1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829
|
.. _whatsnew_0200:
Version 0.20.1 (May 5, 2017)
----------------------------
{{ header }}
This is a major release from 0.19.2 and includes a number of API changes, deprecations, new features,
enhancements, and performance improvements along with a large number of bug fixes. We recommend that all
users upgrade to this version.
Highlights include:
- New ``.agg()`` API for Series/DataFrame similar to the groupby-rolling-resample API's, see :ref:`here <whatsnew_0200.enhancements.agg>`
- Integration with the ``feather-format``, including a new top-level ``pd.read_feather()`` and ``DataFrame.to_feather()`` method, see :ref:`here <io.feather>`.
- The ``.ix`` indexer has been deprecated, see :ref:`here <whatsnew_0200.api_breaking.deprecate_ix>`
- ``Panel`` has been deprecated, see :ref:`here <whatsnew_0200.api_breaking.deprecate_panel>`
- Addition of an ``IntervalIndex`` and ``Interval`` scalar type, see :ref:`here <whatsnew_0200.enhancements.intervalindex>`
- Improved user API when grouping by index levels in ``.groupby()``, see :ref:`here <whatsnew_0200.enhancements.groupby_access>`
- Improved support for ``UInt64`` dtypes, see :ref:`here <whatsnew_0200.enhancements.uint64_support>`
- A new orient for JSON serialization, ``orient='table'``, that uses the Table Schema spec and that gives the possibility for a more interactive repr in the Jupyter Notebook, see :ref:`here <whatsnew_0200.enhancements.table_schema>`
- Experimental support for exporting styled DataFrames (``DataFrame.style``) to Excel, see :ref:`here <whatsnew_0200.enhancements.style_excel>`
- Window binary corr/cov operations now return a MultiIndexed ``DataFrame`` rather than a ``Panel``, as ``Panel`` is now deprecated, see :ref:`here <whatsnew_0200.api_breaking.rolling_pairwise>`
- Support for S3 handling now uses ``s3fs``, see :ref:`here <whatsnew_0200.api_breaking.s3>`
- Google BigQuery support now uses the ``pandas-gbq`` library, see :ref:`here <whatsnew_0200.api_breaking.gbq>`
.. warning::
pandas has changed the internal structure and layout of the code base.
This can affect imports that are not from the top-level ``pandas.*`` namespace, please see the changes :ref:`here <whatsnew_0200.privacy>`.
Check the :ref:`API Changes <whatsnew_0200.api_breaking>` and :ref:`deprecations <whatsnew_0200.deprecations>` before updating.
.. note::
This is a combined release for 0.20.0 and 0.20.1.
Version 0.20.1 contains one additional change for backwards-compatibility with downstream projects using pandas' ``utils`` routines. (:issue:`16250`)
.. contents:: What's new in v0.20.0
:local:
:backlinks: none
.. _whatsnew_0200.enhancements:
New features
~~~~~~~~~~~~
.. _whatsnew_0200.enhancements.agg:
Method ``agg`` API for DataFrame/Series
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Series & DataFrame have been enhanced to support the aggregation API. This is a familiar API
from groupby, window operations, and resampling. This allows aggregation operations in a concise way
by using :meth:`~DataFrame.agg` and :meth:`~DataFrame.transform`. The full documentation
is :ref:`here <basics.aggregate>` (:issue:`1623`).
Here is a sample
.. ipython:: python
df = pd.DataFrame(np.random.randn(10, 3), columns=['A', 'B', 'C'],
index=pd.date_range('1/1/2000', periods=10))
df.iloc[3:7] = np.nan
df
One can operate using string function names, callables, lists, or dictionaries of these.
Using a single function is equivalent to ``.apply``.
.. ipython:: python
df.agg('sum')
Multiple aggregations with a list of functions.
.. ipython:: python
df.agg(['sum', 'min'])
Using a dict provides the ability to apply specific aggregations per column.
You will get a matrix-like output of all of the aggregators. The output has one column
per unique function. Those functions applied to a particular column will be ``NaN``:
.. ipython:: python
df.agg({'A': ['sum', 'min'], 'B': ['min', 'max']})
The API also supports a ``.transform()`` function for broadcasting results.
.. ipython:: python
:okwarning:
df.transform(['abs', lambda x: x - x.min()])
When presented with mixed dtypes that cannot be aggregated, ``.agg()`` will only take the valid
aggregations. This is similar to how groupby ``.agg()`` works. (:issue:`15015`)
.. ipython:: python
df = pd.DataFrame({'A': [1, 2, 3],
'B': [1., 2., 3.],
'C': ['foo', 'bar', 'baz'],
'D': pd.date_range('20130101', periods=3)})
df.dtypes
.. code-block:: python
In [10]: df.agg(['min', 'sum'])
Out[10]:
A B C D
min 1 1.0 bar 2013-01-01
sum 6 6.0 foobarbaz NaT
.. _whatsnew_0200.enhancements.dataio_dtype:
Keyword argument ``dtype`` for data IO
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
The ``'python'`` engine for :func:`read_csv`, as well as the :func:`read_fwf` function for parsing
fixed-width text files and :func:`read_excel` for parsing Excel files, now accept the ``dtype`` keyword argument for specifying the types of specific columns (:issue:`14295`). See the :ref:`io docs <io.dtypes>` for more information.
.. ipython:: python
:suppress:
from io import StringIO
.. ipython:: python
data = "a b\n1 2\n3 4"
pd.read_fwf(StringIO(data)).dtypes
pd.read_fwf(StringIO(data), dtype={'a': 'float64', 'b': 'object'}).dtypes
.. _whatsnew_0120.enhancements.datetime_origin:
Method ``.to_datetime()`` has gained an ``origin`` parameter
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
:func:`to_datetime` has gained a new parameter, ``origin``, to define a reference date
from where to compute the resulting timestamps when parsing numerical values with a specific ``unit`` specified. (:issue:`11276`, :issue:`11745`)
For example, with 1960-01-01 as the starting date:
.. ipython:: python
pd.to_datetime([1, 2, 3], unit='D', origin=pd.Timestamp('1960-01-01'))
The default is set at ``origin='unix'``, which defaults to ``1970-01-01 00:00:00``, which is
commonly called 'unix epoch' or POSIX time. This was the previous default, so this is a backward compatible change.
.. ipython:: python
pd.to_datetime([1, 2, 3], unit='D')
.. _whatsnew_0200.enhancements.groupby_access:
GroupBy enhancements
^^^^^^^^^^^^^^^^^^^^
Strings passed to ``DataFrame.groupby()`` as the ``by`` parameter may now reference either column names or index level names. Previously, only column names could be referenced. This allows to easily group by a column and index level at the same time. (:issue:`5677`)
.. ipython:: python
arrays = [['bar', 'bar', 'baz', 'baz', 'foo', 'foo', 'qux', 'qux'],
['one', 'two', 'one', 'two', 'one', 'two', 'one', 'two']]
index = pd.MultiIndex.from_arrays(arrays, names=['first', 'second'])
df = pd.DataFrame({'A': [1, 1, 1, 1, 2, 2, 3, 3],
'B': np.arange(8)},
index=index)
df
df.groupby(['second', 'A']).sum()
.. _whatsnew_0200.enhancements.compressed_urls:
Better support for compressed URLs in ``read_csv``
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
The compression code was refactored (:issue:`12688`). As a result, reading
dataframes from URLs in :func:`read_csv` or :func:`read_table` now supports
additional compression methods: ``xz``, ``bz2``, and ``zip`` (:issue:`14570`).
Previously, only ``gzip`` compression was supported. By default, compression of
URLs and paths are now inferred using their file extensions. Additionally,
support for bz2 compression in the python 2 C-engine improved (:issue:`14874`).
.. ipython:: python
url = ('https://github.com/{repo}/raw/{branch}/{path}'
.format(repo='pandas-dev/pandas',
branch='main',
path='pandas/tests/io/parser/data/salaries.csv.bz2'))
# default, infer compression
df = pd.read_csv(url, sep='\t', compression='infer')
# explicitly specify compression
df = pd.read_csv(url, sep='\t', compression='bz2')
df.head(2)
.. _whatsnew_0200.enhancements.pickle_compression:
Pickle file IO now supports compression
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
:func:`read_pickle`, :meth:`DataFrame.to_pickle` and :meth:`Series.to_pickle`
can now read from and write to compressed pickle files. Compression methods
can be an explicit parameter or be inferred from the file extension.
See :ref:`the docs here. <io.pickle.compression>`
.. ipython:: python
df = pd.DataFrame({'A': np.random.randn(1000),
'B': 'foo',
'C': pd.date_range('20130101', periods=1000, freq='s')})
Using an explicit compression type
.. ipython:: python
df.to_pickle("data.pkl.compress", compression="gzip")
rt = pd.read_pickle("data.pkl.compress", compression="gzip")
rt.head()
The default is to infer the compression type from the extension (``compression='infer'``):
.. ipython:: python
df.to_pickle("data.pkl.gz")
rt = pd.read_pickle("data.pkl.gz")
rt.head()
df["A"].to_pickle("s1.pkl.bz2")
rt = pd.read_pickle("s1.pkl.bz2")
rt.head()
.. ipython:: python
:suppress:
import os
os.remove("data.pkl.compress")
os.remove("data.pkl.gz")
os.remove("s1.pkl.bz2")
.. _whatsnew_0200.enhancements.uint64_support:
UInt64 support improved
^^^^^^^^^^^^^^^^^^^^^^^
pandas has significantly improved support for operations involving unsigned,
or purely non-negative, integers. Previously, handling these integers would
result in improper rounding or data-type casting, leading to incorrect results.
