File: v0.20.0.rst

package info (click to toggle)
pandas 2.2.3%2Bdfsg-9
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 66,784 kB
  • sloc: python: 422,228; ansic: 9,190; sh: 270; xml: 102; makefile: 83
file content (1829 lines) | stat: -rw-r--r-- 78,815 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
.. _whatsnew_0200:

Version 0.20.1 (May 5, 2017)
----------------------------

{{ header }}

This is a major release from 0.19.2 and includes a number of API changes, deprecations, new features,
enhancements, and performance improvements along with a large number of bug fixes. We recommend that all
users upgrade to this version.

Highlights include:

- New ``.agg()`` API for Series/DataFrame similar to the groupby-rolling-resample API's, see :ref:`here <whatsnew_0200.enhancements.agg>`
- Integration with the ``feather-format``, including a new top-level ``pd.read_feather()`` and ``DataFrame.to_feather()`` method, see :ref:`here <io.feather>`.
- The ``.ix`` indexer has been deprecated, see :ref:`here <whatsnew_0200.api_breaking.deprecate_ix>`
- ``Panel`` has been deprecated, see :ref:`here <whatsnew_0200.api_breaking.deprecate_panel>`
- Addition of an ``IntervalIndex`` and ``Interval`` scalar type, see :ref:`here <whatsnew_0200.enhancements.intervalindex>`
- Improved user API when grouping by index levels in ``.groupby()``, see :ref:`here <whatsnew_0200.enhancements.groupby_access>`
- Improved support for ``UInt64`` dtypes, see :ref:`here <whatsnew_0200.enhancements.uint64_support>`
- A new orient for JSON serialization, ``orient='table'``, that uses the Table Schema spec and that gives the possibility for a more interactive repr in the Jupyter Notebook, see :ref:`here <whatsnew_0200.enhancements.table_schema>`
- Experimental support for exporting styled DataFrames (``DataFrame.style``) to Excel, see :ref:`here <whatsnew_0200.enhancements.style_excel>`
- Window binary corr/cov operations now return a MultiIndexed ``DataFrame`` rather than a ``Panel``, as ``Panel`` is now deprecated, see :ref:`here <whatsnew_0200.api_breaking.rolling_pairwise>`
- Support for S3 handling now uses ``s3fs``, see :ref:`here <whatsnew_0200.api_breaking.s3>`
- Google BigQuery support now uses the ``pandas-gbq`` library, see :ref:`here <whatsnew_0200.api_breaking.gbq>`

.. warning::

  pandas has changed the internal structure and layout of the code base.
  This can affect imports that are not from the top-level ``pandas.*`` namespace, please see the changes :ref:`here <whatsnew_0200.privacy>`.

Check the :ref:`API Changes <whatsnew_0200.api_breaking>` and :ref:`deprecations <whatsnew_0200.deprecations>` before updating.

.. note::

   This is a combined release for 0.20.0 and 0.20.1.
   Version 0.20.1 contains one additional change for backwards-compatibility with downstream projects using pandas' ``utils`` routines. (:issue:`16250`)

.. contents:: What's new in v0.20.0
    :local:
    :backlinks: none

.. _whatsnew_0200.enhancements:

