]})
   df2

**Previous behavior**:

.. code-block:: ipython

   In [5]: pd.merge(df1, df2, how='outer')
   Out[5]:
      key    v1
   0  1.0  10.0
   1  1.0  20.0
   2  2.0  30.0

   In [6]: pd.merge(df1, df2, how='outer').dtypes
   Out[6]:
   key    float64
   v1     float64
   dtype: object

**New behavior**:

We are able to preserve the join keys

.. ipython:: python

   pd.merge(df1, df2, how="outer")
   pd.merge(df1, df2, how="outer").dtypes

Of course if you have missing values that are introduced, then the
resulting dtype will be upcast, which is unchanged from previous.

.. ipython:: python

   pd.merge(df1, df2, how="outer", on="key")
   pd.merge(df1, df2, how="outer", on="key").dtypes

.. _whatsnew_0190.api.describe:

Method ``.describe()`` changes
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Percentile identifiers in the index of a ``.describe()`` output will now be rounded to the least precision that keeps them distinct (:issue:`13104`)

.. ipython:: python

   s = pd.Series([0, 1, 2, 3, 4])
   df = pd.DataFrame([0, 1, 2, 3, 4])

**Previous behavior**:

The percentiles were rounded to at most one decimal place, which could raise ``ValueError`` for a data frame if the percentiles were duplicated.

.. code-block:: ipython

   In [3]: s.describe(percentiles=[0.0001, 0.0005, 0.001, 0.999, 0.9995, 0.9999])
   Out[3]:
   count     5.000000
   mean      2.000000
   std       1.581139
   min       0.000000
   0.0%      0.000400
   0.1%      0.002000
   0.1%      0.004000
   50%       2.000000
   99.9%     3.996000
   100.0%    3.998000
   100.0%    3.999600
   max       4.000000
   dtype: float64

   In [4]: df.describe(percentiles=[0.0001, 0.0005, 0.001, 0.999, 0.9995, 0.9999])
   Out[4]:
   ...
   ValueError: cannot reindex from a duplicate axis

**New behavior**:

.. ipython:: python

   s.describe(percentiles=[0.0001, 0.0005, 0.001, 0.999, 0.9995, 0.9999])
   df.describe(percentiles=[0.0001, 0.0005, 0.001, 0.999, 0.9995, 0.9999])

Furthermore:

- Passing duplicated ``percentiles`` will now raise a ``ValueError``.
- Bug in ``.describe()`` on a DataFrame with a mixed-dtype column index, which would previously raise a ``TypeError`` (:issue:`13288`)

.. _whatsnew_0190.api.period:

``Period`` changes
^^^^^^^^^^^^^^^^^^

The ``PeriodIndex`` now has ``period`` dtype
""""""""""""""""""""""""""""""""""""""""""""

``PeriodIndex`` now has its own ``period`` dtype. The ``period`` dtype is a
pandas extension dtype like ``category`` or the :ref:`timezone aware dtype <timeseries.timezone_series>` (``datetime64[ns, tz]``) (:issue:`13941`).
As a consequence of this change, ``PeriodIndex`` no longer has an integer dtype:

**Previous behavior**:

.. code-block:: ipython

   In [1]: pi = pd.PeriodIndex(['2016-08-01'], freq='D')

   In [2]: pi
   Out[2]: PeriodIndex(['2016-08-01'], dtype='int64', freq='D')

   In [3]: pd.api.types.is_integer_dtype(pi)
   Out[3]: True

   In [4]: pi.dtype
   Out[4]: dtype('int64')

**New behavior**:

.. ipython:: python
   :okwarning:

   pi = pd.PeriodIndex(["2016-08-01"], freq="D")
   pi
   pd.api.types.is_integer_dtype(pi)
   pd.api.types.is_period_dtype(pi)
   pi.dtype
   type(pi.dtype)

.. _whatsnew_0190.api.periodnat:

``Period('NaT')`` now returns ``pd.NaT``
""""""""""""""""""""""""""""""""""""""""

Previously, ``Period`` has its own ``Period('NaT')`` representation different from ``pd.NaT``. Now ``Period('NaT')`` has been changed to return ``pd.NaT``. (:issue:`12759`, :issue:`13582`)

**Previous behavior**:

.. code-block:: ipython

   In [5]: pd.Period('NaT', freq='D')
   Out[5]: Period('NaT', 'D')

**New behavior**:

These result in ``pd.NaT`` without providing ``freq`` option.

.. ipython:: python

   pd.Period("NaT")
   pd.Period(None)


To be compatible with ``Period`` addition and subtraction, ``pd.NaT`` now supports addition and subtraction with ``int``. Previously it raised ``ValueError``.

**Previous behavior**:

.. code-block:: ipython

   In [5]: pd.NaT + 1
   ...
   ValueError: Cannot add integral value to Timestamp without freq.

**New behavior**:

.. ipython:: python

   pd.NaT + 1
   pd.NaT - 1

``PeriodIndex.values`` now returns array of ``Period`` object
"""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""

``.values`` is changed to return an array of ``Period`` objects, rather than an array
of integers (:issue:`13988`).

**Previous behavior**:

.. code-block:: ipython

   In [6]: pi = pd.PeriodIndex(['2011-01', '2011-02'], freq='M')
   In [7]: pi.values
   Out[7]: array([492, 493])

**New behavior**:

.. ipython:: python

   pi = pd.PeriodIndex(["2011-01", "2011-02"], freq="M")
   pi.values


.. _whatsnew_0190.api.setops:

Index ``+`` / ``-`` no longer used for set operations
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Addition and subtraction of the base Index type and of DatetimeIndex
(not the numeric index types)
previously performed set operations (set union and difference). This
behavior was already deprecated since 0.15.0 (in favor using the specific
``.union()`` and ``.difference()`` methods), and is now disabled. When
possible, ``+`` and ``-`` are now used for element-wise operations, for
example for concatenating strings or subtracting datetimes
(:issue:`8227`, :issue:`14127`).

Previous behavior:

.. code-block:: ipython

   In [1]: pd.Index(['a', 'b']) + pd.Index(['a', 'c'])
   FutureWarning: using '+' to provide set union with Indexes is deprecated, use '|' or .union()
   Out[1]: Index(['a', 'b', 'c'], dtype='object')

**New behavior**: the same operation will now perform element-wise addition:

.. ipython:: python

   pd.Index(["a", "b"]) + pd.Index(["a", "c"])

Note that numeric Index objects already performed element-wise operations.
For example, the behavior of adding two integer Indexes is unchanged.
The base ``Index`` is now made consistent with this behavior.