Notably, a new numerical index, ``UInt64Index``, has been created (:issue:`14937`)
.. code-block:: ipython
In [1]: idx = pd.UInt64Index([1, 2, 3])
In [2]: df = pd.DataFrame({'A': ['a', 'b', 'c']}, index=idx)
In [3]: df.index
Out[3]: UInt64Index([1, 2, 3], dtype='uint64')
- Bug in converting object elements of array-like objects to unsigned 64-bit integers (:issue:`4471`, :issue:`14982`)
- Bug in ``Series.unique()`` in which unsigned 64-bit integers were causing overflow (:issue:`14721`)
- Bug in ``DataFrame`` construction in which unsigned 64-bit integer elements were being converted to objects (:issue:`14881`)
- Bug in ``pd.read_csv()`` in which unsigned 64-bit integer elements were being improperly converted to the wrong data types (:issue:`14983`)
- Bug in ``pd.unique()`` in which unsigned 64-bit integers were causing overflow (:issue:`14915`)
- Bug in ``pd.value_counts()`` in which unsigned 64-bit integers were being erroneously truncated in the output (:issue:`14934`)
.. _whatsnew_0200.enhancements.groupy_categorical:
GroupBy on categoricals
^^^^^^^^^^^^^^^^^^^^^^^
In previous versions, ``.groupby(..., sort=False)`` would fail with a ``ValueError`` when grouping on a categorical series with some categories not appearing in the data. (:issue:`13179`)
.. ipython:: python
chromosomes = np.r_[np.arange(1, 23).astype(str), ['X', 'Y']]
df = pd.DataFrame({
'A': np.random.randint(100),
'B': np.random.randint(100),
'C': np.random.randint(100),
'chromosomes': pd.Categorical(np.random.choice(chromosomes, 100),
categories=chromosomes,
ordered=True)})
df
**Previous behavior**:
.. code-block:: ipython
In [3]: df[df.chromosomes != '1'].groupby('chromosomes', observed=False, sort=False).sum()
---------------------------------------------------------------------------
ValueError: items in new_categories are not the same as in old categories
**New behavior**:
.. ipython:: python
df[df.chromosomes != '1'].groupby('chromosomes', observed=False, sort=False).sum()
.. _whatsnew_0200.enhancements.table_schema:
Table schema output
^^^^^^^^^^^^^^^^^^^
The new orient ``'table'`` for :meth:`DataFrame.to_json`
will generate a `Table Schema`_ compatible string representation of
the data.
.. ipython:: python
df = pd.DataFrame(
{'A': [1, 2, 3],
'B': ['a', 'b', 'c'],
'C': pd.date_range('2016-01-01', freq='d', periods=3)},
index=pd.Index(range(3), name='idx'))
df
df.to_json(orient='table')
See :ref:`IO: Table Schema for more information <io.table_schema>`.
Additionally, the repr for ``DataFrame`` and ``Series`` can now publish
this JSON Table schema representation of the Series or DataFrame if you are
using IPython (or another frontend like `nteract`_ using the Jupyter messaging
protocol).
This gives frontends like the Jupyter notebook and `nteract`_
more flexibility in how they display pandas objects, since they have
more information about the data.
You must enable this by setting the ``display.html.table_schema`` option to ``True``.
.. _Table Schema: http://specs.frictionlessdata.io/json-table-schema/
.. _nteract: https://nteract.io/
.. _whatsnew_0200.enhancements.scipy_sparse:
SciPy sparse matrix from/to SparseDataFrame
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
pandas now supports creating sparse dataframes directly from ``scipy.sparse.spmatrix`` instances.
See the :ref:`documentation <sparse.scipysparse>` for more information. (:issue:`4343`)
All sparse formats are supported, but matrices that are not in :mod:`COOrdinate <scipy.sparse>` format will be converted, copying data as needed.
.. code-block:: python
from scipy.sparse import csr_matrix
arr = np.random.random(size=(1000, 5))
arr[arr < .9] = 0
sp_arr = csr_matrix(arr)
sp_arr
sdf = pd.SparseDataFrame(sp_arr)
sdf
To convert a ``SparseDataFrame`` back to sparse SciPy matrix in COO format, you can use:
.. code-block:: python
sdf.to_coo()
.. _whatsnew_0200.enhancements.style_excel:
Excel output for styled DataFrames
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Experimental support has been added to export ``DataFrame.style`` formats to Excel using the ``openpyxl`` engine. (:issue:`15530`)
For example, after running the following, ``styled.xlsx`` renders as below:
.. ipython:: python
:okwarning:
np.random.seed(24)
df = pd.DataFrame({'A': np.linspace(1, 10, 10)})
df = pd.concat([df, pd.DataFrame(np.random.RandomState(24).randn(10, 4),
columns=list('BCDE'))],
axis=1)
df.iloc[0, 2] = np.nan
df
styled = (df.style
.applymap(lambda val: 'color:red;' if val < 0 else 'color:black;')
.highlight_max())
styled.to_excel('styled.xlsx', engine='openpyxl')
.. image:: ../_static/style-excel.png
.. ipython:: python
:suppress:
import os
os.remove('styled.xlsx')
See the :ref:`Style documentation </user_guide/style.ipynb#Export-to-Excel>` for more detail.
.. _whatsnew_0200.enhancements.intervalindex:
IntervalIndex
^^^^^^^^^^^^^
pandas has gained an ``IntervalIndex`` with its own dtype, ``interval`` as well as the ``Interval`` scalar type. These allow first-class support for interval
notation, specifically as a return type for the categories in :func:`cut` and :func:`qcut`. The ``IntervalIndex`` allows some unique indexing, see the
:ref:`docs <advanced.intervalindex>`. (:issue:`7640`, :issue:`8625`)
.. warning::
These indexing behaviors of the IntervalIndex are provisional and may change in a future version of pandas. Feedback on usage is welcome.
Previous behavior:
The returned categories were strings, representing Intervals
.. code-block:: ipython
In [1]: c = pd.cut(range(4), bins=2)
In [2]: c
Out[2]:
[(-0.003, 1.5], (-0.003, 1.5], (1.5, 3], (1.5, 3]]
Categories (2, object): [(-0.003, 1.5] < (1.5, 3]]
In [3]: c.categories
Out[3]: Index(['(-0.003, 1.5]', '(1.5, 3]'], dtype='object')
New behavior:
.. ipython:: python
c = pd.cut(range(4), bins=2)
c
c.categories
Furthermore, this allows one to bin *other* data with these same bins, with ``NaN`` representing a missing
value similar to other dtypes.
.. ipython:: python
pd.cut([0, 3, 5, 1], bins=c.categories)
An ``IntervalIndex`` can also be used in ``Series`` and ``DataFrame`` as the index.
.. ipython:: python
df = pd.DataFrame({'A': range(4),
'B': pd.cut([0, 3, 1, 1], bins=c.categories)
}).set_index('B')
df
Selecting via a specific interval:
.. ipython:: python
df.loc[pd.Interval(1.5, 3.0)]
Selecting via a scalar value that is contained *in* the intervals.
.. ipython:: python
df.loc[0]
.. _whatsnew_0200.enhancements.other:
Other enhancements
^^^^^^^^^^^^^^^^^^
- ``DataFrame.rolling()`` now accepts the parameter ``closed='right'|'left'|'both'|'neither'`` to choose the rolling window-endpoint closedness. See the :ref:`documentation <window.endpoints>` (:issue:`13965`)
- Integration with the ``feather-format``, including a new top-level ``pd.read_feather()`` and ``DataFrame.to_feather()`` method, see :ref:`here <io.feather>`.
- ``Series.str.replace()`` now accepts a callable, as replacement, which is passed to ``re.sub`` (:issue:`15055`)
- ``Series.str.replace()`` now accepts a compiled regular expression as a pattern (:issue:`15446`)
- ``Series.sort_index`` accepts parameters ``kind`` and ``na_position`` (:issue:`13589`, :issue:`14444`)
- ``DataFrame`` and ``DataFrame.groupby()`` have gained a ``nunique()`` method to count the distinct values over an axis (:issue:`14336`, :issue:`15197`).
- ``DataFrame`` has gained a ``melt()`` method, equivalent to ``pd.melt()``, for unpivoting from a wide to long format (:issue:`12640`).
- ``pd.read_excel()`` now preserves sheet order when using ``sheetname=None`` (:issue:`9930`)
- Multiple offset aliases with decimal points are now supported (e.g. ``0.5min`` is parsed as ``30s``) (:issue:`8419`)
- ``.isnull()`` and ``.notnull()`` have been added to ``Index`` object to make them more consistent with the ``Series`` API (:issue:`15300`)
- New ``UnsortedIndexError`` (subclass of ``KeyError``) raised when indexing/slicing into an
unsorted MultiIndex (:issue:`11897`). This allows differentiation between errors due to lack
of sorting or an incorrect key. See :ref:`here <advanced.unsorted>`
- ``MultiIndex`` has gained a ``.to_frame()`` method to convert to a ``DataFrame`` (:issue:`12397`)
- ``pd.cut`` and ``pd.qcut`` now support datetime64 and timedelta64 dtypes (:issue:`14714`, :issue:`14798`)
- ``pd.qcut`` has gained the ``duplicates='raise'|'drop'`` option to control whether to raise on duplicated edges (:issue:`7751`)
- ``Series`` provides a ``to_excel`` method to output Excel files (:issue:`8825`)
- The ``usecols`` argument in ``pd.read_csv()`` now accepts a callable function as a value (:issue:`14154`)
- The ``skiprows`` argument in ``pd.read_csv()`` now accepts a callable function as a value (:issue:`10882`)
- The ``nrows`` and ``chunksize`` arguments in ``pd.read_csv()`` are supported if both are passed (:issue:`6774`, :issue:`15755`)
- ``DataFrame.plot`` now prints a title above each subplot if ``suplots=True`` and ``title`` is a list of strings (:issue:`14753`)
- ``DataFrame.plot`` can pass the matplotlib 2.0 default color cycle as a single string as color parameter, see `here <http://matplotlib.org/2.0.0/users/colors.html#cn-color-selection>`__. (:issue:`15516`)
- ``Series.interpolate()`` now supports timedelta as an index type with ``method='time'`` (:issue:`6424`)
- Addition of a ``level`` keyword to ``DataFrame/Series.rename`` to rename
labels in the specified level of a MultiIndex (:issue:`4160`).
- ``DataFrame.reset_index()`` will now interpret a tuple ``index.name`` as a key spanning across levels of ``columns``, if this is a ``MultiIndex`` (:issue:`16164`)
- ``Timedelta.isoformat`` method added for formatting Timedeltas as an `ISO 8601 duration`_. See the :ref:`Timedelta docs <timedeltas.isoformat>` (:issue:`15136`)
- ``.select_dtypes()`` now allows the string ``datetimetz`` to generically select datetimes with tz (:issue:`14910`)
- The ``.to_latex()`` method will now accept ``multicolumn`` and ``multirow`` arguments to use the accompanying LaTeX enhancements
- ``pd.merge_asof()`` gained the option ``direction='backward'|'forward'|'nearest'`` (:issue:`14887`)
- ``Series/DataFrame.asfreq()`` have gained a ``fill_value`` parameter, to fill missing values (:issue:`3715`).