New features
~~~~~~~~~~~~

.. _whatsnew_0200.enhancements.agg:

Method ``agg`` API for DataFrame/Series
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Series & DataFrame have been enhanced to support the aggregation API. This is a familiar API
from groupby, window operations, and resampling. This allows aggregation operations in a concise way
by using :meth:`~DataFrame.agg` and :meth:`~DataFrame.transform`. The full documentation
is :ref:`here <basics.aggregate>` (:issue:`1623`).

Here is a sample

.. ipython:: python

   df = pd.DataFrame(np.random.randn(10, 3), columns=['A', 'B', 'C'],
                     index=pd.date_range('1/1/2000', periods=10))
   df.iloc[3:7] = np.nan
   df

One can operate using string function names, callables, lists, or dictionaries of these.

Using a single function is equivalent to ``.apply``.

.. ipython:: python

   df.agg('sum')

Multiple aggregations with a list of functions.

.. ipython:: python

   df.agg(['sum', 'min'])

Using a dict provides the ability to apply specific aggregations per column.
You will get a matrix-like output of all of the aggregators. The output has one column
per unique function. Those functions applied to a particular column will be ``NaN``:

.. ipython:: python

   df.agg({'A': ['sum', 'min'], 'B': ['min', 'max']})

The API also supports a ``.transform()`` function for broadcasting results.

.. ipython:: python
   :okwarning:

   df.transform(['abs', lambda x: x - x.min()])

When presented with mixed dtypes that cannot be aggregated, ``.agg()`` will only take the valid
aggregations. This is similar to how groupby ``.agg()`` works. (:issue:`15015`)

.. ipython:: python

   df = pd.DataFrame({'A': [1, 2, 3],
                      'B': [1., 2., 3.],
                      'C': ['foo', 'bar', 'baz'],
                      'D': pd.date_range('20130101', periods=3)})
   df.dtypes

.. code-block:: python

   In [10]: df.agg(['min', 'sum'])
   Out[10]:
        A    B          C          D
   min  1  1.0        bar 2013-01-01
   sum  6  6.0  foobarbaz        NaT

.. _whatsnew_0200.enhancements.dataio_dtype:

Keyword argument ``dtype`` for data IO
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

The ``'python'`` engine for :func:`read_csv`, as well as the :func:`read_fwf` function for parsing
fixed-width text files and :func:`read_excel` for parsing Excel files, now accept the ``dtype`` keyword argument for specifying the types of specific columns (:issue:`14295`). See the :ref:`io docs <io.dtypes>` for more information.

.. ipython:: python
   :suppress:

   from io import StringIO

.. ipython:: python

   data = "a  b\n1  2\n3  4"
   pd.read_fwf(StringIO(data)).dtypes
   pd.read_fwf(StringIO(data), dtype={'a': 'float64', 'b': 'object'}).dtypes

.. _whatsnew_0120.enhancements.datetime_origin:

Method ``.to_datetime()`` has gained an ``origin`` parameter
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

:func:`to_datetime` has gained a new parameter, ``origin``, to define a reference date
from where to compute the resulting timestamps when parsing numerical values with a specific ``unit`` specified. (:issue:`11276`, :issue:`11745`)

For example, with 1960-01-01 as the starting date:

.. ipython:: python

   pd.to_datetime([1, 2, 3], unit='D', origin=pd.Timestamp('1960-01-01'))

The default is set at ``origin='unix'``, which defaults to ``1970-01-01 00:00:00``, which is
commonly called 'unix epoch' or POSIX time. This was the previous default, so this is a backward compatible change.

.. ipython:: python

   pd.to_datetime([1, 2, 3], unit='D')


.. _whatsnew_0200.enhancements.groupby_access:

GroupBy enhancements
^^^^^^^^^^^^^^^^^^^^

Strings passed to ``DataFrame.groupby()`` as the ``by`` parameter may now reference either column names or index level names. Previously, only column names could be referenced. This allows to easily group by a column and index level at the same time. (:issue:`5677`)

.. ipython:: python

   arrays = [['bar', 'bar', 'baz', 'baz', 'foo', 'foo', 'qux', 'qux'],
             ['one', 'two', 'one', 'two', 'one', 'two', 'one', 'two']]

   index = pd.MultiIndex.from_arrays(arrays, names=['first', 'second'])

   df = pd.DataFrame({'A': [1, 1, 1, 1, 2, 2, 3, 3],
                      'B': np.arange(8)},
                     index=index)
   df

   df.groupby(['second', 'A']).sum()


.. _whatsnew_0200.enhancements.compressed_urls:

Better support for compressed URLs in ``read_csv``
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

The compression code was refactored (:issue:`12688`). As a result, reading
dataframes from URLs in :func:`read_csv` or :func:`read_table` now supports
additional compression methods: ``xz``, ``bz2``, and ``zip`` (:issue:`14570`).
Previously, only ``gzip`` compression was supported. By default, compression of
URLs and paths are now inferred using their file extensions. Additionally,
support for bz2 compression in the python 2 C-engine improved (:issue:`14874`).

.. ipython:: python

   url = ('https://github.com/{repo}/raw/{branch}/{path}'
          .format(repo='pandas-dev/pandas',
                  branch='main',
                  path='pandas/tests/io/parser/data/salaries.csv.bz2'))
   # default, infer compression
   df = pd.read_csv(url, sep='\t', compression='infer')
   # explicitly specify compression
   df = pd.read_csv(url, sep='\t', compression='bz2')
   df.head(2)

.. _whatsnew_0200.enhancements.pickle_compression:

Pickle file IO now supports compression
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

:func:`read_pickle`, :meth:`DataFrame.to_pickle` and :meth:`Series.to_pickle`
can now read from and write to compressed pickle files. Compression methods
can be an explicit parameter or be inferred from the file extension.
See :ref:`the docs here. <io.pickle.compression>`

.. ipython:: python

   df = pd.DataFrame({'A': np.random.randn(1000),
                      'B': 'foo',
                      'C': pd.date_range('20130101', periods=1000, freq='s')})

Using an explicit compression type

.. ipython:: python

   df.to_pickle("data.pkl.compress", compression="gzip")
   rt = pd.read_pickle("data.pkl.compress", compression="gzip")
   rt.head()

The default is to infer the compression type from the extension (``compression='infer'``):

.. ipython:: python

   df.to_pickle("data.pkl.gz")
   rt = pd.read_pickle("data.pkl.gz")
   rt.head()
   df["A"].to_pickle("s1.pkl.bz2")
   rt = pd.read_pickle("s1.pkl.bz2")
   rt.head()

.. ipython:: python
   :suppress:

   import os
   os.remove("data.pkl.compress")
   os.remove("data.pkl.gz")
   os.remove("s1.pkl.bz2")

.. _whatsnew_0200.enhancements.uint64_support:

UInt64 support improved
^^^^^^^^^^^^^^^^^^^^^^^

pandas has significantly improved support for operations involving unsigned,
or purely non-negative, integers. Previously, handling these integers would
result in improper rounding or data-type casting, leading to incorrect results.
Notably, a new numerical index, ``UInt64Index``, has been created (:issue:`14937`)

.. code-block:: ipython

   In [1]: idx = pd.UInt64Index([1, 2, 3])
   In [2]: df = pd.DataFrame({'A': ['a', 'b', 'c']}, index=idx)
   In [3]: df.index
   Out[3]: UInt64Index([1, 2, 3], dtype='uint64')

- Bug in converting object elements of array-like objects to unsigned 64-bit integers (:issue:`4471`, :issue:`14982`)
- Bug in ``Series.unique()`` in which unsigned 64-bit integers were causing overflow (:issue:`14721`)
- Bug in ``DataFrame`` construction in which unsigned 64-bit integer elements were being converted to objects (:issue:`14881`)
- Bug in ``pd.read_csv()`` in which unsigned 64-bit integer elements were being improperly converted to the wrong data types (:issue:`14983`)
- Bug in ``pd.unique()`` in which unsigned 64-bit integers were causing overflow (:issue:`14915`)
- Bug in ``pd.value_counts()`` in which unsigned 64-bit integers were being erroneously truncated in the output (:issue:`14934`)

.. _whatsnew_0200.enhancements.groupy_categorical:

GroupBy on categoricals
^^^^^^^^^^^^^^^^^^^^^^^

In previous versions, ``.groupby(..., sort=False)`` would fail with a ``ValueError`` when grouping on a categorical series with some categories not appearing in the data. (:issue:`13179`)

.. ipython:: python

   chromosomes = np.r_[np.arange(1, 23).astype(str), ['X', 'Y']]
   df = pd.DataFrame({
       'A': np.random.randint(100),
       'B': np.random.randint(100),
       'C': np.random.randint(100),
       'chromosomes': pd.Categorical(np.random.choice(chromosomes, 100),
                                     categories=chromosomes,
                                     ordered=True)})
   df

**Previous behavior**:

.. code-block:: ipython

   In [3]: df[df.chromosomes != '1'].groupby('chromosomes', observed=False, sort=False).sum()
   ---------------------------------------------------------------------------
   ValueError: items in new_categories are not the same as in old categories

**New behavior**:

.. ipython:: python

   df[df.chromosomes != '1'].groupby('chromosomes', observed=False, sort=False).sum()

.. _whatsnew_0200.enhancements.table_schema:

Table schema output
^^^^^^^^^^^^^^^^^^^

The new orient ``'table'`` for :meth:`DataFrame.to_json`
will generate a `Table Schema`_ compatible string representation of
the data.

.. ipython:: python

   df = pd.DataFrame(
       {'A': [1, 2, 3],
        'B': ['a', 'b', 'c'],
        'C': pd.date_range('2016-01-01', freq='d', periods=3)},
       index=pd.Index(range(3), name='idx'))
   df
   df.to_json(orient='table')


See :ref:`IO: Table Schema for more information <io.table_schema>`.

Additionally, the repr for ``DataFrame`` and ``Series`` can now publish
this JSON Table schema representation of the Series or DataFrame if you are
using IPython (or another frontend like `nteract`_ using the Jupyter messaging
protocol).
This gives frontends like the Jupyter notebook and `nteract`_
more flexibility in how they display pandas objects, since they have
more information about the data.
You must enable this by setting the ``display.html.table_schema`` option to ``True``.

.. _Table Schema: http://specs.frictionlessdata.io/json-table-schema/
.. _nteract: https://nteract.io/

.. _whatsnew_0200.enhancements.scipy_sparse:

SciPy sparse matrix from/to SparseDataFrame
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

pandas now supports creating sparse dataframes directly from ``scipy.sparse.spmatrix`` instances.
See the :ref:`documentation <sparse.scipysparse>` for more information. (:issue:`4343`)

All sparse formats are supported, but matrices that are not in :mod:`COOrdinate <scipy.sparse>` format will be converted, copying data as needed.

.. code-block:: python

   from scipy.sparse import csr_matrix
   arr = np.random.random(size=(1000, 5))
   arr[arr < .9] = 0
   sp_arr = csr_matrix(arr)
   sp_arr
   sdf = pd.SparseDataFrame(sp_arr)
   sdf

To convert a ``SparseDataFrame`` back to sparse SciPy matrix in COO format, you can use:

.. code-block:: python

   sdf.to_coo()

.. _whatsnew_0200.enhancements.style_excel:

Excel output for styled DataFrames
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Experimental support has been added to export ``DataFrame.style`` formats to Excel using the ``openpyxl`` engine. (:issue:`15530`)

For example, after running the following, ``styled.xlsx`` renders as below:

.. ipython:: python
   :okwarning:

   np.random.seed(24)
   df = pd.DataFrame({'A': np.linspace(1, 10, 10)})
   df = pd.concat([df, pd.DataFrame(np.random.RandomState(24).randn(10, 4),
                                    columns=list('BCDE'))],
                  axis=1)
   df.iloc[0, 2] = np.nan
   df
   styled = (df.style
             .applymap(lambda val: 'color:red;' if val < 0 else 'color:black;')
             .highlight_max())
   styled.to_excel('styled.xlsx', engine='openpyxl')

.. image:: ../_static/style-excel.png