.. ipython:: python

   pd.Index([1, 2, 3]) + pd.Index([2, 3, 4])

Further, because of this change, it is now possible to subtract two
DatetimeIndex objects resulting in a TimedeltaIndex:

**Previous behavior**:

.. code-block:: ipython

    In [1]: (pd.DatetimeIndex(['2016-01-01', '2016-01-02'])
       ...:  - pd.DatetimeIndex(['2016-01-02', '2016-01-03']))
    FutureWarning: using '-' to provide set differences with datetimelike Indexes is deprecated, use .difference()
    Out[1]: DatetimeIndex(['2016-01-01'], dtype='datetime64[ns]', freq=None)

**New behavior**:

.. ipython:: python

    (
        pd.DatetimeIndex(["2016-01-01", "2016-01-02"])
        - pd.DatetimeIndex(["2016-01-02", "2016-01-03"])
    )


.. _whatsnew_0190.api.difference:

``Index.difference`` and ``.symmetric_difference`` changes
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

``Index.difference`` and ``Index.symmetric_difference`` will now, more consistently, treat ``NaN`` values as any other values. (:issue:`13514`)

.. ipython:: python

   idx1 = pd.Index([1, 2, 3, np.nan])
   idx2 = pd.Index([0, 1, np.nan])

**Previous behavior**:

.. code-block:: ipython

   In [3]: idx1.difference(idx2)
   Out[3]: Float64Index([nan, 2.0, 3.0], dtype='float64')

   In [4]: idx1.symmetric_difference(idx2)
   Out[4]: Float64Index([0.0, nan, 2.0, 3.0], dtype='float64')

**New behavior**:

.. ipython:: python

   idx1.difference(idx2)
   idx1.symmetric_difference(idx2)

.. _whatsnew_0190.api.unique_index:

``Index.unique`` consistently returns ``Index``
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

``Index.unique()`` now returns unique values as an
``Index`` of the appropriate ``dtype``. (:issue:`13395`).
Previously, most ``Index`` classes returned ``np.ndarray``, and ``DatetimeIndex``,
``TimedeltaIndex`` and ``PeriodIndex`` returned ``Index`` to keep metadata like timezone.

**Previous behavior**:

.. code-block:: ipython

   In [1]: pd.Index([1, 2, 3]).unique()
   Out[1]: array([1, 2, 3])

   In [2]: pd.DatetimeIndex(['2011-01-01', '2011-01-02',
      ...:                   '2011-01-03'], tz='Asia/Tokyo').unique()
   Out[2]:
   DatetimeIndex(['2011-01-01 00:00:00+09:00', '2011-01-02 00:00:00+09:00',
                  '2011-01-03 00:00:00+09:00'],
                 dtype='datetime64[ns, Asia/Tokyo]', freq=None)

**New behavior**:

.. ipython:: python

   pd.Index([1, 2, 3]).unique()
   pd.DatetimeIndex(
       ["2011-01-01", "2011-01-02", "2011-01-03"], tz="Asia/Tokyo"
   ).unique()

.. _whatsnew_0190.api.multiindex:

``MultiIndex`` constructors, ``groupby`` and ``set_index`` preserve categorical dtypes
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

``MultiIndex.from_arrays`` and ``MultiIndex.from_product`` will now preserve categorical dtype
in ``MultiIndex`` levels (:issue:`13743`, :issue:`13854`).

.. ipython:: python

   cat = pd.Categorical(["a", "b"], categories=list("bac"))
   lvl1 = ["foo", "bar"]
   midx = pd.MultiIndex.from_arrays([cat, lvl1])
   midx

**Previous behavior**:

.. code-block:: ipython

   In [4]: midx.levels[0]
   Out[4]: Index(['b', 'a', 'c'], dtype='object')

   In [5]: midx.get_level_values[0]
   Out[5]: Index(['a', 'b'], dtype='object')

**New behavior**: the single level is now a ``CategoricalIndex``:

.. ipython:: python

   midx.levels[0]
   midx.get_level_values(0)

An analogous change has been made to ``MultiIndex.from_product``.
As a consequence, ``groupby`` and ``set_index`` also preserve categorical dtypes in indexes

.. ipython:: python

   df = pd.DataFrame({"A": [0, 1], "B": [10, 11], "C": cat})
   df_grouped = df.groupby(by=["A", "C"], observed=False).first()
   df_set_idx = df.set_index(["A", "C"])

**Previous behavior**:

.. code-block:: ipython

   In [11]: df_grouped.index.levels[1]
   Out[11]: Index(['b', 'a', 'c'], dtype='object', name='C')
   In [12]: df_grouped.reset_index().dtypes
   Out[12]:
   A      int64
   C     object
   B    float64
   dtype: object

   In [13]: df_set_idx.index.levels[1]
   Out[13]: Index(['b', 'a', 'c'], dtype='object', name='C')
   In [14]: df_set_idx.reset_index().dtypes
   Out[14]:
   A      int64
   C     object
   B      int64
   dtype: object

**New behavior**:

.. ipython:: python

   df_grouped.index.levels[1]
   df_grouped.reset_index().dtypes

   df_set_idx.index.levels[1]
   df_set_idx.reset_index().dtypes

.. _whatsnew_0190.api.autogenerated_chunksize_index:

Function ``read_csv`` will progressively enumerate chunks
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

When :func:`read_csv` is called with ``chunksize=n`` and without specifying an index,
each chunk used to have an independently generated index from ``0`` to ``n-1``.
They are now given instead a progressive index, starting from ``0`` for the first chunk,
from ``n`` for the second, and so on, so that, when concatenated, they are identical to
the result of calling :func:`read_csv` without the ``chunksize=`` argument
(:issue:`12185`).

.. ipython:: python

   data = "A,B\n0,1\n2,3\n4,5\n6,7"

**Previous behavior**:

.. code-block:: ipython

   In [2]: pd.concat(pd.read_csv(StringIO(data), chunksize=2))
   Out[2]:
      A  B
   0  0  1
   1  2  3
   0  4  5
   1  6  7

**New behavior**:

.. ipython:: python

   pd.concat(pd.read_csv(StringIO(data), chunksize=2))

.. _whatsnew_0190.sparse:

Sparse changes
^^^^^^^^^^^^^^

These changes allow pandas to handle sparse data with more dtypes, and for work to make a smoother experience with data handling.