- ``Series/DataFrame.resample.asfreq`` have gained a ``fill_value`` parameter, to fill missing values during resampling (:issue:`3715`).
- :func:`pandas.util.hash_pandas_object` has gained the ability to hash a ``MultiIndex`` (:issue:`15224`)
- ``Series/DataFrame.squeeze()`` have gained the ``axis`` parameter. (:issue:`15339`)
- ``DataFrame.to_excel()`` has a new ``freeze_panes`` parameter to turn on Freeze Panes when exporting to Excel (:issue:`15160`)
- ``pd.read_html()`` will parse multiple header rows, creating a MultiIndex header. (:issue:`13434`).
- HTML table output skips ``colspan`` or ``rowspan`` attribute if equal to 1. (:issue:`15403`)
- :class:`pandas.io.formats.style.Styler` template now has blocks for easier extension, see the :ref:`example notebook </user_guide/style.ipynb#Subclassing>` (:issue:`15649`)
- :meth:`Styler.render() <pandas.io.formats.style.Styler.render>` now accepts ``**kwargs`` to allow user-defined variables in the template (:issue:`15649`)
- Compatibility with Jupyter notebook 5.0; MultiIndex column labels are left-aligned and MultiIndex row-labels are top-aligned (:issue:`15379`)
- ``TimedeltaIndex`` now has a custom date-tick formatter specifically designed for nanosecond level precision (:issue:`8711`)
- ``pd.api.types.union_categoricals`` gained the ``ignore_ordered`` argument to allow ignoring the ordered attribute of unioned categoricals (:issue:`13410`). See the :ref:`categorical union docs <categorical.union>` for more information.
- ``DataFrame.to_latex()`` and ``DataFrame.to_string()`` now allow optional header aliases. (:issue:`15536`)
- Re-enable the ``parse_dates`` keyword of ``pd.read_excel()`` to parse string columns as dates (:issue:`14326`)
- Added ``.empty`` property to subclasses of ``Index``. (:issue:`15270`)
- Enabled floor division for ``Timedelta`` and ``TimedeltaIndex`` (:issue:`15828`)
- ``pandas.io.json.json_normalize()`` gained the option ``errors='ignore'|'raise'``; the default is ``errors='raise'`` which is backward compatible. (:issue:`14583`)
- ``pandas.io.json.json_normalize()`` with an empty ``list`` will return an empty ``DataFrame`` (:issue:`15534`)
- ``pandas.io.json.json_normalize()`` has gained a ``sep`` option that accepts ``str`` to separate joined fields; the default is ".", which is backward compatible. (:issue:`14883`)
- :meth:`MultiIndex.remove_unused_levels` has been added to facilitate :ref:`removing unused levels <advanced.shown_levels>`. (:issue:`15694`)
- ``pd.read_csv()`` will now raise a ``ParserError`` error whenever any parsing error occurs (:issue:`15913`, :issue:`15925`)
- ``pd.read_csv()`` now supports the ``error_bad_lines`` and ``warn_bad_lines`` arguments for the Python parser (:issue:`15925`)
- The ``display.show_dimensions`` option can now also be used to specify
whether the length of a ``Series`` should be shown in its repr (:issue:`7117`).
- ``parallel_coordinates()`` has gained a ``sort_labels`` keyword argument that sorts class labels and the colors assigned to them (:issue:`15908`)
- Options added to allow one to turn on/off using ``bottleneck`` and ``numexpr``, see :ref:`here <basics.accelerate>` (:issue:`16157`)
- ``DataFrame.style.bar()`` now accepts two more options to further customize the bar chart. Bar alignment is set with ``align='left'|'mid'|'zero'``, the default is "left", which is backward compatible; You can now pass a list of ``color=[color_negative, color_positive]``. (:issue:`14757`)
.. _ISO 8601 duration: https://en.wikipedia.org/wiki/ISO_8601#Durations
.. _whatsnew_0200.api_breaking:
Backwards incompatible API changes
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. _whatsnew.api_breaking.io_compat:
Possible incompatibility for HDF5 formats created with pandas < 0.13.0
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
``pd.TimeSeries`` was deprecated officially in 0.17.0, though has already been an alias since 0.13.0. It has
been dropped in favor of ``pd.Series``. (:issue:`15098`).
This *may* cause HDF5 files that were created in prior versions to become unreadable if ``pd.TimeSeries``
was used. This is most likely to be for pandas < 0.13.0. If you find yourself in this situation.
You can use a recent prior version of pandas to read in your HDF5 files,
then write them out again after applying the procedure below.
.. code-block:: ipython
In [2]: s = pd.TimeSeries([1, 2, 3], index=pd.date_range('20130101', periods=3))
In [3]: s
Out[3]:
2013-01-01 1
2013-01-02 2
2013-01-03 3
Freq: D, dtype: int64
In [4]: type(s)
Out[4]: pandas.core.series.TimeSeries
In [5]: s = pd.Series(s)
In [6]: s
Out[6]:
2013-01-01 1
2013-01-02 2
2013-01-03 3
Freq: D, dtype: int64
In [7]: type(s)
Out[7]: pandas.core.series.Series
.. _whatsnew_0200.api_breaking.index_map:
Map on Index types now return other Index types
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
``map`` on an ``Index`` now returns an ``Index``, not a numpy array (:issue:`12766`)
.. ipython:: python
idx = pd.Index([1, 2])
idx
mi = pd.MultiIndex.from_tuples([(1, 2), (2, 4)])
mi
Previous behavior:
.. code-block:: ipython
In [5]: idx.map(lambda x: x * 2)
Out[5]: array([2, 4])
In [6]: idx.map(lambda x: (x, x * 2))
Out[6]: array([(1, 2), (2, 4)], dtype=object)
In [7]: mi.map(lambda x: x)
Out[7]: array([(1, 2), (2, 4)], dtype=object)
In [8]: mi.map(lambda x: x[0])
Out[8]: array([1, 2])
New behavior:
.. ipython:: python
idx.map(lambda x: x * 2)
idx.map(lambda x: (x, x * 2))
mi.map(lambda x: x)
mi.map(lambda x: x[0])
``map`` on a ``Series`` with ``datetime64`` values may return ``int64`` dtypes rather than ``int32``
.. code-block:: ipython
In [64]: s = pd.Series(pd.date_range('2011-01-02T00:00', '2011-01-02T02:00', freq='H')
....: .tz_localize('Asia/Tokyo'))
....:
In [65]: s
Out[65]:
0 2011-01-02 00:00:00+09:00
1 2011-01-02 01:00:00+09:00
2 2011-01-02 02:00:00+09:00
Length: 3, dtype: datetime64[ns, Asia/Tokyo]
Previous behavior:
.. code-block:: ipython
In [9]: s.map(lambda x: x.hour)
Out[9]:
0 0
1 1
2 2
dtype: int32
New behavior:
.. code-block:: ipython
In [66]: s.map(lambda x: x.hour)
Out[66]:
0 0
1 1
2 2
Length: 3, dtype: int64
.. _whatsnew_0200.api_breaking.index_dt_field:
Accessing datetime fields of Index now return Index
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
The datetime-related attributes (see :ref:`here <timeseries.components>`
for an overview) of ``DatetimeIndex``, ``PeriodIndex`` and ``TimedeltaIndex`` previously
returned numpy arrays. They will now return a new ``Index`` object, except
in the case of a boolean field, where the result will still be a boolean ndarray. (:issue:`15022`)
Previous behaviour:
.. code-block:: ipython
In [1]: idx = pd.date_range("2015-01-01", periods=5, freq='10H')
In [2]: idx.hour
Out[2]: array([ 0, 10, 20, 6, 16], dtype=int32)
New behavior:
.. code-block:: ipython
In [67]: idx = pd.date_range("2015-01-01", periods=5, freq='10H')
In [68]: idx.hour
Out[68]: Index([0, 10, 20, 6, 16], dtype='int32')
This has the advantage that specific ``Index`` methods are still available on the
result. On the other hand, this might have backward incompatibilities: e.g.
compared to numpy arrays, ``Index`` objects are not mutable. To get the original
ndarray, you can always convert explicitly using ``np.asarray(idx.hour)``.
.. _whatsnew_0200.api_breaking.unique:
pd.unique will now be consistent with extension types
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
In prior versions, using :meth:`Series.unique` and :func:`pandas.unique` on ``Categorical`` and tz-aware
data-types would yield different return types. These are now made consistent. (:issue:`15903`)
- Datetime tz-aware
Previous behaviour:
.. code-block:: ipython
# Series
In [5]: pd.Series([pd.Timestamp('20160101', tz='US/Eastern'),
...: pd.Timestamp('20160101', tz='US/Eastern')]).unique()
Out[5]: array([Timestamp('2016-01-01 00:00:00-0500', tz='US/Eastern')], dtype=object)
In [6]: pd.unique(pd.Series([pd.Timestamp('20160101', tz='US/Eastern'),
...: pd.Timestamp('20160101', tz='US/Eastern')]))
Out[6]: array(['2016-01-01T05:00:00.000000000'], dtype='datetime64[ns]')
# Index
In [7]: pd.Index([pd.Timestamp('20160101', tz='US/Eastern'),
...: pd.Timestamp('20160101', tz='US/Eastern')]).unique()
Out[7]: DatetimeIndex(['2016-01-01 00:00:00-05:00'], dtype='datetime64[ns, US/Eastern]', freq=None)
In [8]: pd.unique([pd.Timestamp('20160101', tz='US/Eastern'),
...: pd.Timestamp('20160101', tz='US/Eastern')])
Out[8]: array(['2016-01-01T05:00:00.000000000'], dtype='datetime64[ns]')
New behavior:
.. ipython:: python
# Series, returns an array of Timestamp tz-aware
pd.Series([pd.Timestamp(r'20160101', tz=r'US/Eastern'),
pd.Timestamp(r'20160101', tz=r'US/Eastern')]).unique()
pd.unique(pd.Series([pd.Timestamp('20160101', tz='US/Eastern'),
pd.Timestamp('20160101', tz='US/Eastern')]))
# Index, returns a DatetimeIndex
pd.Index([pd.Timestamp('20160101', tz='US/Eastern'),
pd.Timestamp('20160101', tz='US/Eastern')]).unique()
pd.unique(pd.Index([pd.Timestamp('20160101', tz='US/Eastern'),
pd.Timestamp('20160101', tz='US/Eastern')]))
- Categoricals
Previous behaviour:
.. code-block:: ipython
In [1]: pd.Series(list('baabc'), dtype='category').unique()
Out[1]:
[b, a, c]
Categories (3, object): [b, a, c]
In [2]: pd.unique(pd.Series(list('baabc'), dtype='category'))
Out[2]: array(['b', 'a', 'c'], dtype=object)
New behavior:
.. ipython:: python
# returns a Categorical
pd.Series(list('baabc'), dtype='category').unique()
pd.unique(pd.Series(list('baabc'), dtype='category'))
.. _whatsnew_0200.api_breaking.s3:
S3 file handling
^^^^^^^^^^^^^^^^
pandas now uses `s3fs <http://s3fs.readthedocs.io/>`_ for handling S3 connections. This shouldn't break
any code. However, since ``s3fs`` is not a required dependency, you will need to install it separately, like ``boto``
in prior versions of pandas. (:issue:`11915`).