.. ipython:: python
   :suppress:

   import os
   os.remove('styled.xlsx')

See the :ref:`Style documentation </user_guide/style.ipynb#Export-to-Excel>` for more detail.

.. _whatsnew_0200.enhancements.intervalindex:

IntervalIndex
^^^^^^^^^^^^^

pandas has gained an ``IntervalIndex`` with its own dtype, ``interval`` as well as the ``Interval`` scalar type. These allow first-class support for interval
notation, specifically as a return type for the categories in :func:`cut` and :func:`qcut`. The ``IntervalIndex`` allows some unique indexing, see the
:ref:`docs <advanced.intervalindex>`. (:issue:`7640`, :issue:`8625`)

.. warning::

   These indexing behaviors of the IntervalIndex are provisional and may change in a future version of pandas. Feedback on usage is welcome.


Previous behavior:

The returned categories were strings, representing Intervals

.. code-block:: ipython

   In [1]: c = pd.cut(range(4), bins=2)

   In [2]: c
   Out[2]:
   [(-0.003, 1.5], (-0.003, 1.5], (1.5, 3], (1.5, 3]]
   Categories (2, object): [(-0.003, 1.5] < (1.5, 3]]

   In [3]: c.categories
   Out[3]: Index(['(-0.003, 1.5]', '(1.5, 3]'], dtype='object')

New behavior:

.. ipython:: python

   c = pd.cut(range(4), bins=2)
   c
   c.categories

Furthermore, this allows one to bin *other* data with these same bins, with ``NaN`` representing a missing
value similar to other dtypes.

.. ipython:: python

   pd.cut([0, 3, 5, 1], bins=c.categories)

An ``IntervalIndex`` can also be used in ``Series`` and ``DataFrame`` as the index.

.. ipython:: python

   df = pd.DataFrame({'A': range(4),
                      'B': pd.cut([0, 3, 1, 1], bins=c.categories)
                      }).set_index('B')
   df

Selecting via a specific interval:

.. ipython:: python

   df.loc[pd.Interval(1.5, 3.0)]

Selecting via a scalar value that is contained *in* the intervals.

.. ipython:: python

   df.loc[0]

.. _whatsnew_0200.enhancements.other:

Other enhancements
^^^^^^^^^^^^^^^^^^

- ``DataFrame.rolling()`` now accepts the parameter ``closed='right'|'left'|'both'|'neither'`` to choose the rolling window-endpoint closedness. See the :ref:`documentation <window.endpoints>` (:issue:`13965`)
- Integration with the ``feather-format``, including a new top-level ``pd.read_feather()`` and ``DataFrame.to_feather()`` method, see :ref:`here <io.feather>`.
- ``Series.str.replace()`` now accepts a callable, as replacement, which is passed to ``re.sub`` (:issue:`15055`)
- ``Series.str.replace()`` now accepts a compiled regular expression as a pattern (:issue:`15446`)
- ``Series.sort_index`` accepts parameters ``kind`` and ``na_position`` (:issue:`13589`, :issue:`14444`)
- ``DataFrame`` and ``DataFrame.groupby()``  have gained a ``nunique()`` method to count the distinct values over an axis (:issue:`14336`, :issue:`15197`).
- ``DataFrame`` has gained a ``melt()`` method, equivalent to ``pd.melt()``, for unpivoting from a wide to long format (:issue:`12640`).
- ``pd.read_excel()`` now preserves sheet order when using ``sheetname=None`` (:issue:`9930`)
- Multiple offset aliases with decimal points are now supported (e.g. ``0.5min`` is parsed as ``30s``) (:issue:`8419`)
- ``.isnull()`` and ``.notnull()`` have been added to ``Index`` object to make them more consistent with the ``Series`` API (:issue:`15300`)
- New ``UnsortedIndexError`` (subclass of ``KeyError``) raised when indexing/slicing into an
  unsorted MultiIndex (:issue:`11897`). This allows differentiation between errors due to lack
  of sorting or an incorrect key. See :ref:`here <advanced.unsorted>`
- ``MultiIndex`` has gained a ``.to_frame()`` method to convert to a ``DataFrame`` (:issue:`12397`)
- ``pd.cut`` and ``pd.qcut`` now support datetime64 and timedelta64 dtypes (:issue:`14714`, :issue:`14798`)
- ``pd.qcut`` has gained the ``duplicates='raise'|'drop'`` option to control whether to raise on duplicated edges (:issue:`7751`)
- ``Series`` provides a ``to_excel`` method to output Excel files (:issue:`8825`)
- The ``usecols`` argument in ``pd.read_csv()`` now accepts a callable function as a value  (:issue:`14154`)
- The ``skiprows`` argument in ``pd.read_csv()`` now accepts a callable function as a value  (:issue:`10882`)
- The ``nrows`` and ``chunksize`` arguments in ``pd.read_csv()`` are supported if both are passed (:issue:`6774`, :issue:`15755`)
- ``DataFrame.plot`` now prints a title above each subplot if ``suplots=True`` and ``title`` is a list of strings (:issue:`14753`)
- ``DataFrame.plot`` can pass the matplotlib 2.0 default color cycle as a single string as color parameter, see `here <http://matplotlib.org/2.0.0/users/colors.html#cn-color-selection>`__. (:issue:`15516`)
- ``Series.interpolate()`` now supports timedelta as an index type with ``method='time'`` (:issue:`6424`)
- Addition of a ``level`` keyword to ``DataFrame/Series.rename`` to rename
  labels in the specified level of a MultiIndex (:issue:`4160`).
- ``DataFrame.reset_index()`` will now interpret a tuple ``index.name`` as a key spanning across levels of ``columns``, if this is a ``MultiIndex`` (:issue:`16164`)
- ``Timedelta.isoformat`` method added for formatting Timedeltas as an `ISO 8601 duration`_. See the :ref:`Timedelta docs <timedeltas.isoformat>` (:issue:`15136`)
- ``.select_dtypes()`` now allows the string ``datetimetz`` to generically select datetimes with tz (:issue:`14910`)
- The ``.to_latex()`` method will now accept ``multicolumn`` and ``multirow`` arguments to use the accompanying LaTeX enhancements
- ``pd.merge_asof()`` gained the option ``direction='backward'|'forward'|'nearest'`` (:issue:`14887`)
- ``Series/DataFrame.asfreq()`` have gained a ``fill_value`` parameter, to fill missing values (:issue:`3715`).
- ``Series/DataFrame.resample.asfreq`` have gained a ``fill_value`` parameter, to fill missing values during resampling (:issue:`3715`).
- :func:`pandas.util.hash_pandas_object` has gained the ability to hash a ``MultiIndex`` (:issue:`15224`)
- ``Series/DataFrame.squeeze()`` have gained the ``axis`` parameter. (:issue:`15339`)
- ``DataFrame.to_excel()`` has a new ``freeze_panes`` parameter to turn on Freeze Panes when exporting to Excel (:issue:`15160`)
- ``pd.read_html()`` will parse multiple header rows, creating a MultiIndex header. (:issue:`13434`).
- HTML table output skips ``colspan`` or ``rowspan`` attribute if equal to 1. (:issue:`15403`)
- :class:`pandas.io.formats.style.Styler` template now has blocks for easier extension, see the :ref:`example notebook </user_guide/style.ipynb#Subclassing>` (:issue:`15649`)
- :meth:`Styler.render() <pandas.io.formats.style.Styler.render>` now accepts ``**kwargs`` to allow user-defined variables in the template (:issue:`15649`)
- Compatibility with Jupyter notebook 5.0; MultiIndex column labels are left-aligned and MultiIndex row-labels are top-aligned (:issue:`15379`)
- ``TimedeltaIndex`` now has a custom date-tick formatter specifically designed for nanosecond level precision (:issue:`8711`)
- ``pd.api.types.union_categoricals`` gained the ``ignore_ordered`` argument to allow ignoring the ordered attribute of unioned categoricals (:issue:`13410`). See the :ref:`categorical union docs <categorical.union>` for more information.
- ``DataFrame.to_latex()`` and ``DataFrame.to_string()`` now allow optional header aliases. (:issue:`15536`)
- Re-enable the ``parse_dates`` keyword of ``pd.read_excel()`` to parse string columns as dates (:issue:`14326`)
- Added ``.empty`` property to subclasses of ``Index``. (:issue:`15270`)
- Enabled floor division for ``Timedelta`` and ``TimedeltaIndex`` (:issue:`15828`)
- ``pandas.io.json.json_normalize()`` gained the option ``errors='ignore'|'raise'``; the default is ``errors='raise'`` which is backward compatible. (:issue:`14583`)
- ``pandas.io.json.json_normalize()`` with an empty ``list`` will return an empty ``DataFrame`` (:issue:`15534`)
- ``pandas.io.json.json_normalize()`` has gained a ``sep`` option that accepts ``str`` to separate joined fields; the default is ".", which is backward compatible. (:issue:`14883`)
- :meth:`MultiIndex.remove_unused_levels` has been added to facilitate :ref:`removing unused levels <advanced.shown_levels>`. (:issue:`15694`)
- ``pd.read_csv()`` will now raise a ``ParserError`` error whenever any parsing error occurs (:issue:`15913`, :issue:`15925`)
- ``pd.read_csv()`` now supports the ``error_bad_lines`` and ``warn_bad_lines`` arguments for the Python parser (:issue:`15925`)
- The ``display.show_dimensions`` option can now also be used to specify
  whether the length of a ``Series`` should be shown in its repr (:issue:`7117`).
- ``parallel_coordinates()`` has gained a ``sort_labels`` keyword argument that sorts class labels and the colors assigned to them (:issue:`15908`)
- Options added to allow one to turn on/off using ``bottleneck`` and ``numexpr``, see :ref:`here <basics.accelerate>` (:issue:`16157`)
- ``DataFrame.style.bar()`` now accepts two more options to further customize the bar chart. Bar alignment is set with ``align='left'|'mid'|'zero'``, the default is "left", which is backward compatible; You can now pass a list of ``color=[color_negative, color_positive]``. (:issue:`14757`)

.. _ISO 8601 duration: https://en.wikipedia.org/wiki/ISO_8601#Durations


.. _whatsnew_0200.api_breaking:

Backwards incompatible API changes
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

.. _whatsnew.api_breaking.io_compat:

Possible incompatibility for HDF5 formats created with pandas < 0.13.0
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

``pd.TimeSeries`` was deprecated officially in 0.17.0, though has already been an alias since 0.13.0. It has
been dropped in favor of ``pd.Series``. (:issue:`15098`).

This *may* cause HDF5 files that were created in prior versions to become unreadable if ``pd.TimeSeries``
was used. This is most likely to be for pandas < 0.13.0. If you find yourself in this situation.
You can use a recent prior version of pandas to read in your HDF5 files,
then write them out again after applying the procedure below.

.. code-block:: ipython

   In [2]: s = pd.TimeSeries([1, 2, 3], index=pd.date_range('20130101', periods=3))

   In [3]: s
   Out[3]:
   2013-01-01    1
   2013-01-02    2
   2013-01-03    3
   Freq: D, dtype: int64

   In [4]: type(s)
   Out[4]: pandas.core.series.TimeSeries

   In [5]: s = pd.Series(s)

   In [6]: s
   Out[6]:
   2013-01-01    1
   2013-01-02    2
   2013-01-03    3
   Freq: D, dtype: int64

   In [7]: type(s)
   Out[7]: pandas.core.series.Series


.. _whatsnew_0200.api_breaking.index_map:

Map on Index types now return other Index types
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

``map`` on an ``Index`` now returns an ``Index``, not a numpy array (:issue:`12766`)

.. ipython:: python

   idx = pd.Index([1, 2])
   idx
   mi = pd.MultiIndex.from_tuples([(1, 2), (2, 4)])
   mi

Previous behavior:

.. code-block:: ipython

   In [5]: idx.map(lambda x: x * 2)
   Out[5]: array([2, 4])

   In [6]: idx.map(lambda x: (x, x * 2))
   Out[6]: array([(1, 2), (2, 4)], dtype=object)

   In [7]: mi.map(lambda x: x)
   Out[7]: array([(1, 2), (2, 4)], dtype=object)

   In [8]: mi.map(lambda x: x[0])
   Out[8]: array([1, 2])

New behavior:

.. ipython:: python

   idx.map(lambda x: x * 2)
   idx.map(lambda x: (x, x * 2))

   mi.map(lambda x: x)

   mi.map(lambda x: x[0])


``map`` on a ``Series`` with ``datetime64`` values may return ``int64`` dtypes rather than ``int32``

.. code-block:: ipython

   In [64]: s = pd.Series(pd.date_range('2011-01-02T00:00', '2011-01-02T02:00', freq='H')
      ....:               .tz_localize('Asia/Tokyo'))
      ....:

   In [65]: s
   Out[65]:
   0   2011-01-02 00:00:00+09:00
   1   2011-01-02 01:00:00+09:00
   2   2011-01-02 02:00:00+09:00
   Length: 3, dtype: datetime64[ns, Asia/Tokyo]

Previous behavior:

.. code-block:: ipython

   In [9]: s.map(lambda x: x.hour)
   Out[9]:
   0    0
   1    1
   2    2
   dtype: int32

New behavior:

.. code-block:: ipython

   In [66]: s.map(lambda x: x.hour)
   Out[66]:
   0    0
   1    1
   2    2
   Length: 3, dtype: int64


.. _whatsnew_0200.api_breaking.index_dt_field:

Accessing datetime fields of Index now return Index
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

The datetime-related attributes (see :ref:`here <timeseries.components>`
for an overview) of ``DatetimeIndex``, ``PeriodIndex`` and ``TimedeltaIndex`` previously
returned numpy arrays. They will now return a new ``Index`` object, except
in the case of a boolean field, where the result will still be a boolean ndarray. (:issue:`15022`)

Previous behaviour:

.. code-block:: ipython

   In [1]: idx = pd.date_range("2015-01-01", periods=5, freq='10H')

   In [2]: idx.hour
   Out[2]: array([ 0, 10, 20,  6, 16], dtype=int32)

New behavior:

.. code-block:: ipython

   In [67]: idx = pd.date_range("2015-01-01", periods=5, freq='10H')

   In [68]: idx.hour
   Out[68]: Index([0, 10, 20, 6, 16], dtype='int32')

This has the advantage that specific ``Index`` methods are still available on the
result. On the other hand, this might have backward incompatibilities: e.g.
compared to numpy arrays, ``Index`` objects are not mutable. To get the original
ndarray, you can always convert explicitly using ``np.asarray(idx.hour)``.

.. _whatsnew_0200.api_breaking.unique:

pd.unique will now be consistent with extension types
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

In prior versions, using :meth:`Series.unique` and :func:`pandas.unique` on ``Categorical`` and tz-aware
data-types would yield different return types. These are now made consistent. (:issue:`15903`)

- Datetime tz-aware

  Previous behaviour:

  .. code-block:: ipython

     # Series
     In [5]: pd.Series([pd.Timestamp('20160101', tz='US/Eastern'),
        ...:            pd.Timestamp('20160101', tz='US/Eastern')]).unique()
     Out[5]: array([Timestamp('2016-01-01 00:00:00-0500', tz='US/Eastern')], dtype=object)

     In [6]: pd.unique(pd.Series([pd.Timestamp('20160101', tz='US/Eastern'),
        ...:                      pd.Timestamp('20160101', tz='US/Eastern')]))
     Out[6]: array(['2016-01-01T05:00:00.000000000'], dtype='datetime64[ns]')

     # Index
     In [7]: pd.Index([pd.Timestamp('20160101', tz='US/Eastern'),
        ...:           pd.Timestamp('20160101', tz='US/Eastern')]).unique()
     Out[7]: DatetimeIndex(['2016-01-01 00:00:00-05:00'], dtype='datetime64[ns, US/Eastern]', freq=None)

     In [8]: pd.unique([pd.Timestamp('20160101', tz='US/Eastern'),
        ...:            pd.Timestamp('20160101', tz='US/Eastern')])
     Out[8]: array(['2016-01-01T05:00:00.000000000'], dtype='datetime64[ns]')

  New behavior:

  .. ipython:: python

     # Series, returns an array of Timestamp tz-aware
     pd.Series([pd.Timestamp(r'20160101', tz=r'US/Eastern'),
                pd.Timestamp(r'20160101', tz=r'US/Eastern')]).unique()
     pd.unique(pd.Series([pd.Timestamp('20160101', tz='US/Eastern'),
               pd.Timestamp('20160101', tz='US/Eastern')]))

     # Index, returns a DatetimeIndex
     pd.Index([pd.Timestamp('20160101', tz='US/Eastern'),
               pd.Timestamp('20160101', tz='US/Eastern')]).unique()
     pd.unique(pd.Index([pd.Timestamp('20160101', tz='US/Eastern'),
                         pd.Timestamp('20160101', tz='US/Eastern')]))

- Categoricals

  Previous behaviour:

  .. code-block:: ipython

     In [1]: pd.Series(list('baabc'), dtype='category').unique()
     Out[1]:
     [b, a, c]
     Categories (3, object): [b, a, c]

     In [2]: pd.unique(pd.Series(list('baabc'), dtype='category'))
     Out[2]: array(['b', 'a', 'c'], dtype=object)

  New behavior:

  .. ipython:: python

     # returns a Categorical
     pd.Series(list('baabc'), dtype='category').unique()
     pd.unique(pd.Series(list('baabc'), dtype='category'))

.. _whatsnew_0200.api_breaking.s3:

S3 file handling
^^^^^^^^^^^^^^^^

pandas now uses `s3fs <http://s3fs.readthedocs.io/>`_ for handling S3 connections. This shouldn't break
any code. However, since ``s3fs`` is not a required dependency, you will need to install it separately, like ``boto``
in prior versions of pandas. (:issue:`11915`).

.. _whatsnew_0200.api_breaking.partial_string_indexing:

Partial string indexing changes
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

:ref:`DatetimeIndex Partial String Indexing <timeseries.partialindexing>` now works as an exact match, provided that string resolution coincides with index resolution, including a case when both are seconds (:issue:`14826`). See :ref:`Slice vs. Exact Match <timeseries.slice_vs_exact_match>` for details.

.. ipython:: python

   df = pd.DataFrame({'a': [1, 2, 3]}, pd.DatetimeIndex(['2011-12-31 23:59:59',
                                                         '2012-01-01 00:00:00',
                                                         '2012-01-01 00:00:01']))
Previous behavior:

.. code-block:: ipython

   In [4]: df['2011-12-31 23:59:59']
   Out[4]:
                          a
   2011-12-31 23:59:59  1

   In [5]: df['a']['2011-12-31 23:59:59']
   Out[5]:
   2011-12-31 23:59:59    1
   Name: a, dtype: int64


New behavior:

.. code-block:: ipython

   In [4]: df['2011-12-31 23:59:59']
   KeyError: '2011-12-31 23:59:59'

   In [5]: df['a']['2011-12-31 23:59:59']
   Out[5]: 1

.. _whatsnew_0200.api_breaking.concat_dtypes:

Concat of different float dtypes will not automatically upcast
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Previously, ``concat`` of multiple objects with different ``float`` dtypes would automatically upcast results to a dtype of ``float64``.
Now the smallest acceptable dtype will be used (:issue:`13247`)

.. ipython:: python

   df1 = pd.DataFrame(np.array([1.0], dtype=np.float32, ndmin=2))
   df1.dtypes

   df2 = pd.DataFrame(np.array([np.nan], dtype=np.float32, ndmin=2))
   df2.dtypes

Previous behavior:

.. code-block:: ipython

   In [7]: pd.concat([df1, df2]).dtypes
   Out[7]:
   0    float64
   dtype: object

New behavior:

.. ipython:: python

   pd.concat([df1, df2]).dtypes

.. _whatsnew_0200.api_breaking.gbq:

pandas Google BigQuery support has moved
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

pandas has split off Google BigQuery support into a separate package ``pandas-gbq``. You can ``conda install pandas-gbq -c conda-forge`` or
``pip install pandas-gbq`` to get it. The functionality of :func:`read_gbq` and :meth:`DataFrame.to_gbq` remain the same with the
currently released version of ``pandas-gbq=0.1.4``. Documentation is now hosted `here <https://pandas-gbq.readthedocs.io/>`__  (:issue:`15347`)

.. _whatsnew_0200.api_breaking.memory_usage:

Memory usage for Index is more accurate
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

In previous versions, showing ``.memory_usage()`` on a pandas structure that has an index, would only include actual index values and not include structures that facilitated fast indexing. This will generally be different for ``Index`` and ``MultiIndex`` and less-so for other index types. (:issue:`15237`)

Previous behavior:

.. code-block:: ipython

   In [8]: index = pd.Index(['foo', 'bar', 'baz'])

   In [9]: index.memory_usage(deep=True)
   Out[9]: 180

   In [10]: index.get_loc('foo')
   Out[10]: 0

   In [11]: index.memory_usage(deep=True)
   Out[11]: 180

New behavior:

.. code-block:: ipython

   In [8]: index = pd.Index(['foo', 'bar', 'baz'])

   In [9]: index.memory_usage(deep=True)
   Out[9]: 180

   In [10]: index.get_loc('foo')
   Out[10]: 0

   In [11]: index.memory_usage(deep=True)
   Out[11]: 260

.. _whatsnew_0200.api_breaking.sort_index:

DataFrame.sort_index changes
^^^^^^^^^^^^^^^^^^^^^^^^^^^^

In certain cases, calling ``.sort_index()`` on a MultiIndexed DataFrame would return the *same* DataFrame without seeming to sort.
This would happen with a ``lexsorted``, but non-monotonic levels. (:issue:`15622`, :issue:`15687`, :issue:`14015`, :issue:`13431`, :issue:`15797`)

This is *unchanged* from prior versions, but shown for illustration purposes:

.. code-block:: python

   In [81]: df = pd.DataFrame(np.arange(6), columns=['value'],
      ....:                   index=pd.MultiIndex.from_product([list('BA'), range(3)]))
      ....:
   In [82]: df

   Out[82]:
        value
   B 0      0
     1      1
     2      2
   A 0      3
     1      4
     2      5

   [6 rows x 1 columns]

.. code-block:: python

   In [87]: df.index.is_lexsorted()
   Out[87]: False

   In [88]: df.index.is_monotonic
   Out[88]: False

Sorting works as expected

.. ipython:: python

   df.sort_index()

.. code-block:: python

   In [90]: df.sort_index().index.is_lexsorted()
   Out[90]: True

   In [91]: df.sort_index().index.is_monotonic
   Out[91]: True

However, this example, which has a non-monotonic 2nd level,
doesn't behave as desired.

.. ipython:: python

   df = pd.DataFrame({'value': [1, 2, 3, 4]},
                     index=pd.MultiIndex([['a', 'b'], ['bb', 'aa']],
                                         [[0, 0, 1, 1], [0, 1, 0, 1]]))
   df

Previous behavior:

.. code-block:: python

   In [11]: df.sort_index()
   Out[11]:
         value
   a bb      1
     aa      2
   b bb      3
     aa      4

   In [14]: df.sort_index().index.is_lexsorted()
   Out[14]: True

   In [15]: df.sort_index().index.is_monotonic
   Out[15]: False

New behavior:

.. code-block:: python

   In [94]: df.sort_index()
   Out[94]:
         value
   a aa      2
     bb      1
   b aa      4
     bb      3

   [4 rows x 1 columns]

   In [95]: df.sort_index().index.is_lexsorted()
   Out[95]: True

   In [96]: df.sort_index().index.is_monotonic
   Out[96]: True


.. _whatsnew_0200.api_breaking.groupby_describe:

GroupBy describe formatting
^^^^^^^^^^^^^^^^^^^^^^^^^^^

The output formatting of ``groupby.describe()`` now labels the ``describe()`` metrics in the columns instead of the index.
This format is consistent with ``groupby.agg()`` when applying multiple functions at once. (:issue:`4792`)

Previous behavior:

.. code-block:: ipython

   In [1]: df = pd.DataFrame({'A': [1, 1, 2, 2], 'B': [1, 2, 3, 4]})

   In [2]: df.groupby('A').describe()
   Out[2]:
                   B
   A
   1 count  2.000000
     mean   1.500000
     std    0.707107
     min    1.000000
     25%    1.250000
     50%    1.500000
     75%    1.750000
     max    2.000000
   2 count  2.000000
     mean   3.500000
     std    0.707107
     min    3.000000
     25%    3.250000
     50%    3.500000
     75%    3.750000
     max    4.000000

   In [3]: df.groupby('A').agg(["mean", "std", "min", "max"])
   Out[3]:
        B
     mean       std amin amax
   A
   1  1.5  0.707107    1    2
   2  3.5  0.707107    3    4

New behavior:

.. ipython:: python

   df = pd.DataFrame({'A': [1, 1, 2, 2], 'B': [1, 2, 3, 4]})

   df.groupby('A').describe()

   df.groupby('A').agg(["mean", "std", "min", "max"])

.. _whatsnew_0200.api_breaking.rolling_pairwise:

Window binary corr/cov operations return a MultiIndex DataFrame
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

A binary window operation, like ``.corr()`` or ``.cov()``, when operating on a ``.rolling(..)``, ``.expanding(..)``, or ``.ewm(..)`` object,
will now return a 2-level ``MultiIndexed DataFrame`` rather than a ``Panel``, as ``Panel`` is now deprecated,
see :ref:`here <whatsnew_0200.api_breaking.deprecate_panel>`. These are equivalent in function,
but a MultiIndexed ``DataFrame`` enjoys more support in pandas.
See the section on :ref:`Windowed Binary Operations <window.cov_corr>` for more information. (:issue:`15677`)

.. ipython:: python

   np.random.seed(1234)
   df = pd.DataFrame(np.random.rand(100, 2),
                     columns=pd.Index(['A', 'B'], name='bar'),
                     index=pd.date_range('20160101',
                                         periods=100, freq='D', name='foo'))