Types ``int64`` and ``bool`` support enhancements
"""""""""""""""""""""""""""""""""""""""""""""""""

Sparse data structures now gained enhanced support of ``int64`` and ``bool`` ``dtype`` (:issue:`667`, :issue:`13849`).

Previously, sparse data were ``float64`` dtype by default, even if all inputs were of ``int`` or ``bool`` dtype. You had to specify ``dtype`` explicitly to create sparse data with ``int64`` dtype. Also, ``fill_value`` had to be specified explicitly because the default was ``np.nan`` which doesn't appear in ``int64`` or ``bool`` data.

.. code-block:: ipython

   In [1]: pd.SparseArray([1, 2, 0, 0])
   Out[1]:
   [1.0, 2.0, 0.0, 0.0]
   Fill: nan
   IntIndex
   Indices: array([0, 1, 2, 3], dtype=int32)

   # specifying int64 dtype, but all values are stored in sp_values because
   # fill_value default is np.nan
   In [2]: pd.SparseArray([1, 2, 0, 0], dtype=np.int64)
   Out[2]:
   [1, 2, 0, 0]
   Fill: nan
   IntIndex
   Indices: array([0, 1, 2, 3], dtype=int32)

   In [3]: pd.SparseArray([1, 2, 0, 0], dtype=np.int64, fill_value=0)
   Out[3]:
   [1, 2, 0, 0]
   Fill: 0
   IntIndex
   Indices: array([0, 1], dtype=int32)

As of v0.19.0, sparse data keeps the input dtype, and uses more appropriate ``fill_value`` defaults (``0`` for ``int64`` dtype, ``False`` for ``bool`` dtype).

.. ipython:: python

   pd.arrays.SparseArray([1, 2, 0, 0], dtype=np.int64)
   pd.arrays.SparseArray([True, False, False, False])

See the :ref:`docs <sparse.dtype>` for more details.

Operators now preserve dtypes
"""""""""""""""""""""""""""""

- Sparse data structure now can preserve ``dtype`` after arithmetic ops (:issue:`13848`)

.. code-block:: python

   s = pd.SparseSeries([0, 2, 0, 1], fill_value=0, dtype=np.int64)
   s.dtype

   s + 1

- Sparse data structure now support ``astype`` to convert internal ``dtype`` (:issue:`13900`)

.. code-block:: python

   s = pd.SparseSeries([1.0, 0.0, 2.0, 0.0], fill_value=0)
   s
   s.astype(np.int64)

``astype`` fails if data contains values which cannot be converted to specified ``dtype``.
Note that the limitation is applied to ``fill_value`` which default is ``np.nan``.

.. code-block:: ipython

   In [7]: pd.SparseSeries([1., np.nan, 2., np.nan], fill_value=np.nan).astype(np.int64)
   Out[7]:
   ValueError: unable to coerce current fill_value nan to int64 dtype

Other sparse fixes
""""""""""""""""""

- Subclassed ``SparseDataFrame`` and ``SparseSeries`` now preserve class types when slicing or transposing. (:issue:`13787`)
- ``SparseArray`` with ``bool`` dtype now supports logical (bool) operators (:issue:`14000`)
- Bug in ``SparseSeries`` with ``MultiIndex`` ``[]`` indexing may raise ``IndexError`` (:issue:`13144`)
- Bug in ``SparseSeries`` with ``MultiIndex`` ``[]`` indexing result may have normal ``Index`` (:issue:`13144`)
- Bug in ``SparseDataFrame`` in which ``axis=None`` did not default to ``axis=0`` (:issue:`13048`)
- Bug in ``SparseSeries`` and ``SparseDataFrame`` creation with ``object`` dtype may raise ``TypeError`` (:issue:`11633`)
- Bug in ``SparseDataFrame`` doesn't respect passed ``SparseArray`` or ``SparseSeries`` 's dtype and ``fill_value``  (:issue:`13866`)
- Bug in ``SparseArray`` and ``SparseSeries`` don't apply ufunc to ``fill_value`` (:issue:`13853`)
- Bug in ``SparseSeries.abs`` incorrectly keeps negative ``fill_value`` (:issue:`13853`)
- Bug in single row slicing on multi-type ``SparseDataFrame`` s, types were previously forced to float (:issue:`13917`)
- Bug in ``SparseSeries`` slicing changes integer dtype to float (:issue:`8292`)
- Bug in ``SparseDataFarme`` comparison ops may raise ``TypeError`` (:issue:`13001`)
- Bug in ``SparseDataFarme.isnull`` raises ``ValueError`` (:issue:`8276`)
- Bug in ``SparseSeries`` representation with ``bool`` dtype may raise ``IndexError`` (:issue:`13110`)
- Bug in ``SparseSeries`` and ``SparseDataFrame`` of ``bool`` or ``int64`` dtype may display its values like ``float64`` dtype (:issue:`13110`)
- Bug in sparse indexing using ``SparseArray`` with ``bool`` dtype may return incorrect result  (:issue:`13985`)
- Bug in ``SparseArray`` created from ``SparseSeries`` may lose ``dtype`` (:issue:`13999`)
- Bug in ``SparseSeries`` comparison with dense returns normal ``Series`` rather than ``SparseSeries`` (:issue:`13999`)


.. _whatsnew_0190.indexer_dtype:

Indexer dtype changes
^^^^^^^^^^^^^^^^^^^^^

.. note::

   This change only affects 64 bit python running on Windows, and only affects relatively advanced
   indexing operations

Methods such as ``Index.get_indexer`` that return an indexer array, coerce that array to a "platform int", so that it can be
directly used in 3rd party library operations like ``numpy.take``.  Previously, a platform int was defined as ``np.int_``
which corresponds to a C integer, but the correct type, and what is being used now, is ``np.intp``, which corresponds
to the C integer size that can hold a pointer (:issue:`3033`, :issue:`13972`).

These types are the same on many platform, but for 64 bit python on Windows,
``np.int_`` is 32 bits, and ``np.intp`` is 64 bits.  Changing this behavior improves performance for many
operations on that platform.