.. _whatsnew_0200.api_breaking.partial_string_indexing:
Partial string indexing changes
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
:ref:`DatetimeIndex Partial String Indexing <timeseries.partialindexing>` now works as an exact match, provided that string resolution coincides with index resolution, including a case when both are seconds (:issue:`14826`). See :ref:`Slice vs. Exact Match <timeseries.slice_vs_exact_match>` for details.
.. ipython:: python
df = pd.DataFrame({'a': [1, 2, 3]}, pd.DatetimeIndex(['2011-12-31 23:59:59',
'2012-01-01 00:00:00',
'2012-01-01 00:00:01']))
Previous behavior:
.. code-block:: ipython
In [4]: df['2011-12-31 23:59:59']
Out[4]:
a
2011-12-31 23:59:59 1
In [5]: df['a']['2011-12-31 23:59:59']
Out[5]:
2011-12-31 23:59:59 1
Name: a, dtype: int64
New behavior:
.. code-block:: ipython
In [4]: df['2011-12-31 23:59:59']
KeyError: '2011-12-31 23:59:59'
In [5]: df['a']['2011-12-31 23:59:59']
Out[5]: 1
.. _whatsnew_0200.api_breaking.concat_dtypes:
Concat of different float dtypes will not automatically upcast
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Previously, ``concat`` of multiple objects with different ``float`` dtypes would automatically upcast results to a dtype of ``float64``.
Now the smallest acceptable dtype will be used (:issue:`13247`)
.. ipython:: python
df1 = pd.DataFrame(np.array([1.0], dtype=np.float32, ndmin=2))
df1.dtypes
df2 = pd.DataFrame(np.array([np.nan], dtype=np.float32, ndmin=2))
df2.dtypes
Previous behavior:
.. code-block:: ipython
In [7]: pd.concat([df1, df2]).dtypes
Out[7]:
0 float64
dtype: object
New behavior:
.. ipython:: python
pd.concat([df1, df2]).dtypes
.. _whatsnew_0200.api_breaking.gbq:
pandas Google BigQuery support has moved
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
pandas has split off Google BigQuery support into a separate package ``pandas-gbq``. You can ``conda install pandas-gbq -c conda-forge`` or
``pip install pandas-gbq`` to get it. The functionality of :func:`read_gbq` and :meth:`DataFrame.to_gbq` remain the same with the
currently released version of ``pandas-gbq=0.1.4``. Documentation is now hosted `here <https://pandas-gbq.readthedocs.io/>`__ (:issue:`15347`)
.. _whatsnew_0200.api_breaking.memory_usage:
Memory usage for Index is more accurate
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
In previous versions, showing ``.memory_usage()`` on a pandas structure that has an index, would only include actual index values and not include structures that facilitated fast indexing. This will generally be different for ``Index`` and ``MultiIndex`` and less-so for other index types. (:issue:`15237`)
Previous behavior:
.. code-block:: ipython
In [8]: index = pd.Index(['foo', 'bar', 'baz'])
In [9]: index.memory_usage(deep=True)
Out[9]: 180
In [10]: index.get_loc('foo')
Out[10]: 0
In [11]: index.memory_usage(deep=True)
Out[11]: 180
New behavior:
.. code-block:: ipython
In [8]: index = pd.Index(['foo', 'bar', 'baz'])
In [9]: index.memory_usage(deep=True)
Out[9]: 180
In [10]: index.get_loc('foo')
Out[10]: 0
In [11]: index.memory_usage(deep=True)
Out[11]: 260
.. _whatsnew_0200.api_breaking.sort_index:
DataFrame.sort_index changes
^^^^^^^^^^^^^^^^^^^^^^^^^^^^
In certain cases, calling ``.sort_index()`` on a MultiIndexed DataFrame would return the *same* DataFrame without seeming to sort.
This would happen with a ``lexsorted``, but non-monotonic levels. (:issue:`15622`, :issue:`15687`, :issue:`14015`, :issue:`13431`, :issue:`15797`)
This is *unchanged* from prior versions, but shown for illustration purposes:
.. code-block:: python
In [81]: df = pd.DataFrame(np.arange(6), columns=['value'],
....: index=pd.MultiIndex.from_product([list('BA'), range(3)]))
....:
In [82]: df
Out[82]:
value
B 0 0
1 1
2 2
A 0 3
1 4
2 5
[6 rows x 1 columns]
.. code-block:: python
In [87]: df.index.is_lexsorted()
Out[87]: False
In [88]: df.index.is_monotonic
Out[88]: False
Sorting works as expected
.. ipython:: python
df.sort_index()
.. code-block:: python
In [90]: df.sort_index().index.is_lexsorted()
Out[90]: True
In [91]: df.sort_index().index.is_monotonic
Out[91]: True
However, this example, which has a non-monotonic 2nd level,
doesn't behave as desired.
.. ipython:: python
df = pd.DataFrame({'value': [1, 2, 3, 4]},
index=pd.MultiIndex([['a', 'b'], ['bb', 'aa']],
[[0, 0, 1, 1], [0, 1, 0, 1]]))
df
Previous behavior:
.. code-block:: python
In [11]: df.sort_index()
Out[11]:
value
a bb 1
aa 2
b bb 3
aa 4
In [14]: df.sort_index().index.is_lexsorted()
Out[14]: True
In [15]: df.sort_index().index.is_monotonic
Out[15]: False
New behavior:
.. code-block:: python
In [94]: df.sort_index()
Out[94]:
value
a aa 2
bb 1
b aa 4
bb 3
[4 rows x 1 columns]
In [95]: df.sort_index().index.is_lexsorted()
Out[95]: True
In [96]: df.sort_index().index.is_monotonic
Out[96]: True
.. _whatsnew_0200.api_breaking.groupby_describe:
GroupBy describe formatting
^^^^^^^^^^^^^^^^^^^^^^^^^^^
The output formatting of ``groupby.describe()`` now labels the ``describe()`` metrics in the columns instead of the index.
This format is consistent with ``groupby.agg()`` when applying multiple functions at once. (:issue:`4792`)
Previous behavior:
.. code-block:: ipython
In [1]: df = pd.DataFrame({'A': [1, 1, 2, 2], 'B': [1, 2, 3, 4]})
In [2]: df.groupby('A').describe()
Out[2]:
B
A
1 count 2.000000
mean 1.500000
std 0.707107
min 1.000000
25% 1.250000
50% 1.500000
75% 1.750000
max 2.000000
2 count 2.000000
mean 3.500000
std 0.707107
min 3.000000
25% 3.250000
50% 3.500000
75% 3.750000
max 4.000000
In [3]: df.groupby('A').agg(["mean", "std", "min", "max"])
Out[3]:
B
mean std amin amax
A
1 1.5 0.707107 1 2
2 3.5 0.707107 3 4
New behavior:
.. ipython:: python
df = pd.DataFrame({'A': [1, 1, 2, 2], 'B': [1, 2, 3, 4]})
df.groupby('A').describe()
df.groupby('A').agg(["mean", "std", "min", "max"])
.. _whatsnew_0200.api_breaking.rolling_pairwise:
Window binary corr/cov operations return a MultiIndex DataFrame
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
A binary window operation, like ``.corr()`` or ``.cov()``, when operating on a ``.rolling(..)``, ``.expanding(..)``, or ``.ewm(..)`` object,
will now return a 2-level ``MultiIndexed DataFrame`` rather than a ``Panel``, as ``Panel`` is now deprecated,
see :ref:`here <whatsnew_0200.api_breaking.deprecate_panel>`. These are equivalent in function,
but a MultiIndexed ``DataFrame`` enjoys more support in pandas.
See the section on :ref:`Windowed Binary Operations <window.cov_corr>` for more information. (:issue:`15677`)
.. ipython:: python
np.random.seed(1234)
df = pd.DataFrame(np.random.rand(100, 2),
columns=pd.Index(['A', 'B'], name='bar'),
index=pd.date_range('20160101',
periods=100, freq='D', name='foo'))
df.tail()
Previous behavior:
.. code-block:: ipython
In [2]: df.rolling(12).corr()
Out[2]:
<class 'pandas.core.panel.Panel'>
Dimensions: 100 (items) x 2 (major_axis) x 2 (minor_axis)
Items axis: 2016-01-01 00:00:00 to 2016-04-09 00:00:00
Major_axis axis: A to B
Minor_axis axis: A to B
New behavior:
.. ipython:: python
res = df.rolling(12).corr()
res.tail()
Retrieving a correlation matrix for a cross-section
.. ipython:: python
df.rolling(12).corr().loc['2016-04-07']
.. _whatsnew_0200.api_breaking.hdfstore_where:
HDFStore where string comparison
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
In previous versions most types could be compared to string column in a ``HDFStore``
usually resulting in an invalid comparison, returning an empty result frame. These comparisons will now raise a
``TypeError`` (:issue:`15492`)
.. ipython:: python
df = pd.DataFrame({'unparsed_date': ['2014-01-01', '2014-01-01']})
df.to_hdf('store.h5', key='key', format='table', data_columns=True)
df.dtypes
Previous behavior:
.. code-block:: ipython
In [4]: pd.read_hdf('store.h5', 'key', where='unparsed_date > ts')
File "<string>", line 1
(unparsed_date > 1970-01-01 00:00:01.388552400)
^
SyntaxError: invalid token
New behavior:
.. code-block:: ipython
In [18]: ts = pd.Timestamp('2014-01-01')
In [19]: pd.read_hdf('store.h5', 'key', where='unparsed_date > ts')
TypeError: Cannot compare 2014-01-01 00:00:00 of
type <class 'pandas.tslib.Timestamp'> to string column
.. ipython:: python
:suppress:
import os
os.remove('store.h5')
.. _whatsnew_0200.api_breaking.index_order:
Index.intersection and inner join now preserve the order of the left Index
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
:meth:`Index.intersection` now preserves the order of the calling ``Index`` (left)
instead of the other ``Index`` (right) (:issue:`15582`). This affects inner
joins, :meth:`DataFrame.join` and :func:`merge`, and the ``.align`` method.