   df.tail()

Previous behavior:

.. code-block:: ipython

   In [2]: df.rolling(12).corr()
   Out[2]:
   <class 'pandas.core.panel.Panel'>
   Dimensions: 100 (items) x 2 (major_axis) x 2 (minor_axis)
   Items axis: 2016-01-01 00:00:00 to 2016-04-09 00:00:00
   Major_axis axis: A to B
   Minor_axis axis: A to B

New behavior:

.. ipython:: python

   res = df.rolling(12).corr()
   res.tail()

Retrieving a correlation matrix for a cross-section

.. ipython:: python

   df.rolling(12).corr().loc['2016-04-07']

.. _whatsnew_0200.api_breaking.hdfstore_where:

HDFStore where string comparison
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

In previous versions most types could be compared to string column in a ``HDFStore``
usually resulting in an invalid comparison, returning an empty result frame. These comparisons will now raise a
``TypeError`` (:issue:`15492`)

.. ipython:: python

   df = pd.DataFrame({'unparsed_date': ['2014-01-01', '2014-01-01']})
   df.to_hdf('store.h5', key='key', format='table', data_columns=True)
   df.dtypes

Previous behavior:

.. code-block:: ipython

   In [4]: pd.read_hdf('store.h5', 'key', where='unparsed_date > ts')
   File "<string>", line 1
     (unparsed_date > 1970-01-01 00:00:01.388552400)
                           ^
   SyntaxError: invalid token

New behavior:

.. code-block:: ipython

   In [18]: ts = pd.Timestamp('2014-01-01')

   In [19]: pd.read_hdf('store.h5', 'key', where='unparsed_date > ts')
   TypeError: Cannot compare 2014-01-01 00:00:00 of
   type <class 'pandas.tslib.Timestamp'> to string column

.. ipython:: python
   :suppress:

   import os
   os.remove('store.h5')

.. _whatsnew_0200.api_breaking.index_order:

Index.intersection and inner join now preserve the order of the left Index
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

:meth:`Index.intersection` now preserves the order of the calling ``Index`` (left)
instead of the other ``Index`` (right) (:issue:`15582`). This affects inner
joins, :meth:`DataFrame.join` and :func:`merge`, and the ``.align`` method.

- ``Index.intersection``

  .. ipython:: python

     left = pd.Index([2, 1, 0])
     left
     right = pd.Index([1, 2, 3])
     right

  Previous behavior:

  .. code-block:: ipython

     In [4]: left.intersection(right)
     Out[4]: Int64Index([1, 2], dtype='int64')

  New behavior:

  .. ipython:: python

     left.intersection(right)

- ``DataFrame.join`` and ``pd.merge``

  .. ipython:: python

     left = pd.DataFrame({'a': [20, 10, 0]}, index=[2, 1, 0])
     left
     right = pd.DataFrame({'b': [100, 200, 300]}, index=[1, 2, 3])
     right

  Previous behavior:

  .. code-block:: ipython

     In [4]: left.join(right, how='inner')
     Out[4]:
        a    b
     1  10  100
     2  20  200

  New behavior:

  .. ipython:: python

     left.join(right, how='inner')

.. _whatsnew_0200.api_breaking.pivot_table:

Pivot table always returns a DataFrame
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

The documentation for :meth:`pivot_table` states that a ``DataFrame`` is *always* returned. Here a bug
is fixed that allowed this to return a ``Series`` under certain circumstance. (:issue:`4386`)

.. ipython:: python

   df = pd.DataFrame({'col1': [3, 4, 5],
                      'col2': ['C', 'D', 'E'],
                      'col3': [1, 3, 9]})
   df

Previous behavior:

.. code-block:: ipython

   In [2]: df.pivot_table('col1', index=['col3', 'col2'], aggfunc="sum")
   Out[2]:
   col3  col2
   1     C       3
   3     D       4
   9     E       5
   Name: col1, dtype: int64

New behavior:

.. ipython:: python

   df.pivot_table('col1', index=['col3', 'col2'], aggfunc="sum")

.. _whatsnew_0200.api:

Other API changes
^^^^^^^^^^^^^^^^^

- ``numexpr`` version is now required to be >= 2.4.6 and it will not be used at all if this requisite is not fulfilled (:issue:`15213`).
- ``CParserError`` has been renamed to ``ParserError`` in ``pd.read_csv()`` and will be removed in the future (:issue:`12665`)
- ``SparseArray.cumsum()`` and ``SparseSeries.cumsum()`` will now always return ``SparseArray`` and ``SparseSeries`` respectively (:issue:`12855`)
- ``DataFrame.applymap()`` with an empty ``DataFrame`` will return a copy of the empty ``DataFrame`` instead of a ``Series`` (:issue:`8222`)
- ``Series.map()`` now respects default values of dictionary subclasses with a ``__missing__`` method, such as ``collections.Counter`` (:issue:`15999`)
- ``.loc`` has compat with ``.ix`` for accepting iterators, and NamedTuples (:issue:`15120`)
- ``interpolate()`` and ``fillna()`` will raise a ``ValueError`` if the ``limit`` keyword argument is not greater than 0. (:issue:`9217`)
- ``pd.read_csv()`` will now issue a ``ParserWarning`` whenever there are conflicting values provided by the ``dialect`` parameter and the user (:issue:`14898`)
- ``pd.read_csv()`` will now raise a ``ValueError`` for the C engine if the quote character is larger than one byte (:issue:`11592`)
- ``inplace`` arguments now require a boolean value, else a ``ValueError`` is thrown (:issue:`14189`)
- ``pandas.api.types.is_datetime64_ns_dtype`` will now report ``True`` on a tz-aware dtype, similar to ``pandas.api.types.is_datetime64_any_dtype``
- ``DataFrame.asof()`` will return a null filled ``Series`` instead the scalar ``NaN`` if a match is not found (:issue:`15118`)
- Specific support for ``copy.copy()`` and ``copy.deepcopy()`` functions on NDFrame objects (:issue:`15444`)
- ``Series.sort_values()`` accepts a one element list of bool for consistency with the behavior of ``DataFrame.sort_values()`` (:issue:`15604`)
- ``.merge()`` and ``.join()`` on ``category`` dtype columns will now preserve the category dtype when possible (:issue:`10409`)
- ``SparseDataFrame.default_fill_value`` will be 0, previously was ``nan`` in the return from ``pd.get_dummies(..., sparse=True)`` (:issue:`15594`)
- The default behaviour of ``Series.str.match`` has changed from extracting
  groups to matching the pattern. The extracting behaviour was deprecated
  since pandas version 0.13.0 and can be done with the ``Series.str.extract``
  method (:issue:`5224`). As a consequence, the ``as_indexer`` keyword is
  ignored (no longer needed to specify the new behaviour) and is deprecated.
- ``NaT`` will now correctly report ``False`` for datetimelike boolean operations such as ``is_month_start`` (:issue:`15781`)
- ``NaT`` will now correctly return ``np.nan`` for ``Timedelta`` and ``Period`` accessors such as ``days`` and ``quarter`` (:issue:`15782`)
- ``NaT`` will now returns ``NaT`` for ``tz_localize`` and ``tz_convert``
  methods (:issue:`15830`)
- ``DataFrame`` and ``Panel`` constructors with invalid input will now raise ``ValueError`` rather than ``PandasError``, if called with scalar inputs and not axes (:issue:`15541`)
- ``DataFrame`` and ``Panel`` constructors with invalid input will now raise ``ValueError`` rather than ``pandas.core.common.PandasError``, if called with scalar inputs and not axes; The exception ``PandasError`` is removed as well. (:issue:`15541`)
- The exception ``pandas.core.common.AmbiguousIndexError`` is removed as it is not referenced (:issue:`15541`)


.. _whatsnew_0200.privacy:

Reorganization of the library: privacy changes
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

.. _whatsnew_0200.privacy.extensions:

Modules privacy has changed
^^^^^^^^^^^^^^^^^^^^^^^^^^^

Some formerly public python/c/c++/cython extension modules have been moved and/or renamed. These are all removed from the public API.
Furthermore, the ``pandas.core``, ``pandas.compat``, and ``pandas.util`` top-level modules are now considered to be PRIVATE.
If indicated, a deprecation warning will be issued if you reference these modules. (:issue:`12588`)

.. csv-table::
    :header: "Previous Location", "New Location", "Deprecated"
    :widths: 30, 30, 4

    "pandas.lib", "pandas._libs.lib", "X"
    "pandas.tslib", "pandas._libs.tslib", "X"
    "pandas.computation", "pandas.core.computation", "X"
    "pandas.msgpack", "pandas.io.msgpack", ""
    "pandas.index", "pandas._libs.index", ""
    "pandas.algos", "pandas._libs.algos", ""
    "pandas.hashtable", "pandas._libs.hashtable", ""
    "pandas.indexes", "pandas.core.indexes", ""
    "pandas.json", "pandas._libs.json / pandas.io.json", "X"
    "pandas.parser", "pandas._libs.parsers", "X"
    "pandas.formats", "pandas.io.formats", ""
    "pandas.sparse", "pandas.core.sparse", ""
    "pandas.tools", "pandas.core.reshape", "X"
    "pandas.types", "pandas.core.dtypes", "X"
    "pandas.io.sas.saslib", "pandas.io.sas._sas", ""
    "pandas._join", "pandas._libs.join", ""
    "pandas._hash", "pandas._libs.hashing", ""
    "pandas._period", "pandas._libs.period", ""
    "pandas._sparse", "pandas._libs.sparse", ""
    "pandas._testing", "pandas._libs.testing", ""
    "pandas._window", "pandas._libs.window", ""


Some new subpackages are created with public functionality that is not directly
exposed in the top-level namespace: ``pandas.errors``, ``pandas.plotting`` and
``pandas.testing`` (more details below). Together with ``pandas.api.types`` and
certain functions in the ``pandas.io`` and ``pandas.tseries`` submodules,
these are now the public subpackages.

Further changes:

- The function :func:`~pandas.api.types.union_categoricals` is now importable from ``pandas.api.types``, formerly from ``pandas.types.concat`` (:issue:`15998`)
- The type import ``pandas.tslib.NaTType`` is deprecated and can be replaced by using ``type(pandas.NaT)`` (:issue:`16146`)
- The public functions in ``pandas.tools.hashing`` deprecated from that locations, but are now importable from ``pandas.util`` (:issue:`16223`)
- The modules in ``pandas.util``: ``decorators``, ``print_versions``, ``doctools``, ``validators``, ``depr_module`` are now private. Only the functions exposed in ``pandas.util`` itself are public (:issue:`16223`)

.. _whatsnew_0200.privacy.errors:

``pandas.errors``
^^^^^^^^^^^^^^^^^

We are adding a standard public module for all pandas exceptions & warnings ``pandas.errors``. (:issue:`14800`). Previously
these exceptions & warnings could be imported from ``pandas.core.common`` or ``pandas.io.common``. These exceptions and warnings
will be removed from the ``*.common`` locations in a future release. (:issue:`15541`)

The following are now part of this API:

.. code-block:: python

   ['DtypeWarning',
    'EmptyDataError',
    'OutOfBoundsDatetime',
    'ParserError',
    'ParserWarning',
    'PerformanceWarning',
    'UnsortedIndexError',
    'UnsupportedFunctionCall']


.. _whatsnew_0200.privacy.testing:

``pandas.testing``
^^^^^^^^^^^^^^^^^^

We are adding a standard module that exposes the public testing functions in ``pandas.testing`` (:issue:`9895`). Those functions can be used when writing tests for functionality using pandas objects.

The following testing functions are now part of this API:

- :func:`testing.assert_frame_equal`
- :func:`testing.assert_series_equal`
- :func:`testing.assert_index_equal`


.. _whatsnew_0200.privacy.plotting:

``pandas.plotting``
^^^^^^^^^^^^^^^^^^^

A new public ``pandas.plotting`` module has been added that holds plotting functionality that was previously in either ``pandas.tools.plotting`` or in the top-level namespace. See the :ref:`deprecations sections <whatsnew_0200.privacy.deprecate_plotting>` for more details.

.. _whatsnew_0200.privacy.development:

Other development changes
^^^^^^^^^^^^^^^^^^^^^^^^^

- Building pandas for development now requires ``cython >= 0.23`` (:issue:`14831`)
- Require at least 0.23 version of cython to avoid problems with character encodings (:issue:`14699`)
- Switched the test framework to use `pytest <http://doc.pytest.org/en/latest>`__ (:issue:`13097`)
- Reorganization of tests directory layout (:issue:`14854`, :issue:`15707`).


.. _whatsnew_0200.deprecations:

Deprecations
~~~~~~~~~~~~