**Previous behavior**:

.. code-block:: ipython

   In [1]: i = pd.Index(['a', 'b', 'c'])

   In [2]: i.get_indexer(['b', 'b', 'c']).dtype
   Out[2]: dtype('int32')

**New behavior**:

.. code-block:: ipython

   In [1]: i = pd.Index(['a', 'b', 'c'])

   In [2]: i.get_indexer(['b', 'b', 'c']).dtype
   Out[2]: dtype('int64')


.. _whatsnew_0190.api.other:

Other API changes
^^^^^^^^^^^^^^^^^

- ``Timestamp.to_pydatetime`` will issue a ``UserWarning`` when ``warn=True``, and the instance has a non-zero number of nanoseconds, previously this would print a message to stdout (:issue:`14101`).
- ``Series.unique()`` with datetime and timezone now returns return array of ``Timestamp`` with timezone (:issue:`13565`).
- ``Panel.to_sparse()`` will raise a ``NotImplementedError`` exception when called (:issue:`13778`).
- ``Index.reshape()`` will raise a ``NotImplementedError`` exception when called (:issue:`12882`).
- ``.filter()`` enforces mutual exclusion of the keyword arguments (:issue:`12399`).
- ``eval``'s upcasting rules for ``float32`` types have been updated to be more consistent with NumPy's rules.  New behavior will not upcast to ``float64`` if you multiply a pandas ``float32`` object by a scalar float64 (:issue:`12388`).
- An ``UnsupportedFunctionCall`` error is now raised if NumPy ufuncs like ``np.mean`` are called on groupby or resample objects (:issue:`12811`).
- ``__setitem__`` will no longer apply a callable rhs as a function instead of storing it. Call ``where`` directly to get the previous behavior (:issue:`13299`).
- Calls to ``.sample()`` will respect the random seed set via ``numpy.random.seed(n)`` (:issue:`13161`)
- ``Styler.apply`` is now more strict about the outputs your function must return. For ``axis=0`` or ``axis=1``, the output shape must be identical. For ``axis=None``, the output must be a DataFrame with identical columns and index labels (:issue:`13222`).
- ``Float64Index.astype(int)`` will now raise ``ValueError`` if ``Float64Index`` contains ``NaN`` values (:issue:`13149`)
- ``TimedeltaIndex.astype(int)`` and ``DatetimeIndex.astype(int)`` will now return ``Int64Index`` instead of ``np.array`` (:issue:`13209`)
- Passing ``Period`` with multiple frequencies to normal ``Index`` now returns ``Index`` with ``object`` dtype (:issue:`13664`)
- ``PeriodIndex.fillna`` with ``Period`` has different freq now coerces to ``object`` dtype (:issue:`13664`)
- Faceted boxplots from ``DataFrame.boxplot(by=col)`` now return a ``Series`` when ``return_type`` is not None. Previously these returned an ``OrderedDict``. Note that when ``return_type=None``, the default, these still return a 2-D NumPy array (:issue:`12216`, :issue:`7096`).
- ``pd.read_hdf`` will now raise a ``ValueError`` instead of ``KeyError``, if a mode other than ``r``, ``r+`` and ``a`` is supplied. (:issue:`13623`)
- ``pd.read_csv()``, ``pd.read_table()``, and ``pd.read_hdf()`` raise the builtin ``FileNotFoundError`` exception for Python 3.x when called on a nonexistent file; this is back-ported as ``IOError`` in Python 2.x (:issue:`14086`)
- More informative exceptions are passed through the csv parser. The exception type would now be the original exception type instead of ``CParserError`` (:issue:`13652`).
- ``pd.read_csv()`` in the C engine will now issue a ``ParserWarning`` or raise a ``ValueError`` when ``sep`` encoded is more than one character long (:issue:`14065`)
- ``DataFrame.values`` will now return ``float64`` with a ``DataFrame`` of mixed ``int64`` and ``uint64`` dtypes, conforming to ``np.find_common_type`` (:issue:`10364`, :issue:`13917`)
- ``.groupby.groups`` will now return a dictionary of ``Index`` objects, rather than a dictionary of ``np.ndarray`` or ``lists`` (:issue:`14293`)

.. _whatsnew_0190.deprecations:

Deprecations
~~~~~~~~~~~~
- ``Series.reshape`` and ``Categorical.reshape`` have been deprecated and will be removed in a subsequent release (:issue:`12882`, :issue:`12882`)
- ``PeriodIndex.to_datetime`` has been deprecated in favor of ``PeriodIndex.to_timestamp`` (:issue:`8254`)
- ``Timestamp.to_datetime`` has been deprecated in favor of ``Timestamp.to_pydatetime`` (:issue:`8254`)
- ``Index.to_datetime`` and ``DatetimeIndex.to_datetime`` have been deprecated in favor of ``pd.to_datetime`` (:issue:`8254`)
- ``pandas.core.datetools`` module has been deprecated and will be removed in a subsequent release (:issue:`14094`)
- ``SparseList`` has been deprecated and will be removed in a future version (:issue:`13784`)
- ``DataFrame.to_html()`` and ``DataFrame.to_latex()`` have dropped the ``colSpace`` parameter in favor of ``col_space`` (:issue:`13857`)
- ``DataFrame.to_sql()`` has deprecated the ``flavor`` parameter, as it is superfluous when SQLAlchemy is not installed (:issue:`13611`)
- Deprecated ``read_csv`` keywords:

  - ``compact_ints`` and ``use_unsigned`` have been deprecated and will be removed in a future version (:issue:`13320`)
  - ``buffer_lines`` has been deprecated and will be removed in a future version (:issue:`13360`)
  - ``as_recarray`` has been deprecated and will be removed in a future version (:issue:`13373`)
  - ``skip_footer`` has been deprecated in favor of ``skipfooter`` and will be removed in a future version (:issue:`13349`)

- top-level ``pd.ordered_merge()`` has been renamed to ``pd.merge_ordered()`` and the original name will be removed in a future version (:issue:`13358`)
- ``Timestamp.offset`` property (and named arg in the constructor), has been deprecated in favor of ``freq`` (:issue:`12160`)
- ``pd.tseries.util.pivot_annual`` is deprecated. Use ``pivot_table`` as alternative, an example is :ref:`here <cookbook.pivot>` (:issue:`736`)
- ``pd.tseries.util.isleapyear`` has been deprecated and will be removed in a subsequent release. Datetime-likes now have a ``.is_leap_year`` property (:issue:`13727`)
- ``Panel4D`` and ``PanelND`` constructors are deprecated and will be removed in a future version. The recommended way to represent these types of n-dimensional data are with the `xarray package <http://xarray.pydata.org/en/stable/>`__. pandas provides a :meth:`~Panel4D.to_xarray` method to automate this conversion (:issue:`13564`).
- ``pandas.tseries.frequencies.get_standard_freq`` is deprecated. Use  ``pandas.tseries.frequencies.to_offset(freq).rule_code`` instead (:issue:`13874`)
- ``pandas.tseries.frequencies.to_offset``'s ``freqstr`` keyword is deprecated in favor of ``freq`` (:issue:`13874`)
- ``Categorical.from_array`` has been deprecated and will be removed in a future version (:issue:`13854`)

.. _whatsnew_0190.prior_deprecations:

Removal of prior version deprecations/changes
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

- The ``SparsePanel`` class has been removed (:issue:`13778`)
- The ``pd.sandbox`` module has been removed in favor of the external library ``pandas-qt`` (:issue:`13670`)
- The ``pandas.io.data`` and ``pandas.io.wb`` modules are removed in favor of
  the `pandas-datareader package <https://github.com/pydata/pandas-datareader>`__ (:issue:`13724`).
- The ``pandas.tools.rplot`` module has been removed in favor of
  the `seaborn package <https://github.com/mwaskom/seaborn>`__ (:issue:`13855`)
- ``DataFrame.to_csv()`` has dropped the ``engine`` parameter, as was deprecated in 0.17.1 (:issue:`11274`, :issue:`13419`)
- ``DataFrame.to_dict()`` has dropped the ``outtype`` parameter in favor of ``orient`` (:issue:`13627`, :issue:`8486`)
- ``pd.Categorical`` has dropped setting of the ``ordered`` attribute directly in favor of the ``set_ordered`` method (:issue:`13671`)
- ``pd.Categorical`` has dropped the ``levels`` attribute in favor of ``categories`` (:issue:`8376`)
- ``DataFrame.to_sql()`` has dropped the ``mysql`` option for the ``flavor`` parameter (:issue:`13611`)
- ``Panel.shift()`` has dropped the ``lags`` parameter in favor of ``periods`` (:issue:`14041`)
- ``pd.Index`` has dropped the ``diff`` method in favor of ``difference`` (:issue:`13669`)
- ``pd.DataFrame`` has dropped the ``to_wide`` method in favor of ``to_panel`` (:issue:`14039`)
- ``Series.to_csv`` has dropped the ``nanRep`` parameter in favor of ``na_rep`` (:issue:`13804`)
- ``Series.xs``, ``DataFrame.xs``, ``Panel.xs``, ``Panel.major_xs``, and ``Panel.minor_xs`` have dropped the ``copy`` parameter (:issue:`13781`)
- ``str.split`` has dropped the ``return_type`` parameter in favor of ``expand`` (:issue:`13701`)
- Removal of the legacy time rules (offset aliases), deprecated since 0.17.0 (this has been alias since 0.8.0) (:issue:`13590`, :issue:`13868`). Now legacy time rules raises ``ValueError``. For the list of currently supported offsets, see :ref:`here <timeseries.offset_aliases>`.
- The default value for the ``return_type`` parameter for ``DataFrame.plot.box`` and ``DataFrame.boxplot`` changed from ``None`` to ``"axes"``. These methods will now return a matplotlib axes by default instead of a dictionary of artists. See :ref:`here <visualization.box.return>` (:issue:`6581`).
- The ``tquery`` and ``uquery`` functions in the ``pandas.io.sql`` module are removed (:issue:`5950`).


.. _whatsnew_0190.performance:

Performance improvements
~~~~~~~~~~~~~~~~~~~~~~~~

- Improved performance of sparse ``IntIndex.intersect`` (:issue:`13082`)
- Improved performance of sparse arithmetic with ``BlockIndex`` when the number of blocks are large, though recommended to use ``IntIndex`` in such cases (:issue:`13082`)
- Improved performance of ``DataFrame.quantile()`` as it now operates per-block (:issue:`11623`)
- Improved performance of float64 hash table operations, fixing some very slow indexing and groupby operations in python 3 (:issue:`13166`, :issue:`13334`)
- Improved performance of ``DataFrameGroupBy.transform`` (:issue:`12737`)
- Improved performance of ``Index`` and ``Series`` ``.duplicated`` (:issue:`10235`)
- Improved performance of ``Index.difference`` (:issue:`12044`)
- Improved performance of ``RangeIndex.is_monotonic_increasing`` and ``is_monotonic_decreasing`` (:issue:`13749`)
- Improved performance of datetime string parsing in ``DatetimeIndex`` (:issue:`13692`)
- Improved performance of hashing ``Period`` (:issue:`12817`)
- Improved performance of ``factorize`` of datetime with timezone (:issue:`13750`)
- Improved performance of by lazily creating indexing hashtables on larger Indexes (:issue:`14266`)
- Improved performance of ``groupby.groups`` (:issue:`14293`)
- Unnecessary materializing of a MultiIndex when introspecting for memory usage (:issue:`14308`)

.. _whatsnew_0190.bug_fixes:

Bug fixes
~~~~~~~~~

- Bug in ``groupby().shift()``, which could cause a segfault or corruption in rare circumstances when grouping by columns with missing values (:issue:`13813`)
- Bug in ``groupby().cumsum()`` calculating ``cumprod`` when ``axis=1``. (:issue:`13994`)
- Bug in ``pd.to_timedelta()`` in which the ``errors`` parameter was not being respected (:issue:`13613`)
- Bug in ``io.json.json_normalize()``, where non-ascii keys raised an exception (:issue:`13213`)
- Bug when passing a not-default-indexed ``Series`` as ``xerr`` or ``yerr`` in ``.plot()`` (:issue:`11858`)
- Bug in area plot draws legend incorrectly if subplot is enabled or legend is moved after plot (matplotlib 1.5.0 is required to draw area plot legend properly) (:issue:`9161`, :issue:`13544`)
- Bug in ``DataFrame`` assignment with an object-dtyped ``Index`` where the resultant column is mutable to the original object. (:issue:`13522`)
- Bug in matplotlib ``AutoDataFormatter``; this restores the second scaled formatting and re-adds micro-second scaled formatting (:issue:`13131`)
- Bug in selection from a ``HDFStore`` with a fixed format and ``start`` and/or ``stop`` specified will now return the selected range (:issue:`8287`)
- Bug in ``Categorical.from_codes()`` where an unhelpful error was raised when an invalid ``ordered`` parameter was passed in (:issue:`14058`)
- Bug in ``Series`` construction from a tuple of integers on windows not returning default dtype (int64) (:issue:`13646`)
- Bug in ``TimedeltaIndex`` addition with a Datetime-like object where addition overflow was not being caught (:issue:`14068`)
- Bug in ``.groupby(..).resample(..)`` when the same object is called multiple times (:issue:`13174`)
- Bug in ``.to_records()`` when index name is a unicode string (:issue:`13172`)
- Bug in calling ``.memory_usage()`` on object which doesn't implement (:issue:`12924`)
- Regression in ``Series.quantile`` with nans (also shows up in ``.median()`` and ``.describe()`` ); furthermore now names the ``Series`` with the quantile (:issue:`13098`, :issue:`13146`)
- Bug in ``SeriesGroupBy.transform`` with datetime values and missing groups (:issue:`13191`)
- Bug where empty ``Series`` were incorrectly coerced in datetime-like numeric operations (:issue:`13844`)
- Bug in ``Categorical`` constructor when passed a ``Categorical`` containing datetimes with timezones (:issue:`14190`)
- Bug in ``Series.str.extractall()`` with ``str`` index raises ``ValueError``  (:issue:`13156`)
- Bug in ``Series.str.extractall()`` with single group and quantifier  (:issue:`13382`)
- Bug in ``DatetimeIndex`` and ``Period`` subtraction raises ``ValueError`` or ``AttributeError`` rather than ``TypeError`` (:issue:`13078`)
- Bug in ``Index`` and ``Series`` created with ``NaN`` and ``NaT`` mixed data may not have ``datetime64`` dtype  (:issue:`13324`)
- Bug in ``Index`` and ``Series`` may ignore ``np.datetime64('nat')`` and ``np.timdelta64('nat')`` to infer dtype (:issue:`13324`)
- Bug in ``PeriodIndex`` and ``Period`` subtraction raises ``AttributeError`` (:issue:`13071`)
- Bug in ``PeriodIndex`` construction returning a ``float64`` index in some circumstances (:issue:`13067`)
- Bug in ``.resample(..)`` with a ``PeriodIndex`` not changing its ``freq`` appropriately when empty (:issue:`13067`)
- Bug in ``.resample(..)`` with a ``PeriodIndex`` not retaining its type or name with an empty ``DataFrame`` appropriately when empty (:issue:`13212`)
- Bug in ``groupby(..).apply(..)`` when the passed function returns scalar values per group (:issue:`13468`).
- Bug in ``groupby(..).resample(..)`` where passing some keywords would raise an exception (:issue:`13235`)
- Bug in ``.tz_convert`` on a tz-aware ``DateTimeIndex`` that relied on index being sorted for correct results (:issue:`13306`)
- Bug in ``.tz_localize`` with ``dateutil.tz.tzlocal`` may return incorrect result (:issue:`13583`)
- Bug in ``DatetimeTZDtype`` dtype with ``dateutil.tz.tzlocal`` cannot be regarded as valid dtype (:issue:`13583`)
- Bug in ``pd.read_hdf()`` where attempting to load an HDF file with a single dataset, that had one or more categorical columns, failed unless the key argument was set to the name of the dataset. (:issue:`13231`)
- Bug in ``.rolling()`` that allowed a negative integer window in construction of the ``Rolling()`` object, but would later fail on aggregation (:issue:`13383`)
- Bug in ``Series`` indexing with tuple-valued data and a numeric index (:issue:`13509`)
- Bug in printing ``pd.DataFrame`` where unusual elements with the ``object`` dtype were causing segfaults (:issue:`13717`)
- Bug in ranking ``Series`` which could result in segfaults (:issue:`13445`)
- Bug in various index types, which did not propagate the name of passed index (:issue:`12309`)
- Bug in ``DatetimeIndex``, which did not honour the ``copy=True`` (:issue:`13205`)
- Bug in ``DatetimeIndex.is_normalized`` returns incorrectly for normalized date_range in case of local timezones (:issue:`13459`)
- Bug in ``pd.concat`` and ``.append`` may coerces ``datetime64`` and ``timedelta`` to ``object`` dtype containing python built-in ``datetime`` or ``timedelta`` rather than ``Timestamp`` or ``Timedelta`` (:issue:`13626`)
- Bug in ``PeriodIndex.append`` may raises ``AttributeError`` when the result is ``object`` dtype (:issue:`13221`)
- Bug in ``CategoricalIndex.append`` may accept normal ``list`` (:issue:`13626`)
- Bug in ``pd.concat`` and ``.append`` with the same timezone get reset to UTC (:issue:`7795`)
- Bug in ``Series`` and ``DataFrame`` ``.append`` raises ``AmbiguousTimeError`` if data contains datetime near DST boundary (:issue:`13626`)
- Bug in ``DataFrame.to_csv()`` in which float values were being quoted even though quotations were specified for non-numeric values only (:issue:`12922`, :issue:`13259`)
- Bug in ``DataFrame.describe()`` raising ``ValueError`` with only boolean columns (:issue:`13898`)
- Bug in ``MultiIndex`` slicing where extra elements were returned when level is non-unique (:issue:`12896`)