- ``Index.intersection``
.. ipython:: python
left = pd.Index([2, 1, 0])
left
right = pd.Index([1, 2, 3])
right
Previous behavior:
.. code-block:: ipython
In [4]: left.intersection(right)
Out[4]: Int64Index([1, 2], dtype='int64')
New behavior:
.. ipython:: python
left.intersection(right)
- ``DataFrame.join`` and ``pd.merge``
.. ipython:: python
left = pd.DataFrame({'a': [20, 10, 0]}, index=[2, 1, 0])
left
right = pd.DataFrame({'b': [100, 200, 300]}, index=[1, 2, 3])
right
Previous behavior:
.. code-block:: ipython
In [4]: left.join(right, how='inner')
Out[4]:
a b
1 10 100
2 20 200
New behavior:
.. ipython:: python
left.join(right, how='inner')
.. _whatsnew_0200.api_breaking.pivot_table:
Pivot table always returns a DataFrame
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
The documentation for :meth:`pivot_table` states that a ``DataFrame`` is *always* returned. Here a bug
is fixed that allowed this to return a ``Series`` under certain circumstance. (:issue:`4386`)
.. ipython:: python
df = pd.DataFrame({'col1': [3, 4, 5],
'col2': ['C', 'D', 'E'],
'col3': [1, 3, 9]})
df
Previous behavior:
.. code-block:: ipython
In [2]: df.pivot_table('col1', index=['col3', 'col2'], aggfunc="sum")
Out[2]:
col3 col2
1 C 3
3 D 4
9 E 5
Name: col1, dtype: int64
New behavior:
.. ipython:: python
df.pivot_table('col1', index=['col3', 'col2'], aggfunc="sum")
.. _whatsnew_0200.api:
Other API changes
^^^^^^^^^^^^^^^^^
- ``numexpr`` version is now required to be >= 2.4.6 and it will not be used at all if this requisite is not fulfilled (:issue:`15213`).
- ``CParserError`` has been renamed to ``ParserError`` in ``pd.read_csv()`` and will be removed in the future (:issue:`12665`)
- ``SparseArray.cumsum()`` and ``SparseSeries.cumsum()`` will now always return ``SparseArray`` and ``SparseSeries`` respectively (:issue:`12855`)
- ``DataFrame.applymap()`` with an empty ``DataFrame`` will return a copy of the empty ``DataFrame`` instead of a ``Series`` (:issue:`8222`)
- ``Series.map()`` now respects default values of dictionary subclasses with a ``__missing__`` method, such as ``collections.Counter`` (:issue:`15999`)
- ``.loc`` has compat with ``.ix`` for accepting iterators, and NamedTuples (:issue:`15120`)
- ``interpolate()`` and ``fillna()`` will raise a ``ValueError`` if the ``limit`` keyword argument is not greater than 0. (:issue:`9217`)
- ``pd.read_csv()`` will now issue a ``ParserWarning`` whenever there are conflicting values provided by the ``dialect`` parameter and the user (:issue:`14898`)
- ``pd.read_csv()`` will now raise a ``ValueError`` for the C engine if the quote character is larger than one byte (:issue:`11592`)
- ``inplace`` arguments now require a boolean value, else a ``ValueError`` is thrown (:issue:`14189`)
- ``pandas.api.types.is_datetime64_ns_dtype`` will now report ``True`` on a tz-aware dtype, similar to ``pandas.api.types.is_datetime64_any_dtype``
- ``DataFrame.asof()`` will return a null filled ``Series`` instead the scalar ``NaN`` if a match is not found (:issue:`15118`)
- Specific support for ``copy.copy()`` and ``copy.deepcopy()`` functions on NDFrame objects (:issue:`15444`)
- ``Series.sort_values()`` accepts a one element list of bool for consistency with the behavior of ``DataFrame.sort_values()`` (:issue:`15604`)
- ``.merge()`` and ``.join()`` on ``category`` dtype columns will now preserve the category dtype when possible (:issue:`10409`)
- ``SparseDataFrame.default_fill_value`` will be 0, previously was ``nan`` in the return from ``pd.get_dummies(..., sparse=True)`` (:issue:`15594`)
- The default behaviour of ``Series.str.match`` has changed from extracting
groups to matching the pattern. The extracting behaviour was deprecated
since pandas version 0.13.0 and can be done with the ``Series.str.extract``
method (:issue:`5224`). As a consequence, the ``as_indexer`` keyword is
ignored (no longer needed to specify the new behaviour) and is deprecated.
- ``NaT`` will now correctly report ``False`` for datetimelike boolean operations such as ``is_month_start`` (:issue:`15781`)
- ``NaT`` will now correctly return ``np.nan`` for ``Timedelta`` and ``Period`` accessors such as ``days`` and ``quarter`` (:issue:`15782`)
- ``NaT`` will now returns ``NaT`` for ``tz_localize`` and ``tz_convert``
methods (:issue:`15830`)
- ``DataFrame`` and ``Panel`` constructors with invalid input will now raise ``ValueError`` rather than ``PandasError``, if called with scalar inputs and not axes (:issue:`15541`)
- ``DataFrame`` and ``Panel`` constructors with invalid input will now raise ``ValueError`` rather than ``pandas.core.common.PandasError``, if called with scalar inputs and not axes; The exception ``PandasError`` is removed as well. (:issue:`15541`)
- The exception ``pandas.core.common.AmbiguousIndexError`` is removed as it is not referenced (:issue:`15541`)
.. _whatsnew_0200.privacy:
Reorganization of the library: privacy changes
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. _whatsnew_0200.privacy.extensions:
Modules privacy has changed
^^^^^^^^^^^^^^^^^^^^^^^^^^^
Some formerly public python/c/c++/cython extension modules have been moved and/or renamed. These are all removed from the public API.
Furthermore, the ``pandas.core``, ``pandas.compat``, and ``pandas.util`` top-level modules are now considered to be PRIVATE.
If indicated, a deprecation warning will be issued if you reference these modules. (:issue:`12588`)
.. csv-table::
:header: "Previous Location", "New Location", "Deprecated"
:widths: 30, 30, 4
"pandas.lib", "pandas._libs.lib", "X"
"pandas.tslib", "pandas._libs.tslib", "X"
"pandas.computation", "pandas.core.computation", "X"
"pandas.msgpack", "pandas.io.msgpack", ""
"pandas.index", "pandas._libs.index", ""
"pandas.algos", "pandas._libs.algos", ""
"pandas.hashtable", "pandas._libs.hashtable", ""
"pandas.indexes", "pandas.core.indexes", ""
"pandas.json", "pandas._libs.json / pandas.io.json", "X"
"pandas.parser", "pandas._libs.parsers", "X"
"pandas.formats", "pandas.io.formats", ""
"pandas.sparse", "pandas.core.sparse", ""
"pandas.tools", "pandas.core.reshape", "X"
"pandas.types", "pandas.core.dtypes", "X"
"pandas.io.sas.saslib", "pandas.io.sas._sas", ""
"pandas._join", "pandas._libs.join", ""
"pandas._hash", "pandas._libs.hashing", ""
"pandas._period", "pandas._libs.period", ""
"pandas._sparse", "pandas._libs.sparse", ""
"pandas._testing", "pandas._libs.testing", ""
"pandas._window", "pandas._libs.window", ""
Some new subpackages are created with public functionality that is not directly
exposed in the top-level namespace: ``pandas.errors``, ``pandas.plotting`` and
``pandas.testing`` (more details below). Together with ``pandas.api.types`` and
certain functions in the ``pandas.io`` and ``pandas.tseries`` submodules,
these are now the public subpackages.
Further changes:
- The function :func:`~pandas.api.types.union_categoricals` is now importable from ``pandas.api.types``, formerly from ``pandas.types.concat`` (:issue:`15998`)
- The type import ``pandas.tslib.NaTType`` is deprecated and can be replaced by using ``type(pandas.NaT)`` (:issue:`16146`)
- The public functions in ``pandas.tools.hashing`` deprecated from that locations, but are now importable from ``pandas.util`` (:issue:`16223`)
- The modules in ``pandas.util``: ``decorators``, ``print_versions``, ``doctools``, ``validators``, ``depr_module`` are now private. Only the functions exposed in ``pandas.util`` itself are public (:issue:`16223`)
.. _whatsnew_0200.privacy.errors:
``pandas.errors``
^^^^^^^^^^^^^^^^^
We are adding a standard public module for all pandas exceptions & warnings ``pandas.errors``. (:issue:`14800`). Previously
these exceptions & warnings could be imported from ``pandas.core.common`` or ``pandas.io.common``. These exceptions and warnings
will be removed from the ``*.common`` locations in a future release. (:issue:`15541`)
The following are now part of this API:
.. code-block:: python
['DtypeWarning',
'EmptyDataError',
'OutOfBoundsDatetime',
'ParserError',
'ParserWarning',
'PerformanceWarning',
'UnsortedIndexError',
'UnsupportedFunctionCall']
.. _whatsnew_0200.privacy.testing:
``pandas.testing``
^^^^^^^^^^^^^^^^^^
We are adding a standard module that exposes the public testing functions in ``pandas.testing`` (:issue:`9895`). Those functions can be used when writing tests for functionality using pandas objects.
The following testing functions are now part of this API:
- :func:`testing.assert_frame_equal`
- :func:`testing.assert_series_equal`
- :func:`testing.assert_index_equal`
.. _whatsnew_0200.privacy.plotting:
``pandas.plotting``
^^^^^^^^^^^^^^^^^^^
A new public ``pandas.plotting`` module has been added that holds plotting functionality that was previously in either ``pandas.tools.plotting`` or in the top-level namespace. See the :ref:`deprecations sections <whatsnew_0200.privacy.deprecate_plotting>` for more details.
.. _whatsnew_0200.privacy.development:
Other development changes
^^^^^^^^^^^^^^^^^^^^^^^^^
- Building pandas for development now requires ``cython >= 0.23`` (:issue:`14831`)
- Require at least 0.23 version of cython to avoid problems with character encodings (:issue:`14699`)
- Switched the test framework to use `pytest <http://doc.pytest.org/en/latest>`__ (:issue:`13097`)
- Reorganization of tests directory layout (:issue:`14854`, :issue:`15707`).