.. _whatsnew_0200.api_breaking.deprecate_ix:

Deprecate ``.ix``
^^^^^^^^^^^^^^^^^

The ``.ix`` indexer is deprecated, in favor of the more strict ``.iloc`` and ``.loc`` indexers. ``.ix`` offers a lot of magic on the inference of what the user wants to do. More specifically, ``.ix`` can decide to index *positionally* OR via *labels*, depending on the data type of the index. This has caused quite a bit of user confusion over the years. The full indexing documentation is :ref:`here <indexing>`. (:issue:`14218`)

The recommended methods of indexing are:

- ``.loc`` if you want to *label* index
- ``.iloc`` if you want to *positionally* index.

Using ``.ix`` will now show a ``DeprecationWarning`` with a link to some examples of how to convert code `here <https://pandas.pydata.org/pandas-docs/version/1.0/user_guide/indexing.html#ix-indexer-is-deprecated>`__.


.. ipython:: python

   df = pd.DataFrame({'A': [1, 2, 3],
                      'B': [4, 5, 6]},
                     index=list('abc'))

   df

Previous behavior, where you wish to get the 0th and the 2nd elements from the index in the 'A' column.

.. code-block:: ipython

   In [3]: df.ix[[0, 2], 'A']
   Out[3]:
   a    1
   c    3
   Name: A, dtype: int64

Using ``.loc``. Here we will select the appropriate indexes from the index, then use *label* indexing.

.. ipython:: python

   df.loc[df.index[[0, 2]], 'A']

Using ``.iloc``. Here we will get the location of the 'A' column, then use *positional* indexing to select things.

.. ipython:: python

   df.iloc[[0, 2], df.columns.get_loc('A')]


.. _whatsnew_0200.api_breaking.deprecate_panel:

Deprecate Panel
^^^^^^^^^^^^^^^

``Panel`` is deprecated and will be removed in a future version. The recommended way to represent 3-D data are
with a ``MultiIndex`` on a ``DataFrame`` via the :meth:`~Panel.to_frame` or with the `xarray package <http://xarray.pydata.org/en/stable/>`__. pandas
provides a :meth:`~Panel.to_xarray` method to automate this conversion (:issue:`13563`).

.. code-block:: ipython

    In [133]: import pandas._testing as tm

    In [134]: p = tm.makePanel()

    In [135]: p
    Out[135]:
    <class 'pandas.core.panel.Panel'>
    Dimensions: 3 (items) x 3 (major_axis) x 4 (minor_axis)
    Items axis: ItemA to ItemC
    Major_axis axis: 2000-01-03 00:00:00 to 2000-01-05 00:00:00
    Minor_axis axis: A to D

Convert to a MultiIndex DataFrame

.. code-block:: ipython

    In [136]: p.to_frame()
    Out[136]:
                         ItemA     ItemB     ItemC
    major      minor
    2000-01-03 A      0.628776 -1.409432  0.209395
               B      0.988138 -1.347533 -0.896581
               C     -0.938153  1.272395 -0.161137
               D     -0.223019 -0.591863 -1.051539
    2000-01-04 A      0.186494  1.422986 -0.592886
               B     -0.072608  0.363565  1.104352
               C     -1.239072 -1.449567  0.889157
               D      2.123692 -0.414505 -0.319561
    2000-01-05 A      0.952478 -2.147855 -1.473116
               B     -0.550603 -0.014752 -0.431550
               C      0.139683 -1.195524  0.288377
               D      0.122273 -1.425795 -0.619993

    [12 rows x 3 columns]

Convert to an xarray DataArray

.. code-block:: ipython

    In [137]: p.to_xarray()
    Out[137]:
    <xarray.DataArray (items: 3, major_axis: 3, minor_axis: 4)>
    array([[[ 0.628776,  0.988138, -0.938153, -0.223019],
            [ 0.186494, -0.072608, -1.239072,  2.123692],
            [ 0.952478, -0.550603,  0.139683,  0.122273]],

           [[-1.409432, -1.347533,  1.272395, -0.591863],
            [ 1.422986,  0.363565, -1.449567, -0.414505],
            [-2.147855, -0.014752, -1.195524, -1.425795]],

           [[ 0.209395, -0.896581, -0.161137, -1.051539],
            [-0.592886,  1.104352,  0.889157, -0.319561],
            [-1.473116, -0.43155 ,  0.288377, -0.619993]]])
    Coordinates:
      * items       (items) object 'ItemA' 'ItemB' 'ItemC'
      * major_axis  (major_axis) datetime64[ns] 2000-01-03 2000-01-04 2000-01-05
      * minor_axis  (minor_axis) object 'A' 'B' 'C' 'D'

.. _whatsnew_0200.api_breaking.deprecate_group_agg_dict:

Deprecate groupby.agg() with a dictionary when renaming
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

The ``.groupby(..).agg(..)``, ``.rolling(..).agg(..)``, and ``.resample(..).agg(..)``  syntax can accept a variable of inputs, including scalars,
list, and a dict of column names to scalars or lists. This provides a useful syntax for constructing multiple
(potentially different) aggregations.

However, ``.agg(..)`` can *also* accept a dict that allows 'renaming' of the result columns. This is a complicated and confusing syntax, as well as not consistent
between ``Series`` and ``DataFrame``. We are deprecating this 'renaming' functionality.

- We are deprecating passing a dict to a grouped/rolled/resampled ``Series``. This allowed
  one to ``rename`` the resulting aggregation, but this had a completely different
  meaning than passing a dictionary to a grouped ``DataFrame``, which accepts column-to-aggregations.
- We are deprecating passing a dict-of-dicts to a grouped/rolled/resampled ``DataFrame`` in a similar manner.

This is an illustrative example:

.. ipython:: python

   df = pd.DataFrame({'A': [1, 1, 1, 2, 2],
                      'B': range(5),
                      'C': range(5)})
   df

Here is a typical useful syntax for computing different aggregations for different columns. This
is a natural, and useful syntax. We aggregate from the dict-to-list by taking the specified
columns and applying the list of functions. This returns a ``MultiIndex`` for the columns (this is *not* deprecated).

.. ipython:: python

   df.groupby('A').agg({'B': 'sum', 'C': 'min'})

Here's an example of the first deprecation, passing a dict to a grouped ``Series``. This
is a combination aggregation & renaming:

.. code-block:: ipython

   In [6]: df.groupby('A').B.agg({'foo': 'count'})
   FutureWarning: using a dict on a Series for aggregation
   is deprecated and will be removed in a future version

   Out[6]:
      foo
   A
   1    3
   2    2

You can accomplish the same operation, more idiomatically by:

.. ipython:: python

   df.groupby('A').B.agg(['count']).rename(columns={'count': 'foo'})


Here's an example of the second deprecation, passing a dict-of-dict to a grouped ``DataFrame``:

.. code-block:: python

   In [23]: (df.groupby('A')
       ...:    .agg({'B': {'foo': 'sum'}, 'C': {'bar': 'min'}})
       ...:  )
   FutureWarning: using a dict with renaming is deprecated and
   will be removed in a future version

   Out[23]:
        B   C
      foo bar
   A
   1   3   0
   2   7   3


You can accomplish nearly the same by:

.. ipython:: python

   (df.groupby('A')
      .agg({'B': 'sum', 'C': 'min'})
      .rename(columns={'B': 'foo', 'C': 'bar'})
    )



.. _whatsnew_0200.privacy.deprecate_plotting:

Deprecate .plotting
^^^^^^^^^^^^^^^^^^^

The ``pandas.tools.plotting`` module has been deprecated,  in favor of the top level ``pandas.plotting`` module. All the public plotting functions are now available
from ``pandas.plotting`` (:issue:`12548`).

Furthermore, the top-level ``pandas.scatter_matrix`` and ``pandas.plot_params`` are deprecated.
Users can import these from ``pandas.plotting`` as well.

Previous script:

.. code-block:: python

   pd.tools.plotting.scatter_matrix(df)
   pd.scatter_matrix(df)

Should be changed to:

.. code-block:: python

   pd.plotting.scatter_matrix(df)



.. _whatsnew_0200.deprecations.other:

Other deprecations
^^^^^^^^^^^^^^^^^^

- ``SparseArray.to_dense()`` has deprecated the ``fill`` parameter, as that parameter was not being respected (:issue:`14647`)
- ``SparseSeries.to_dense()`` has deprecated the ``sparse_only`` parameter (:issue:`14647`)
- ``Series.repeat()`` has deprecated the ``reps`` parameter in favor of ``repeats`` (:issue:`12662`)
- The ``Series`` constructor and ``.astype`` method have deprecated accepting timestamp dtypes without a frequency (e.g. ``np.datetime64``) for the ``dtype`` parameter (:issue:`15524`)
- ``Index.repeat()`` and ``MultiIndex.repeat()`` have deprecated the ``n`` parameter in favor of ``repeats`` (:issue:`12662`)
- ``Categorical.searchsorted()`` and ``Series.searchsorted()`` have deprecated the ``v`` parameter in favor of ``value`` (:issue:`12662`)
- ``TimedeltaIndex.searchsorted()``, ``DatetimeIndex.searchsorted()``, and ``PeriodIndex.searchsorted()`` have deprecated the ``key`` parameter in favor of ``value`` (:issue:`12662`)
- ``DataFrame.astype()`` has deprecated the ``raise_on_error`` parameter in favor of ``errors`` (:issue:`14878`)
- ``Series.sortlevel`` and ``DataFrame.sortlevel`` have been deprecated in favor of ``Series.sort_index`` and ``DataFrame.sort_index`` (:issue:`15099`)
- importing ``concat`` from ``pandas.tools.merge`` has been deprecated in favor of imports from the ``pandas`` namespace. This should only affect explicit imports (:issue:`15358`)
- ``Series/DataFrame/Panel.consolidate()`` been deprecated as a public method. (:issue:`15483`)
- The ``as_indexer`` keyword of ``Series.str.match()`` has been deprecated (ignored keyword) (:issue:`15257`).
- The following top-level pandas functions have been deprecated and will be removed in a future version (:issue:`13790`, :issue:`15940`)