- Bug in ``.str.replace`` does not raise ``TypeError`` for invalid replacement (:issue:`13438`)
- Bug in ``MultiIndex.from_arrays`` which didn't check for input array lengths matching (:issue:`13599`)
- Bug in ``cartesian_product`` and ``MultiIndex.from_product`` which may raise with empty input arrays (:issue:`12258`)
- Bug in ``pd.read_csv()`` which may cause a segfault or corruption when iterating in large chunks over a stream/file under rare circumstances (:issue:`13703`)
- Bug in ``pd.read_csv()`` which caused errors to be raised when a dictionary containing scalars is passed in for ``na_values`` (:issue:`12224`)
- Bug in ``pd.read_csv()`` which caused BOM files to be incorrectly parsed by not ignoring the BOM (:issue:`4793`)
- Bug in ``pd.read_csv()`` with ``engine='python'`` which raised errors when a numpy array was passed in for ``usecols`` (:issue:`12546`)
- Bug in ``pd.read_csv()`` where the index columns were being incorrectly parsed when parsed as dates with a ``thousands`` parameter (:issue:`14066`)
- Bug in ``pd.read_csv()`` with ``engine='python'`` in which ``NaN`` values weren't being detected after data was converted to numeric values (:issue:`13314`)
- Bug in ``pd.read_csv()`` in which the ``nrows`` argument was not properly validated for both engines (:issue:`10476`)
- Bug in ``pd.read_csv()`` with ``engine='python'`` in which infinities of mixed-case forms were not being interpreted properly (:issue:`13274`)
- Bug in ``pd.read_csv()`` with ``engine='python'`` in which trailing ``NaN`` values were not being parsed (:issue:`13320`)
- Bug in ``pd.read_csv()`` with ``engine='python'`` when reading from a ``tempfile.TemporaryFile`` on Windows with Python 3 (:issue:`13398`)
- Bug in ``pd.read_csv()`` that prevents ``usecols`` kwarg from accepting single-byte unicode strings (:issue:`13219`)
- Bug in ``pd.read_csv()`` that prevents ``usecols`` from being an empty set (:issue:`13402`)
- Bug in ``pd.read_csv()`` in the C engine where the NULL character was not being parsed as NULL (:issue:`14012`)
- Bug in ``pd.read_csv()`` with ``engine='c'`` in which NULL ``quotechar`` was not accepted even though ``quoting`` was specified as ``None`` (:issue:`13411`)
- Bug in ``pd.read_csv()`` with ``engine='c'`` in which fields were not properly cast to float when quoting was specified as non-numeric (:issue:`13411`)
- Bug in ``pd.read_csv()`` in Python 2.x with non-UTF8 encoded, multi-character separated data (:issue:`3404`)
- Bug in ``pd.read_csv()``, where aliases for utf-xx (e.g. UTF-xx, UTF_xx, utf_xx) raised UnicodeDecodeError (:issue:`13549`)
- Bug in ``pd.read_csv``, ``pd.read_table``, ``pd.read_fwf``, ``pd.read_stata`` and ``pd.read_sas`` where files were opened by parsers but not closed if both ``chunksize`` and ``iterator`` were ``None``. (:issue:`13940`)
- Bug in ``StataReader``, ``StataWriter``, ``XportReader`` and ``SAS7BDATReader`` where a file was not properly closed when an error was raised. (:issue:`13940`)
- Bug in ``pd.pivot_table()`` where ``margins_name`` is ignored when ``aggfunc`` is a list (:issue:`13354`)
- Bug in ``pd.Series.str.zfill``, ``center``, ``ljust``, ``rjust``, and ``pad`` when passing non-integers, did not raise ``TypeError`` (:issue:`13598`)
- Bug in checking for any null objects in a ``TimedeltaIndex``, which always returned ``True`` (:issue:`13603`)
- Bug in ``Series`` arithmetic raises ``TypeError`` if it contains datetime-like as ``object`` dtype (:issue:`13043`)
- Bug ``Series.isnull()`` and ``Series.notnull()`` ignore ``Period('NaT')``  (:issue:`13737`)
- Bug ``Series.fillna()`` and ``Series.dropna()`` don't affect to ``Period('NaT')``  (:issue:`13737`
- Bug in ``.fillna(value=np.nan)`` incorrectly raises ``KeyError`` on a ``category`` dtyped ``Series`` (:issue:`14021`)
- Bug in extension dtype creation where the created types were not is/identical (:issue:`13285`)
- Bug in ``.resample(..)`` where incorrect warnings were triggered by IPython introspection (:issue:`13618`)
- Bug in ``NaT`` - ``Period`` raises ``AttributeError`` (:issue:`13071`)
- Bug in ``Series`` comparison may output incorrect result if rhs contains ``NaT`` (:issue:`9005`)
- Bug in ``Series`` and ``Index`` comparison may output incorrect result if it contains ``NaT`` with ``object`` dtype (:issue:`13592`)
- Bug in ``Period`` addition raises ``TypeError`` if ``Period`` is on right hand side (:issue:`13069`)
- Bug in ``Period`` and ``Series`` or ``Index`` comparison raises ``TypeError`` (:issue:`13200`)
- Bug in ``pd.set_eng_float_format()`` that would prevent NaN and Inf from formatting (:issue:`11981`)
- Bug in ``.unstack`` with ``Categorical`` dtype resets ``.ordered`` to ``True`` (:issue:`13249`)
- Clean some compile time warnings in datetime parsing (:issue:`13607`)
- Bug in ``factorize`` raises ``AmbiguousTimeError`` if data contains datetime near DST boundary (:issue:`13750`)
- Bug in ``.set_index`` raises ``AmbiguousTimeError`` if new index contains DST boundary and multi levels (:issue:`12920`)
- Bug in ``.shift`` raises ``AmbiguousTimeError`` if data contains datetime near DST boundary (:issue:`13926`)
- Bug in ``pd.read_hdf()`` returns incorrect result when a ``DataFrame`` with a ``categorical`` column and a query which doesn't match any values (:issue:`13792`)
- Bug in ``.iloc`` when indexing with a non lexsorted MultiIndex (:issue:`13797`)
- Bug in ``.loc`` when indexing with date strings in a reverse sorted ``DatetimeIndex`` (:issue:`14316`)
- Bug in ``Series`` comparison operators when dealing with zero dim NumPy arrays (:issue:`13006`)
- Bug in ``.combine_first`` may return incorrect ``dtype`` (:issue:`7630`, :issue:`10567`)
- Bug in ``groupby`` where ``apply`` returns different result depending on whether first result is ``None`` or not (:issue:`12824`)
- Bug in ``groupby(..).nth()`` where the group key is included inconsistently if called after ``.head()/.tail()`` (:issue:`12839`)