.. _whatsnew_0200.deprecations:
Deprecations
~~~~~~~~~~~~
.. _whatsnew_0200.api_breaking.deprecate_ix:
Deprecate ``.ix``
^^^^^^^^^^^^^^^^^
The ``.ix`` indexer is deprecated, in favor of the more strict ``.iloc`` and ``.loc`` indexers. ``.ix`` offers a lot of magic on the inference of what the user wants to do. More specifically, ``.ix`` can decide to index *positionally* OR via *labels*, depending on the data type of the index. This has caused quite a bit of user confusion over the years. The full indexing documentation is :ref:`here <indexing>`. (:issue:`14218`)
The recommended methods of indexing are:
- ``.loc`` if you want to *label* index
- ``.iloc`` if you want to *positionally* index.
Using ``.ix`` will now show a ``DeprecationWarning`` with a link to some examples of how to convert code `here <https://pandas.pydata.org/pandas-docs/version/1.0/user_guide/indexing.html#ix-indexer-is-deprecated>`__.
.. ipython:: python
df = pd.DataFrame({'A': [1, 2, 3],
'B': [4, 5, 6]},
index=list('abc'))
df
Previous behavior, where you wish to get the 0th and the 2nd elements from the index in the 'A' column.
.. code-block:: ipython
In [3]: df.ix[[0, 2], 'A']
Out[3]:
a 1
c 3
Name: A, dtype: int64
Using ``.loc``. Here we will select the appropriate indexes from the index, then use *label* indexing.
.. ipython:: python
df.loc[df.index[[0, 2]], 'A']
Using ``.iloc``. Here we will get the location of the 'A' column, then use *positional* indexing to select things.
.. ipython:: python
df.iloc[[0, 2], df.columns.get_loc('A')]
.. _whatsnew_0200.api_breaking.deprecate_panel:
Deprecate Panel
^^^^^^^^^^^^^^^
``Panel`` is deprecated and will be removed in a future version. The recommended way to represent 3-D data are
with a ``MultiIndex`` on a ``DataFrame`` via the :meth:`~Panel.to_frame` or with the `xarray package <http://xarray.pydata.org/en/stable/>`__. pandas
provides a :meth:`~Panel.to_xarray` method to automate this conversion (:issue:`13563`).
.. code-block:: ipython
In [133]: import pandas._testing as tm
In [134]: p = tm.makePanel()
In [135]: p
Out[135]:
<class 'pandas.core.panel.Panel'>
Dimensions: 3 (items) x 3 (major_axis) x 4 (minor_axis)
Items axis: ItemA to ItemC
Major_axis axis: 2000-01-03 00:00:00 to 2000-01-05 00:00:00
Minor_axis axis: A to D
Convert to a MultiIndex DataFrame
.. code-block:: ipython
In [136]: p.to_frame()
Out[136]:
ItemA ItemB ItemC
major minor
2000-01-03 A 0.628776 -1.409432 0.209395
B 0.988138 -1.347533 -0.896581
C -0.938153 1.272395 -0.161137
D -0.223019 -0.591863 -1.051539
2000-01-04 A 0.186494 1.422986 -0.592886
B -0.072608 0.363565 1.104352
C -1.239072 -1.449567 0.889157
D 2.123692 -0.414505 -0.319561
2000-01-05 A 0.952478 -2.147855 -1.473116
B -0.550603 -0.014752 -0.431550
C 0.139683 -1.195524 0.288377
D 0.122273 -1.425795 -0.619993
[12 rows x 3 columns]
Convert to an xarray DataArray
.. code-block:: ipython
In [137]: p.to_xarray()
Out[137]:
<xarray.DataArray (items: 3, major_axis: 3, minor_axis: 4)>
array([[[ 0.628776, 0.988138, -0.938153, -0.223019],
[ 0.186494, -0.072608, -1.239072, 2.123692],
[ 0.952478, -0.550603, 0.139683, 0.122273]],
[[-1.409432, -1.347533, 1.272395, -0.591863],
[ 1.422986, 0.363565, -1.449567, -0.414505],
[-2.147855, -0.014752, -1.195524, -1.425795]],
[[ 0.209395, -0.896581, -0.161137, -1.051539],
[-0.592886, 1.104352, 0.889157, -0.319561],
[-1.473116, -0.43155 , 0.288377, -0.619993]]])
Coordinates:
* items (items) object 'ItemA' 'ItemB' 'ItemC'
* major_axis (major_axis) datetime64[ns] 2000-01-03 2000-01-04 2000-01-05
* minor_axis (minor_axis) object 'A' 'B' 'C' 'D'
.. _whatsnew_0200.api_breaking.deprecate_group_agg_dict:
Deprecate groupby.agg() with a dictionary when renaming
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
The ``.groupby(..).agg(..)``, ``.rolling(..).agg(..)``, and ``.resample(..).agg(..)`` syntax can accept a variable of inputs, including scalars,
list, and a dict of column names to scalars or lists. This provides a useful syntax for constructing multiple
(potentially different) aggregations.
However, ``.agg(..)`` can *also* accept a dict that allows 'renaming' of the result columns. This is a complicated and confusing syntax, as well as not consistent
between ``Series`` and ``DataFrame``. We are deprecating this 'renaming' functionality.
- We are deprecating passing a dict to a grouped/rolled/resampled ``Series``. This allowed
one to ``rename`` the resulting aggregation, but this had a completely different
meaning than passing a dictionary to a grouped ``DataFrame``, which accepts column-to-aggregations.
- We are deprecating passing a dict-of-dicts to a grouped/rolled/resampled ``DataFrame`` in a similar manner.
This is an illustrative example:
.. ipython:: python
df = pd.DataFrame({'A': [1, 1, 1, 2, 2],
'B': range(5),
'C': range(5)})
df
Here is a typical useful syntax for computing different aggregations for different columns. This
is a natural, and useful syntax. We aggregate from the dict-to-list by taking the specified
columns and applying the list of functions. This returns a ``MultiIndex`` for the columns (this is *not* deprecated).
.. ipython:: python
df.groupby('A').agg({'B': 'sum', 'C': 'min'})
Here's an example of the first deprecation, passing a dict to a grouped ``Series``. This
is a combination aggregation & renaming:
.. code-block:: ipython
In [6]: df.groupby('A').B.agg({'foo': 'count'})
FutureWarning: using a dict on a Series for aggregation
is deprecated and will be removed in a future version
Out[6]:
foo
A
1 3
2 2
You can accomplish the same operation, more idiomatically by:
.. ipython:: python
df.groupby('A').B.agg(['count']).rename(columns={'count': 'foo'})
Here's an example of the second deprecation, passing a dict-of-dict to a grouped ``DataFrame``:
.. code-block:: python
In [23]: (df.groupby('A')
...: .agg({'B': {'foo': 'sum'}, 'C': {'bar': 'min'}})
...: )
FutureWarning: using a dict with renaming is deprecated and
will be removed in a future version
Out[23]:
B C
foo bar
A
1 3 0
2 7 3
You can accomplish nearly the same by:
.. ipython:: python
(df.groupby('A')
.agg({'B': 'sum', 'C': 'min'})
.rename(columns={'B': 'foo', 'C': 'bar'})
)
.. _whatsnew_0200.privacy.deprecate_plotting:
Deprecate .plotting
^^^^^^^^^^^^^^^^^^^
The ``pandas.tools.plotting`` module has been deprecated, in favor of the top level ``pandas.plotting`` module. All the public plotting functions are now available
from ``pandas.plotting`` (:issue:`12548`).
Furthermore, the top-level ``pandas.scatter_matrix`` and ``pandas.plot_params`` are deprecated.
Users can import these from ``pandas.plotting`` as well.
Previous script:
.. code-block:: python
pd.tools.plotting.scatter_matrix(df)
pd.scatter_matrix(df)
Should be changed to:
.. code-block:: python
pd.plotting.scatter_matrix(df)
.. _whatsnew_0200.deprecations.other:
Other deprecations
^^^^^^^^^^^^^^^^^^
- ``SparseArray.to_dense()`` has deprecated the ``fill`` parameter, as that parameter was not being respected (:issue:`14647`)
- ``SparseSeries.to_dense()`` has deprecated the ``sparse_only`` parameter (:issue:`14647`)
- ``Series.repeat()`` has deprecated the ``reps`` parameter in favor of ``repeats`` (:issue:`12662`)
- The ``Series`` constructor and ``.astype`` method have deprecated accepting timestamp dtypes without a frequency (e.g. ``np.datetime64``) for the ``dtype`` parameter (:issue:`15524`)
- ``Index.repeat()`` and ``MultiIndex.repeat()`` have deprecated the ``n`` parameter in favor of ``repeats`` (:issue:`12662`)
- ``Categorical.searchsorted()`` and ``Series.searchsorted()`` have deprecated the ``v`` parameter in favor of ``value`` (:issue:`12662`)
- ``TimedeltaIndex.searchsorted()``, ``DatetimeIndex.searchsorted()``, and ``PeriodIndex.searchsorted()`` have deprecated the ``key`` parameter in favor of ``value`` (:issue:`12662`)
- ``DataFrame.astype()`` has deprecated the ``raise_on_error`` parameter in favor of ``errors`` (:issue:`14878`)
- ``Series.sortlevel`` and ``DataFrame.sortlevel`` have been deprecated in favor of ``Series.sort_index`` and ``DataFrame.sort_index`` (:issue:`15099`)
- importing ``concat`` from ``pandas.tools.merge`` has been deprecated in favor of imports from the ``pandas`` namespace. This should only affect explicit imports (:issue:`15358`)
- ``Series/DataFrame/Panel.consolidate()`` been deprecated as a public method. (:issue:`15483`)
- The ``as_indexer`` keyword of ``Series.str.match()`` has been deprecated (ignored keyword) (:issue:`15257`).
- The following top-level pandas functions have been deprecated and will be removed in a future version (:issue:`13790`, :issue:`15940`)
* ``pd.pnow()``, replaced by ``Period.now()``
* ``pd.Term``, is removed, as it is not applicable to user code. Instead use in-line string expressions in the where clause when searching in HDFStore
* ``pd.Expr``, is removed, as it is not applicable to user code.
* ``pd.match()``, is removed.