  * ``pd.pnow()``, replaced by ``Period.now()``
  * ``pd.Term``, is removed, as it is not applicable to user code. Instead use in-line string expressions in the where clause when searching in HDFStore
  * ``pd.Expr``, is removed, as it is not applicable to user code.
  * ``pd.match()``, is removed.
  * ``pd.groupby()``, replaced by using the ``.groupby()`` method directly on a ``Series/DataFrame``
  * ``pd.get_store()``, replaced by a direct call to ``pd.HDFStore(...)``
- ``is_any_int_dtype``, ``is_floating_dtype``, and ``is_sequence`` are deprecated from ``pandas.api.types`` (:issue:`16042`)

.. _whatsnew_0200.prior_deprecations:

Removal of prior version deprecations/changes
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

- The ``pandas.rpy`` module is removed. Similar functionality can be accessed
  through the `rpy2 <https://rpy2.readthedocs.io/>`__ project.
  See the `R interfacing docs <https://pandas.pydata.org/pandas-docs/version/0.20/r_interface.html>`__ for more details.
- The ``pandas.io.ga`` module with a ``google-analytics`` interface is removed (:issue:`11308`).
  Similar functionality can be found in the `Google2Pandas <https://github.com/panalysis/Google2Pandas>`__ package.
- ``pd.to_datetime`` and ``pd.to_timedelta`` have dropped the ``coerce`` parameter in favor of ``errors`` (:issue:`13602`)
- ``pandas.stats.fama_macbeth``, ``pandas.stats.ols``, ``pandas.stats.plm`` and ``pandas.stats.var``, as well as the top-level ``pandas.fama_macbeth`` and ``pandas.ols`` routines are removed. Similar functionality can be found in the `statsmodels <https://www.statsmodels.org/dev/>`__ package. (:issue:`11898`)
- The ``TimeSeries`` and ``SparseTimeSeries`` classes, aliases of ``Series``
  and ``SparseSeries``, are removed (:issue:`10890`, :issue:`15098`).
- ``Series.is_time_series`` is dropped in favor of ``Series.index.is_all_dates`` (:issue:`15098`)
- The deprecated ``irow``, ``icol``, ``iget`` and ``iget_value`` methods are removed
  in favor of ``iloc`` and ``iat`` as explained :ref:`here <whatsnew_0170.deprecations>` (:issue:`10711`).
- The deprecated ``DataFrame.iterkv()`` has been removed in favor of ``DataFrame.iteritems()`` (:issue:`10711`)
- The ``Categorical`` constructor has dropped the ``name`` parameter (:issue:`10632`)
- ``Categorical`` has dropped support for ``NaN`` categories (:issue:`10748`)
- The ``take_last`` parameter has been dropped from ``duplicated()``, ``drop_duplicates()``, ``nlargest()``, and ``nsmallest()`` methods (:issue:`10236`, :issue:`10792`, :issue:`10920`)
- ``Series``, ``Index``, and ``DataFrame`` have dropped the ``sort`` and ``order`` methods (:issue:`10726`)
- Where clauses in ``pytables`` are only accepted as strings and expressions types and not other data-types (:issue:`12027`)
- ``DataFrame`` has dropped the ``combineAdd`` and ``combineMult`` methods in favor of ``add`` and ``mul`` respectively (:issue:`10735`)

.. _whatsnew_0200.performance:

Performance improvements
~~~~~~~~~~~~~~~~~~~~~~~~

- Improved performance of ``pd.wide_to_long()`` (:issue:`14779`)
- Improved performance of ``pd.factorize()`` by releasing the GIL with ``object`` dtype when inferred as strings (:issue:`14859`, :issue:`16057`)
- Improved performance of timeseries plotting with an irregular DatetimeIndex
  (or with ``compat_x=True``) (:issue:`15073`).
- Improved performance of ``groupby().cummin()`` and ``groupby().cummax()`` (:issue:`15048`, :issue:`15109`, :issue:`15561`, :issue:`15635`)
- Improved performance and reduced memory when indexing with a ``MultiIndex`` (:issue:`15245`)
- When reading buffer object in ``read_sas()`` method without specified format, filepath string is inferred rather than buffer object. (:issue:`14947`)
- Improved performance of ``.rank()`` for categorical data (:issue:`15498`)
- Improved performance when using ``.unstack()`` (:issue:`15503`)
- Improved performance of merge/join on ``category`` columns (:issue:`10409`)
- Improved performance of ``drop_duplicates()`` on ``bool`` columns (:issue:`12963`)
- Improve performance of ``pd.core.groupby.GroupBy.apply`` when the applied
  function used the ``.name`` attribute of the group DataFrame (:issue:`15062`).
- Improved performance of ``iloc`` indexing with a list or array (:issue:`15504`).
- Improved performance of ``Series.sort_index()`` with a monotonic index (:issue:`15694`)
- Improved performance in ``pd.read_csv()`` on some platforms with buffered reads (:issue:`16039`)

.. _whatsnew_0200.bug_fixes:

Bug fixes
~~~~~~~~~

Conversion
^^^^^^^^^^

- Bug in ``Timestamp.replace`` now raises ``TypeError`` when incorrect argument names are given; previously this raised ``ValueError`` (:issue:`15240`)
- Bug in ``Timestamp.replace`` with compat for passing long integers (:issue:`15030`)
- Bug in ``Timestamp`` returning UTC based time/date attributes when a timezone was provided (:issue:`13303`, :issue:`6538`)
- Bug in ``Timestamp`` incorrectly localizing timezones during construction (:issue:`11481`, :issue:`15777`)
- Bug in ``TimedeltaIndex`` addition where overflow was being allowed without error (:issue:`14816`)
- Bug in ``TimedeltaIndex`` raising a ``ValueError`` when boolean indexing with ``loc`` (:issue:`14946`)
- Bug in catching an overflow in ``Timestamp`` + ``Timedelta/Offset`` operations (:issue:`15126`)
- Bug in ``DatetimeIndex.round()`` and ``Timestamp.round()`` floating point accuracy when rounding by milliseconds or less (:issue:`14440`, :issue:`15578`)
- Bug in ``astype()`` where ``inf`` values were incorrectly converted to integers. Now raises error now with ``astype()`` for Series and DataFrames (:issue:`14265`)
- Bug in ``DataFrame(..).apply(to_numeric)`` when values are of type decimal.Decimal. (:issue:`14827`)
- Bug in ``describe()`` when passing a numpy array which does not contain the median to the ``percentiles`` keyword argument (:issue:`14908`)
- Cleaned up ``PeriodIndex`` constructor, including raising on floats more consistently (:issue:`13277`)
- Bug in using ``__deepcopy__`` on empty NDFrame objects (:issue:`15370`)
- Bug in ``.replace()`` may result in incorrect dtypes. (:issue:`12747`, :issue:`15765`)
- Bug in ``Series.replace`` and ``DataFrame.replace`` which failed on empty replacement dicts (:issue:`15289`)
- Bug in ``Series.replace`` which replaced a numeric by string (:issue:`15743`)
- Bug in ``Index`` construction with ``NaN`` elements and integer dtype specified (:issue:`15187`)
- Bug in ``Series`` construction with a datetimetz (:issue:`14928`)
- Bug in ``Series.dt.round()`` inconsistent behaviour on ``NaT`` 's with different arguments (:issue:`14940`)
- Bug in ``Series`` constructor when both ``copy=True`` and ``dtype`` arguments are provided (:issue:`15125`)
- Incorrect dtyped ``Series`` was returned by comparison methods (e.g., ``lt``, ``gt``, ...) against a constant for an empty ``DataFrame`` (:issue:`15077`)
- Bug in ``Series.ffill()`` with mixed dtypes containing tz-aware datetimes. (:issue:`14956`)
- Bug in ``DataFrame.fillna()`` where the argument ``downcast`` was ignored when fillna value was of type ``dict`` (:issue:`15277`)
- Bug in ``.asfreq()``, where frequency was not set for empty ``Series`` (:issue:`14320`)
- Bug in ``DataFrame`` construction with nulls and datetimes in a list-like (:issue:`15869`)
- Bug in ``DataFrame.fillna()`` with tz-aware datetimes (:issue:`15855`)
- Bug in ``is_string_dtype``, ``is_timedelta64_ns_dtype``, and ``is_string_like_dtype`` in which an error was raised when ``None`` was passed in (:issue:`15941`)
- Bug in the return type of ``pd.unique`` on a ``Categorical``, which was returning an ndarray and not a ``Categorical`` (:issue:`15903`)
- Bug in ``Index.to_series()`` where the index was not copied (and so mutating later would change the original), (:issue:`15949`)
- Bug in indexing with partial string indexing with a len-1 DataFrame (:issue:`16071`)
- Bug in ``Series`` construction where passing invalid dtype didn't raise an error. (:issue:`15520`)

Indexing
^^^^^^^^

- Bug in ``Index`` power operations with reversed operands (:issue:`14973`)
- Bug in ``DataFrame.sort_values()`` when sorting by multiple columns where one column is of type ``int64`` and contains ``NaT`` (:issue:`14922`)
- Bug in ``DataFrame.reindex()`` in which ``method`` was ignored when passing ``columns`` (:issue:`14992`)
- Bug in ``DataFrame.loc`` with indexing a ``MultiIndex`` with a ``Series`` indexer (:issue:`14730`, :issue:`15424`)
- Bug in ``DataFrame.loc`` with indexing a ``MultiIndex`` with a numpy array (:issue:`15434`)
- Bug in ``Series.asof`` which raised if the series contained all ``np.nan`` (:issue:`15713`)
- Bug in ``.at`` when selecting from a tz-aware column (:issue:`15822`)
- Bug in ``Series.where()`` and ``DataFrame.where()`` where array-like conditionals were being rejected (:issue:`15414`)
- Bug in ``Series.where()`` where TZ-aware data was converted to float representation (:issue:`15701`)
- Bug in ``.loc`` that would not return the correct dtype for scalar access for a DataFrame (:issue:`11617`)
- Bug in output formatting of a ``MultiIndex`` when names are integers (:issue:`12223`, :issue:`15262`)
- Bug in ``Categorical.searchsorted()`` where alphabetical instead of the provided categorical order was used (:issue:`14522`)
- Bug in ``Series.iloc`` where a ``Categorical`` object for list-like indexes input was returned, where a ``Series`` was expected. (:issue:`14580`)
- Bug in ``DataFrame.isin`` comparing datetimelike to empty frame (:issue:`15473`)
- Bug in ``.reset_index()`` when an all ``NaN`` level of a ``MultiIndex`` would fail (:issue:`6322`)
- Bug in ``.reset_index()`` when raising error for index name already present in ``MultiIndex`` columns (:issue:`16120`)
- Bug in creating a ``MultiIndex`` with tuples and not passing a list of names; this will now raise ``ValueError`` (:issue:`15110`)
- Bug in the HTML display with a ``MultiIndex`` and truncation (:issue:`14882`)
- Bug in the display of ``.info()`` where a qualifier (+) would always be displayed with a ``MultiIndex`` that contains only non-strings (:issue:`15245`)
- Bug in ``pd.concat()`` where the names of ``MultiIndex`` of resulting ``DataFrame`` are not handled correctly when ``None`` is presented in the names of ``MultiIndex`` of input ``DataFrame`` (:issue:`15787`)
- Bug in ``DataFrame.sort_index()`` and ``Series.sort_index()`` where ``na_position`` doesn't work with a ``MultiIndex`` (:issue:`14784`, :issue:`16604`)
- Bug in ``pd.concat()`` when combining objects with a ``CategoricalIndex`` (:issue:`16111`)
- Bug in indexing with a scalar and a ``CategoricalIndex`` (:issue:`16123`)