- Bug in ``.to_html``, ``.to_latex`` and ``.to_string`` silently ignore custom datetime formatter passed through the ``formatters`` key word (:issue:`10690`)
- Bug in ``DataFrame.iterrows()``, not yielding a ``Series`` subclasse if defined (:issue:`13977`)
- Bug in ``pd.to_numeric`` when ``errors='coerce'`` and input contains non-hashable objects (:issue:`13324`)
- Bug in invalid ``Timedelta`` arithmetic and comparison may raise ``ValueError`` rather than ``TypeError`` (:issue:`13624`)
- Bug in invalid datetime parsing in ``to_datetime`` and ``DatetimeIndex`` may raise ``TypeError`` rather than ``ValueError`` (:issue:`11169`, :issue:`11287`)
- Bug in ``Index`` created with tz-aware ``Timestamp`` and mismatched ``tz`` option incorrectly coerces timezone (:issue:`13692`)
- Bug in ``DatetimeIndex`` with nanosecond frequency does not include timestamp specified with ``end`` (:issue:`13672`)
- Bug in ``Series`` when setting a slice with a ``np.timedelta64`` (:issue:`14155`)
- Bug in ``Index`` raises ``OutOfBoundsDatetime`` if ``datetime`` exceeds ``datetime64[ns]`` bounds, rather than coercing to ``object`` dtype (:issue:`13663`)
- Bug in ``Index`` may ignore specified ``datetime64`` or ``timedelta64`` passed as ``dtype``  (:issue:`13981`)
- Bug in ``RangeIndex`` can be created without no arguments rather than raises ``TypeError`` (:issue:`13793`)
- Bug in ``.value_counts()`` raises ``OutOfBoundsDatetime`` if data exceeds ``datetime64[ns]`` bounds (:issue:`13663`)
- Bug in ``DatetimeIndex`` may raise ``OutOfBoundsDatetime`` if input ``np.datetime64`` has other unit than ``ns`` (:issue:`9114`)
- Bug in ``Series`` creation with ``np.datetime64`` which has other unit than ``ns`` as ``object`` dtype results in incorrect values (:issue:`13876`)
- Bug in ``resample`` with timedelta data where data was casted to float (:issue:`13119`).
- Bug in ``pd.isnull()`` ``pd.notnull()`` raise ``TypeError`` if input datetime-like has other unit than ``ns`` (:issue:`13389`)
- Bug in ``pd.merge()`` may raise ``TypeError`` if input datetime-like has other unit than ``ns`` (:issue:`13389`)
- Bug in ``HDFStore``/``read_hdf()`` discarded ``DatetimeIndex.name`` if ``tz`` was set (:issue:`13884`)
- Bug in ``Categorical.remove_unused_categories()`` changes ``.codes`` dtype to platform int (:issue:`13261`)
- Bug in ``groupby`` with ``as_index=False`` returns all NaN's when grouping on multiple columns including a categorical one (:issue:`13204`)
- Bug in ``df.groupby(...)[...]`` where getitem with ``Int64Index`` raised an error (:issue:`13731`)
- Bug in the CSS classes assigned to ``DataFrame.style`` for index names. Previously they were assigned ``"col_heading level<n> col<c>"`` where ``n`` was the number of levels + 1. Now they are assigned ``"index_name level<n>"``, where ``n`` is the correct level for that MultiIndex.
- Bug where ``pd.read_gbq()`` could throw ``ImportError: No module named discovery`` as a result of a naming conflict with another python package called apiclient  (:issue:`13454`)
- Bug in ``Index.union`` returns an incorrect result with a named empty index (:issue:`13432`)
- Bugs in ``Index.difference`` and ``DataFrame.join`` raise in Python3 when using mixed-integer indexes (:issue:`13432`, :issue:`12814`)
- Bug in subtract tz-aware ``datetime.datetime`` from tz-aware ``datetime64`` series (:issue:`14088`)
- Bug in ``.to_excel()`` when DataFrame contains a MultiIndex which contains a label with a NaN value (:issue:`13511`)
- Bug in invalid frequency offset string like "D1", "-2-3H" may not raise ``ValueError`` (:issue:`13930`)
- Bug in ``concat`` and ``groupby`` for hierarchical frames with ``RangeIndex`` levels (:issue:`13542`).
- Bug in ``Series.str.contains()`` for Series containing only ``NaN`` values of ``object`` dtype (:issue:`14171`)
- Bug in ``agg()`` function on groupby dataframe changes dtype of ``datetime64[ns]`` column to ``float64`` (:issue:`12821`)
- Bug in using NumPy ufunc with ``PeriodIndex`` to add or subtract integer raise ``IncompatibleFrequency``. Note that using standard operator like ``+`` or ``-`` is recommended, because standard operators use more efficient path (:issue:`13980`)
- Bug in operations on ``NaT`` returning ``float`` instead of ``datetime64[ns]`` (:issue:`12941`)
- Bug in ``Series`` flexible arithmetic methods (like ``.add()``) raises ``ValueError`` when ``axis=None`` (:issue:`13894`)
- Bug in ``DataFrame.to_csv()`` with ``MultiIndex`` columns in which a stray empty line was added (:issue:`6618`)
- Bug in ``DatetimeIndex``, ``TimedeltaIndex`` and ``PeriodIndex.equals()`` may return ``True`` when input isn't ``Index`` but contains the same values (:issue:`13107`)
- Bug in assignment against datetime with timezone may not work if it contains datetime near DST boundary (:issue:`14146`)
- Bug in ``pd.eval()`` and ``HDFStore`` query truncating long float literals with python 2 (:issue:`14241`)
- Bug in ``Index`` raises ``KeyError`` displaying incorrect column when column is not in the df and columns contains duplicate values (:issue:`13822`)
- Bug in ``Period`` and ``PeriodIndex`` creating wrong dates when frequency has combined offset aliases (:issue:`13874`)
- Bug in ``.to_string()`` when called with an integer ``line_width`` and ``index=False`` raises an UnboundLocalError exception because ``idx`` referenced before assignment.
- Bug in ``eval()`` where the ``resolvers`` argument would not accept a list (:issue:`14095`)
- Bugs in ``stack``, ``get_dummies``, ``make_axis_dummies`` which don't preserve categorical dtypes in (multi)indexes (:issue:`13854`)
- ``PeriodIndex`` can now accept ``list`` and ``array`` which contains ``pd.NaT`` (:issue:`13430`)
- Bug in ``df.groupby`` where ``.median()`` returns arbitrary values if grouped dataframe contains empty bins (:issue:`13629`)
- Bug in ``Index.copy()`` where ``name`` parameter was ignored (:issue:`14302`)


.. _whatsnew_0.19.0.contributors:

Contributors
~~~~~~~~~~~~

.. contributors:: v0.18.1..v0.19.0