* ``pd.groupby()``, replaced by using the ``.groupby()`` method directly on a ``Series/DataFrame``
* ``pd.get_store()``, replaced by a direct call to ``pd.HDFStore(...)``
- ``is_any_int_dtype``, ``is_floating_dtype``, and ``is_sequence`` are deprecated from ``pandas.api.types`` (:issue:`16042`)
.. _whatsnew_0200.prior_deprecations:
Removal of prior version deprecations/changes
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
- The ``pandas.rpy`` module is removed. Similar functionality can be accessed
through the `rpy2 <https://rpy2.readthedocs.io/>`__ project.
See the `R interfacing docs <https://pandas.pydata.org/pandas-docs/version/0.20/r_interface.html>`__ for more details.
- The ``pandas.io.ga`` module with a ``google-analytics`` interface is removed (:issue:`11308`).
Similar functionality can be found in the `Google2Pandas <https://github.com/panalysis/Google2Pandas>`__ package.
- ``pd.to_datetime`` and ``pd.to_timedelta`` have dropped the ``coerce`` parameter in favor of ``errors`` (:issue:`13602`)
- ``pandas.stats.fama_macbeth``, ``pandas.stats.ols``, ``pandas.stats.plm`` and ``pandas.stats.var``, as well as the top-level ``pandas.fama_macbeth`` and ``pandas.ols`` routines are removed. Similar functionality can be found in the `statsmodels <https://www.statsmodels.org/dev/>`__ package. (:issue:`11898`)
- The ``TimeSeries`` and ``SparseTimeSeries`` classes, aliases of ``Series``
and ``SparseSeries``, are removed (:issue:`10890`, :issue:`15098`).
- ``Series.is_time_series`` is dropped in favor of ``Series.index.is_all_dates`` (:issue:`15098`)
- The deprecated ``irow``, ``icol``, ``iget`` and ``iget_value`` methods are removed
in favor of ``iloc`` and ``iat`` as explained :ref:`here <whatsnew_0170.deprecations>` (:issue:`10711`).
- The deprecated ``DataFrame.iterkv()`` has been removed in favor of ``DataFrame.iteritems()`` (:issue:`10711`)
- The ``Categorical`` constructor has dropped the ``name`` parameter (:issue:`10632`)
- ``Categorical`` has dropped support for ``NaN`` categories (:issue:`10748`)
- The ``take_last`` parameter has been dropped from ``duplicated()``, ``drop_duplicates()``, ``nlargest()``, and ``nsmallest()`` methods (:issue:`10236`, :issue:`10792`, :issue:`10920`)
- ``Series``, ``Index``, and ``DataFrame`` have dropped the ``sort`` and ``order`` methods (:issue:`10726`)
- Where clauses in ``pytables`` are only accepted as strings and expressions types and not other data-types (:issue:`12027`)
- ``DataFrame`` has dropped the ``combineAdd`` and ``combineMult`` methods in favor of ``add`` and ``mul`` respectively (:issue:`10735`)
.. _whatsnew_0200.performance:
Performance improvements
~~~~~~~~~~~~~~~~~~~~~~~~
- Improved performance of ``pd.wide_to_long()`` (:issue:`14779`)
- Improved performance of ``pd.factorize()`` by releasing the GIL with ``object`` dtype when inferred as strings (:issue:`14859`, :issue:`16057`)
- Improved performance of timeseries plotting with an irregular DatetimeIndex
(or with ``compat_x=True``) (:issue:`15073`).
- Improved performance of ``groupby().cummin()`` and ``groupby().cummax()`` (:issue:`15048`, :issue:`15109`, :issue:`15561`, :issue:`15635`)
- Improved performance and reduced memory when indexing with a ``MultiIndex`` (:issue:`15245`)
- When reading buffer object in ``read_sas()`` method without specified format, filepath string is inferred rather than buffer object. (:issue:`14947`)
- Improved performance of ``.rank()`` for categorical data (:issue:`15498`)
- Improved performance when using ``.unstack()`` (:issue:`15503`)
- Improved performance of merge/join on ``category`` columns (:issue:`10409`)
- Improved performance of ``drop_duplicates()`` on ``bool`` columns (:issue:`12963`)
- Improve performance of ``pd.core.groupby.GroupBy.apply`` when the applied
function used the ``.name`` attribute of the group DataFrame (:issue:`15062`).
- Improved performance of ``iloc`` indexing with a list or array (:issue:`15504`).
- Improved performance of ``Series.sort_index()`` with a monotonic index (:issue:`15694`)
- Improved performance in ``pd.read_csv()`` on some platforms with buffered reads (:issue:`16039`)
.. _whatsnew_0200.bug_fixes:
Bug fixes
~~~~~~~~~
Conversion
^^^^^^^^^^
- Bug in ``Timestamp.replace`` now raises ``TypeError`` when incorrect argument names are given; previously this raised ``ValueError`` (:issue:`15240`)
- Bug in ``Timestamp.replace`` with compat for passing long integers (:issue:`15030`)
- Bug in ``Timestamp`` returning UTC based time/date attributes when a timezone was provided (:issue:`13303`, :issue:`6538`)
- Bug in ``Timestamp`` incorrectly localizing timezones during construction (:issue:`11481`, :issue:`15777`)
- Bug in ``TimedeltaIndex`` addition where overflow was being allowed without error (:issue:`14816`)
- Bug in ``TimedeltaIndex`` raising a ``ValueError`` when boolean indexing with ``loc`` (:issue:`14946`)
- Bug in catching an overflow in ``Timestamp`` + ``Timedelta/Offset`` operations (:issue:`15126`)
- Bug in ``DatetimeIndex.round()`` and ``Timestamp.round()`` floating point accuracy when rounding by milliseconds or less (:issue:`14440`, :issue:`15578`)
- Bug in ``astype()`` where ``inf`` values were incorrectly converted to integers. Now raises error now with ``astype()`` for Series and DataFrames (:issue:`14265`)
- Bug in ``DataFrame(..).apply(to_numeric)`` when values are of type decimal.Decimal. (:issue:`14827`)
- Bug in ``describe()`` when passing a numpy array which does not contain the median to the ``percentiles`` keyword argument (:issue:`14908`)
- Cleaned up ``PeriodIndex`` constructor, including raising on floats more consistently (:issue:`13277`)
- Bug in using ``__deepcopy__`` on empty NDFrame objects (:issue:`15370`)
- Bug in ``.replace()`` may result in incorrect dtypes. (:issue:`12747`, :issue:`15765`)
- Bug in ``Series.replace`` and ``DataFrame.replace`` which failed on empty replacement dicts (:issue:`15289`)
- Bug in ``Series.replace`` which replaced a numeric by string (:issue:`15743`)
- Bug in ``Index`` construction with ``NaN`` elements and integer dtype specified (:issue:`15187`)
- Bug in ``Series`` construction with a datetimetz (:issue:`14928`)
- Bug in ``Series.dt.round()`` inconsistent behaviour on ``NaT`` 's with different arguments (:issue:`14940`)
- Bug in ``Series`` constructor when both ``copy=True`` and ``dtype`` arguments are provided (:issue:`15125`)
- Incorrect dtyped ``Series`` was returned by comparison methods (e.g., ``lt``, ``gt``, ...) against a constant for an empty ``DataFrame`` (:issue:`15077`)
- Bug in ``Series.ffill()`` with mixed dtypes containing tz-aware datetimes. (:issue:`14956`)
- Bug in ``DataFrame.fillna()`` where the argument ``downcast`` was ignored when fillna value was of type ``dict`` (:issue:`15277`)
- Bug in ``.asfreq()``, where frequency was not set for empty ``Series`` (:issue:`14320`)
- Bug in ``DataFrame`` construction with nulls and datetimes in a list-like (:issue:`15869`)
- Bug in ``DataFrame.fillna()`` with tz-aware datetimes (:issue:`15855`)
- Bug in ``is_string_dtype``, ``is_timedelta64_ns_dtype``, and ``is_string_like_dtype`` in which an error was raised when ``None`` was passed in (:issue:`15941`)
- Bug in the return type of ``pd.unique`` on a ``Categorical``, which was returning an ndarray and not a ``Categorical`` (:issue:`15903`)
- Bug in ``Index.to_series()`` where the index was not copied (and so mutating later would change the original), (:issue:`15949`)
- Bug in indexing with partial string indexing with a len-1 DataFrame (:issue:`16071`)
- Bug in ``Series`` construction where passing invalid dtype didn't raise an error. (:issue:`15520`)
Indexing
^^^^^^^^
- Bug in ``Index`` power operations with reversed operands (:issue:`14973`)
- Bug in ``DataFrame.sort_values()`` when sorting by multiple columns where one column is of type ``int64`` and contains ``NaT`` (:issue:`14922`)
- Bug in ``DataFrame.reindex()`` in which ``method`` was ignored when passing ``columns`` (:issue:`14992`)
- Bug in ``DataFrame.loc`` with indexing a ``MultiIndex`` with a ``Series`` indexer (:issue:`14730`, :issue:`15424`)
- Bug in ``DataFrame.loc`` with indexing a ``MultiIndex`` with a numpy array (:issue:`15434`)
- Bug in ``Series.asof`` which raised if the series contained all ``np.nan`` (:issue:`15713`)
- Bug in ``.at`` when selecting from a tz-aware column (:issue:`15822`)
- Bug in ``Series.where()`` and ``DataFrame.where()`` where array-like conditionals were being rejected (:issue:`15414`)
- Bug in ``Series.where()`` where TZ-aware data was converted to float representation (:issue:`15701`)
- Bug in ``.loc`` that would not return the correct dtype for scalar access for a DataFrame (:issue:`11617`)
- Bug in output formatting of a ``MultiIndex`` when names are integers (:issue:`12223`, :issue:`15262`)
- Bug in ``Categorical.searchsorted()`` where alphabetical instead of the provided categorical order was used (:issue:`14522`)
- Bug in ``Series.iloc`` where a ``Categorical`` object for list-like indexes input was returned, where a ``Series`` was expected. (:issue:`14580`)
- Bug in ``DataFrame.isin`` comparing datetimelike to empty frame (:issue:`15473`)
- Bug in ``.reset_index()`` when an all ``NaN`` level of a ``MultiIndex`` would fail (:issue:`6322`)
- Bug in ``.reset_index()`` when raising error for index name already present in ``MultiIndex`` columns (:issue:`16120`)
- Bug in creating a ``MultiIndex`` with tuples and not passing a list of names; this will now raise ``ValueError`` (:issue:`15110`)