IO
^^

- Bug in ``pd.to_numeric()`` in which float and unsigned integer elements were being improperly casted (:issue:`14941`, :issue:`15005`)
- Bug in ``pd.read_fwf()`` where the skiprows parameter was not being respected during column width inference (:issue:`11256`)
- Bug in ``pd.read_csv()`` in which the ``dialect`` parameter was not being verified before processing (:issue:`14898`)
- Bug in ``pd.read_csv()`` in which missing data was being improperly handled with ``usecols`` (:issue:`6710`)
- Bug in ``pd.read_csv()`` in which a file containing a row with many columns followed by rows with fewer columns would cause a crash (:issue:`14125`)
- Bug in ``pd.read_csv()`` for the C engine where ``usecols`` were being indexed incorrectly with ``parse_dates`` (:issue:`14792`)
- Bug in ``pd.read_csv()`` with ``parse_dates`` when multi-line headers are specified (:issue:`15376`)
- Bug in ``pd.read_csv()`` with ``float_precision='round_trip'`` which caused a segfault when a text entry is parsed (:issue:`15140`)
- Bug in ``pd.read_csv()`` when an index was specified and no values were specified as null values (:issue:`15835`)
- Bug in ``pd.read_csv()`` in which certain invalid file objects caused the Python interpreter to crash (:issue:`15337`)
- Bug in ``pd.read_csv()`` in which invalid values for ``nrows`` and ``chunksize`` were allowed (:issue:`15767`)
- Bug in ``pd.read_csv()`` for the Python engine in which unhelpful error messages were being raised when parsing errors occurred (:issue:`15910`)
- Bug in ``pd.read_csv()`` in which the ``skipfooter`` parameter was not being properly validated (:issue:`15925`)
- Bug in ``pd.to_csv()`` in which there was numeric overflow when a timestamp index was being written (:issue:`15982`)
- Bug in ``pd.util.hashing.hash_pandas_object()`` in which hashing of categoricals depended on the ordering of categories, instead of just their values. (:issue:`15143`)
- Bug in ``.to_json()`` where ``lines=True`` and contents (keys or values) contain escaped characters (:issue:`15096`)
- Bug in ``.to_json()`` causing single byte ascii characters to be expanded to four byte unicode (:issue:`15344`)
- Bug in ``.to_json()`` for the C engine where rollover was not correctly handled for case where frac is odd and diff is exactly 0.5 (:issue:`15716`, :issue:`15864`)
- Bug in ``pd.read_json()`` for Python 2 where ``lines=True`` and contents contain non-ascii unicode characters (:issue:`15132`)
- Bug in ``pd.read_msgpack()`` in which ``Series`` categoricals were being improperly processed (:issue:`14901`)
- Bug in ``pd.read_msgpack()`` which did not allow loading of a dataframe with an index of type ``CategoricalIndex`` (:issue:`15487`)
- Bug in ``pd.read_msgpack()`` when deserializing a ``CategoricalIndex`` (:issue:`15487`)
- Bug in ``DataFrame.to_records()`` with converting a ``DatetimeIndex`` with a timezone (:issue:`13937`)
- Bug in ``DataFrame.to_records()`` which failed with unicode characters in column names (:issue:`11879`)
- Bug in ``.to_sql()`` when writing a DataFrame with numeric index names (:issue:`15404`).
- Bug in ``DataFrame.to_html()`` with ``index=False`` and ``max_rows`` raising in ``IndexError`` (:issue:`14998`)
- Bug in ``pd.read_hdf()`` passing a ``Timestamp`` to the ``where`` parameter with a non date column (:issue:`15492`)
- Bug in ``DataFrame.to_stata()`` and ``StataWriter`` which produces incorrectly formatted files to be produced for some locales (:issue:`13856`)
- Bug in ``StataReader`` and ``StataWriter`` which allows invalid encodings (:issue:`15723`)
- Bug in the ``Series`` repr not showing the length when the output was truncated (:issue:`15962`).

Plotting
^^^^^^^^

- Bug in ``DataFrame.hist`` where ``plt.tight_layout`` caused an ``AttributeError``  (use ``matplotlib >= 2.0.1``) (:issue:`9351`)
- Bug in ``DataFrame.boxplot`` where ``fontsize`` was not applied to the tick labels on both axes (:issue:`15108`)
- Bug in the date and time converters pandas registers with matplotlib not handling multiple dimensions (:issue:`16026`)
- Bug in ``pd.scatter_matrix()`` could accept either ``color`` or ``c``, but not both (:issue:`14855`)

GroupBy/resample/rolling
^^^^^^^^^^^^^^^^^^^^^^^^

- Bug in ``.groupby(..).resample()`` when passed the ``on=`` kwarg. (:issue:`15021`)
- Properly set ``__name__`` and ``__qualname__`` for ``Groupby.*`` functions (:issue:`14620`)
- Bug in ``GroupBy.get_group()`` failing with a categorical grouper (:issue:`15155`)
- Bug in ``.groupby(...).rolling(...)`` when ``on`` is specified and using a ``DatetimeIndex`` (:issue:`15130`, :issue:`13966`)
- Bug in groupby operations with ``timedelta64`` when passing ``numeric_only=False`` (:issue:`5724`)
- Bug in ``groupby.apply()`` coercing ``object`` dtypes to numeric types, when not all values were numeric (:issue:`14423`, :issue:`15421`, :issue:`15670`)
- Bug in ``resample``, where a non-string ``loffset`` argument would not be applied when resampling a timeseries (:issue:`13218`)
- Bug in ``DataFrame.groupby().describe()`` when grouping on ``Index`` containing tuples (:issue:`14848`)
- Bug in ``groupby().nunique()`` with a datetimelike-grouper where bins counts were incorrect (:issue:`13453`)
- Bug in ``groupby.transform()`` that would coerce the resultant dtypes back to the original (:issue:`10972`, :issue:`11444`)
- Bug in ``groupby.agg()`` incorrectly localizing timezone on ``datetime`` (:issue:`15426`, :issue:`10668`, :issue:`13046`)
- Bug in ``.rolling/expanding()`` functions where ``count()`` was not counting ``np.Inf``, nor handling ``object`` dtypes (:issue:`12541`)
- Bug in ``.rolling()`` where ``pd.Timedelta`` or ``datetime.timedelta`` was not accepted as a ``window`` argument (:issue:`15440`)
- Bug in ``Rolling.quantile`` function that caused a segmentation fault when called with a quantile value outside of the range [0, 1] (:issue:`15463`)
- Bug in ``DataFrame.resample().median()`` if duplicate column names are present (:issue:`14233`)

Sparse
^^^^^^

- Bug in ``SparseSeries.reindex`` on single level with list of length 1 (:issue:`15447`)
- Bug in repr-formatting a ``SparseDataFrame`` after a value was set on (a copy of) one of its series (:issue:`15488`)
- Bug in ``SparseDataFrame`` construction with lists not coercing to dtype (:issue:`15682`)
- Bug in sparse array indexing in which indices were not being validated (:issue:`15863`)

Reshaping
^^^^^^^^^

- Bug in ``pd.merge_asof()`` where ``left_index`` or ``right_index`` caused a failure when multiple ``by`` was specified (:issue:`15676`)
- Bug in ``pd.merge_asof()`` where ``left_index``/``right_index`` together caused a failure when ``tolerance`` was specified (:issue:`15135`)
- Bug in ``DataFrame.pivot_table()`` where ``dropna=True`` would not drop all-NaN columns when the columns was a ``category`` dtype (:issue:`15193`)
- Bug in ``pd.melt()`` where passing a tuple value for ``value_vars`` caused a ``TypeError`` (:issue:`15348`)
- Bug in ``pd.pivot_table()`` where no error was raised when values argument was not in the columns (:issue:`14938`)
- Bug in ``pd.concat()`` in which concatenating with an empty dataframe with ``join='inner'`` was being improperly handled (:issue:`15328`)
- Bug with ``sort=True`` in ``DataFrame.join`` and ``pd.merge`` when joining on indexes (:issue:`15582`)
- Bug in ``DataFrame.nsmallest`` and ``DataFrame.nlargest`` where identical values resulted in duplicated rows (:issue:`15297`)
- Bug in :func:`pandas.pivot_table` incorrectly raising ``UnicodeError`` when passing unicode input for ``margins`` keyword (:issue:`13292`)

Numeric
^^^^^^^

- Bug in ``.rank()`` which incorrectly ranks ordered categories (:issue:`15420`)
- Bug in ``.corr()`` and ``.cov()`` where the column and index were the same object (:issue:`14617`)
- Bug in ``.mode()`` where ``mode`` was not returned if was only a single value (:issue:`15714`)
- Bug in ``pd.cut()`` with a single bin on an all 0s array (:issue:`15428`)
- Bug in ``pd.qcut()`` with a single quantile and an array with identical values (:issue:`15431`)
- Bug in ``pandas.tools.utils.cartesian_product()`` with large input can cause overflow on windows (:issue:`15265`)
- Bug in ``.eval()`` which caused multi-line evals to fail with local variables not on the first line (:issue:`15342`)

Other
^^^^^

- Compat with SciPy 0.19.0 for testing on ``.interpolate()`` (:issue:`15662`)
- Compat for 32-bit platforms for ``.qcut/cut``; bins will now be ``int64`` dtype (:issue:`14866`)
- Bug in interactions with ``Qt`` when a ``QtApplication`` already exists (:issue:`14372`)
- Avoid use of ``np.finfo()`` during ``import pandas`` removed to mitigate deadlock on Python GIL misuse (:issue:`14641`)


.. _whatsnew_0.20.0.contributors:

Contributors
~~~~~~~~~~~~

.. contributors:: v0.19.2..v0.20.0