- Bug in the HTML display with a ``MultiIndex`` and truncation (:issue:`14882`)
- Bug in the display of ``.info()`` where a qualifier (+) would always be displayed with a ``MultiIndex`` that contains only non-strings (:issue:`15245`)
- Bug in ``pd.concat()`` where the names of ``MultiIndex`` of resulting ``DataFrame`` are not handled correctly when ``None`` is presented in the names of ``MultiIndex`` of input ``DataFrame`` (:issue:`15787`)
- Bug in ``DataFrame.sort_index()`` and ``Series.sort_index()`` where ``na_position`` doesn't work with a ``MultiIndex`` (:issue:`14784`, :issue:`16604`)
- Bug in ``pd.concat()`` when combining objects with a ``CategoricalIndex`` (:issue:`16111`)
- Bug in indexing with a scalar and a ``CategoricalIndex`` (:issue:`16123`)
IO
^^
- Bug in ``pd.to_numeric()`` in which float and unsigned integer elements were being improperly casted (:issue:`14941`, :issue:`15005`)
- Bug in ``pd.read_fwf()`` where the skiprows parameter was not being respected during column width inference (:issue:`11256`)
- Bug in ``pd.read_csv()`` in which the ``dialect`` parameter was not being verified before processing (:issue:`14898`)
- Bug in ``pd.read_csv()`` in which missing data was being improperly handled with ``usecols`` (:issue:`6710`)
- Bug in ``pd.read_csv()`` in which a file containing a row with many columns followed by rows with fewer columns would cause a crash (:issue:`14125`)
- Bug in ``pd.read_csv()`` for the C engine where ``usecols`` were being indexed incorrectly with ``parse_dates`` (:issue:`14792`)
- Bug in ``pd.read_csv()`` with ``parse_dates`` when multi-line headers are specified (:issue:`15376`)
- Bug in ``pd.read_csv()`` with ``float_precision='round_trip'`` which caused a segfault when a text entry is parsed (:issue:`15140`)
- Bug in ``pd.read_csv()`` when an index was specified and no values were specified as null values (:issue:`15835`)
- Bug in ``pd.read_csv()`` in which certain invalid file objects caused the Python interpreter to crash (:issue:`15337`)
- Bug in ``pd.read_csv()`` in which invalid values for ``nrows`` and ``chunksize`` were allowed (:issue:`15767`)
- Bug in ``pd.read_csv()`` for the Python engine in which unhelpful error messages were being raised when parsing errors occurred (:issue:`15910`)
- Bug in ``pd.read_csv()`` in which the ``skipfooter`` parameter was not being properly validated (:issue:`15925`)
- Bug in ``pd.to_csv()`` in which there was numeric overflow when a timestamp index was being written (:issue:`15982`)
- Bug in ``pd.util.hashing.hash_pandas_object()`` in which hashing of categoricals depended on the ordering of categories, instead of just their values. (:issue:`15143`)
- Bug in ``.to_json()`` where ``lines=True`` and contents (keys or values) contain escaped characters (:issue:`15096`)
- Bug in ``.to_json()`` causing single byte ascii characters to be expanded to four byte unicode (:issue:`15344`)
- Bug in ``.to_json()`` for the C engine where rollover was not correctly handled for case where frac is odd and diff is exactly 0.5 (:issue:`15716`, :issue:`15864`)
- Bug in ``pd.read_json()`` for Python 2 where ``lines=True`` and contents contain non-ascii unicode characters (:issue:`15132`)
- Bug in ``pd.read_msgpack()`` in which ``Series`` categoricals were being improperly processed (:issue:`14901`)
- Bug in ``pd.read_msgpack()`` which did not allow loading of a dataframe with an index of type ``CategoricalIndex`` (:issue:`15487`)
- Bug in ``pd.read_msgpack()`` when deserializing a ``CategoricalIndex`` (:issue:`15487`)
- Bug in ``DataFrame.to_records()`` with converting a ``DatetimeIndex`` with a timezone (:issue:`13937`)
- Bug in ``DataFrame.to_records()`` which failed with unicode characters in column names (:issue:`11879`)
- Bug in ``.to_sql()`` when writing a DataFrame with numeric index names (:issue:`15404`).
- Bug in ``DataFrame.to_html()`` with ``index=False`` and ``max_rows`` raising in ``IndexError`` (:issue:`14998`)
- Bug in ``pd.read_hdf()`` passing a ``Timestamp`` to the ``where`` parameter with a non date column (:issue:`15492`)
- Bug in ``DataFrame.to_stata()`` and ``StataWriter`` which produces incorrectly formatted files to be produced for some locales (:issue:`13856`)
- Bug in ``StataReader`` and ``StataWriter`` which allows invalid encodings (:issue:`15723`)
- Bug in the ``Series`` repr not showing the length when the output was truncated (:issue:`15962`).
Plotting
^^^^^^^^
- Bug in ``DataFrame.hist`` where ``plt.tight_layout`` caused an ``AttributeError`` (use ``matplotlib >= 2.0.1``) (:issue:`9351`)
- Bug in ``DataFrame.boxplot`` where ``fontsize`` was not applied to the tick labels on both axes (:issue:`15108`)
- Bug in the date and time converters pandas registers with matplotlib not handling multiple dimensions (:issue:`16026`)
- Bug in ``pd.scatter_matrix()`` could accept either ``color`` or ``c``, but not both (:issue:`14855`)
GroupBy/resample/rolling
^^^^^^^^^^^^^^^^^^^^^^^^
- Bug in ``.groupby(..).resample()`` when passed the ``on=`` kwarg. (:issue:`15021`)
- Properly set ``__name__`` and ``__qualname__`` for ``Groupby.*`` functions (:issue:`14620`)
- Bug in ``GroupBy.get_group()`` failing with a categorical grouper (:issue:`15155`)
- Bug in ``.groupby(...).rolling(...)`` when ``on`` is specified and using a ``DatetimeIndex`` (:issue:`15130`, :issue:`13966`)
- Bug in groupby operations with ``timedelta64`` when passing ``numeric_only=False`` (:issue:`5724`)
- Bug in ``groupby.apply()`` coercing ``object`` dtypes to numeric types, when not all values were numeric (:issue:`14423`, :issue:`15421`, :issue:`15670`)
- Bug in ``resample``, where a non-string ``loffset`` argument would not be applied when resampling a timeseries (:issue:`13218`)
- Bug in ``DataFrame.groupby().describe()`` when grouping on ``Index`` containing tuples (:issue:`14848`)
- Bug in ``groupby().nunique()`` with a datetimelike-grouper where bins counts were incorrect (:issue:`13453`)
- Bug in ``groupby.transform()`` that would coerce the resultant dtypes back to the original (:issue:`10972`, :issue:`11444`)
- Bug in ``groupby.agg()`` incorrectly localizing timezone on ``datetime`` (:issue:`15426`, :issue:`10668`, :issue:`13046`)
- Bug in ``.rolling/expanding()`` functions where ``count()`` was not counting ``np.Inf``, nor handling ``object`` dtypes (:issue:`12541`)
- Bug in ``.rolling()`` where ``pd.Timedelta`` or ``datetime.timedelta`` was not accepted as a ``window`` argument (:issue:`15440`)
- Bug in ``Rolling.quantile`` function that caused a segmentation fault when called with a quantile value outside of the range [0, 1] (:issue:`15463`)
- Bug in ``DataFrame.resample().median()`` if duplicate column names are present (:issue:`14233`)
Sparse
^^^^^^
- Bug in ``SparseSeries.reindex`` on single level with list of length 1 (:issue:`15447`)
- Bug in repr-formatting a ``SparseDataFrame`` after a value was set on (a copy of) one of its series (:issue:`15488`)
- Bug in ``SparseDataFrame`` construction with lists not coercing to dtype (:issue:`15682`)
- Bug in sparse array indexing in which indices were not being validated (:issue:`15863`)
Reshaping
^^^^^^^^^
- Bug in ``pd.merge_asof()`` where ``left_index`` or ``right_index`` caused a failure when multiple ``by`` was specified (:issue:`15676`)
- Bug in ``pd.merge_asof()`` where ``left_index``/``right_index`` together caused a failure when ``tolerance`` was specified (:issue:`15135`)
- Bug in ``DataFrame.pivot_table()`` where ``dropna=True`` would not drop all-NaN columns when the columns was a ``category`` dtype (:issue:`15193`)
- Bug in ``pd.melt()`` where passing a tuple value for ``value_vars`` caused a ``TypeError`` (:issue:`15348`)
- Bug in ``pd.pivot_table()`` where no error was raised when values argument was not in the columns (:issue:`14938`)
- Bug in ``pd.concat()`` in which concatenating with an empty dataframe with ``join='inner'`` was being improperly handled (:issue:`15328`)
- Bug with ``sort=True`` in ``DataFrame.join`` and ``pd.merge`` when joining on indexes (:issue:`15582`)
- Bug in ``DataFrame.nsmallest`` and ``DataFrame.nlargest`` where identical values resulted in duplicated rows (:issue:`15297`)
- Bug in :func:`pandas.pivot_table` incorrectly raising ``UnicodeError`` when passing unicode input for ``margins`` keyword (:issue:`13292`)
Numeric
^^^^^^^
- Bug in ``.rank()`` which incorrectly ranks ordered categories (:issue:`15420`)
- Bug in ``.corr()`` and ``.cov()`` where the column and index were the same object (:issue:`14617`)
- Bug in ``.mode()`` where ``mode`` was not returned if was only a single value (:issue:`15714`)
- Bug in ``pd.cut()`` with a single bin on an all 0s array (:issue:`15428`)
- Bug in ``pd.qcut()`` with a single quantile and an array with identical values (:issue:`15431`)
- Bug in ``pandas.tools.utils.cartesian_product()`` with large input can cause overflow on windows (:issue:`15265`)
- Bug in ``.eval()`` which caused multi-line evals to fail with local variables not on the first line (:issue:`15342`)
Other
^^^^^
- Compat with SciPy 0.19.0 for testing on ``.interpolate()`` (:issue:`15662`)
- Compat for 32-bit platforms for ``.qcut/cut``; bins will now be ``int64`` dtype (:issue:`14866`)
- Bug in interactions with ``Qt`` when a ``QtApplication`` already exists (:issue:`14372`)
- Avoid use of ``np.finfo()`` during ``import pandas`` removed to mitigate deadlock on Python GIL misuse (:issue:`14641`)
.. _whatsnew_0.20.0.contributors:
Contributors
~~~~~~~~~~~~
.. contributors:: v0.19.2..v0.20.0
|