1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232
|
.. _whatsnew_0210:
Version 0.21.0 (October 27, 2017)
---------------------------------
{{ header }}
.. ipython:: python
:suppress:
from pandas import * # noqa F401, F403
This is a major release from 0.20.3 and includes a number of API changes, deprecations, new features,
enhancements, and performance improvements along with a large number of bug fixes. We recommend that all
users upgrade to this version.
Highlights include:
- Integration with `Apache Parquet <https://parquet.apache.org/>`__, including a new top-level :func:`read_parquet` function and :meth:`DataFrame.to_parquet` method, see :ref:`here <whatsnew_0210.enhancements.parquet>`.
- New user-facing :class:`pandas.api.types.CategoricalDtype` for specifying
categoricals independent of the data, see :ref:`here <whatsnew_0210.enhancements.categorical_dtype>`.
- The behavior of ``sum`` and ``prod`` on all-NaN Series/DataFrames is now consistent and no longer depends on whether `bottleneck <https://bottleneck.readthedocs.io>`__ is installed, and ``sum`` and ``prod`` on empty Series now return NaN instead of 0, see :ref:`here <whatsnew_0210.api_breaking.bottleneck>`.
- Compatibility fixes for pypy, see :ref:`here <whatsnew_0210.pypy>`.
- Additions to the ``drop``, ``reindex`` and ``rename`` API to make them more consistent, see :ref:`here <whatsnew_0210.enhancements.drop_api>`.
- Addition of the new methods ``DataFrame.infer_objects`` (see :ref:`here <whatsnew_0210.enhancements.infer_objects>`) and ``GroupBy.pipe`` (see :ref:`here <whatsnew_0210.enhancements.GroupBy_pipe>`).
- Indexing with a list of labels, where one or more of the labels is missing, is deprecated and will raise a KeyError in a future version, see :ref:`here <whatsnew_0210.api_breaking.loc>`.
Check the :ref:`API Changes <whatsnew_0210.api_breaking>` and :ref:`deprecations <whatsnew_0210.deprecations>` before updating.
.. contents:: What's new in v0.21.0
:local:
:backlinks: none
:depth: 2
.. _whatsnew_0210.enhancements:
New features
~~~~~~~~~~~~
.. _whatsnew_0210.enhancements.parquet:
Integration with Apache Parquet file format
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Integration with `Apache Parquet <https://parquet.apache.org/>`__, including a new top-level :func:`read_parquet` and :func:`DataFrame.to_parquet` method, see :ref:`here <io.parquet>` (:issue:`15838`, :issue:`17438`).
`Apache Parquet <https://parquet.apache.org/>`__ provides a cross-language, binary file format for reading and writing data frames efficiently.
Parquet is designed to faithfully serialize and de-serialize ``DataFrame`` s, supporting all of the pandas
dtypes, including extension dtypes such as datetime with timezones.
This functionality depends on either the `pyarrow <http://arrow.apache.org/docs/python/>`__ or `fastparquet <https://fastparquet.readthedocs.io/en/latest/>`__ library.
For more details, see :ref:`the IO docs on Parquet <io.parquet>`.
.. _whatsnew_0210.enhancements.infer_objects:
Method ``infer_objects`` type conversion
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
The :meth:`DataFrame.infer_objects` and :meth:`Series.infer_objects`
methods have been added to perform dtype inference on object columns, replacing
some of the functionality of the deprecated ``convert_objects``
method. See the documentation :ref:`here <basics.object_conversion>`
for more details. (:issue:`11221`)
This method only performs soft conversions on object columns, converting Python objects
to native types, but not any coercive conversions. For example:
.. ipython:: python
df = pd.DataFrame({'A': [1, 2, 3],
'B': np.array([1, 2, 3], dtype='object'),
'C': ['1', '2', '3']})
df.dtypes
df.infer_objects().dtypes
Note that column ``'C'`` was not converted - only scalar numeric types
will be converted to a new type. Other types of conversion should be accomplished
using the :func:`to_numeric` function (or :func:`to_datetime`, :func:`to_timedelta`).
.. ipython:: python
df = df.infer_objects()
df['C'] = pd.to_numeric(df['C'], errors='coerce')
df.dtypes
.. _whatsnew_0210.enhancements.attribute_access:
Improved warnings when attempting to create columns
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
New users are often puzzled by the relationship between column operations and
attribute access on ``DataFrame`` instances (:issue:`7175`). One specific
instance of this confusion is attempting to create a new column by setting an
attribute on the ``DataFrame``:
.. code-block:: ipython
In [1]: df = pd.DataFrame({'one': [1., 2., 3.]})
In [2]: df.two = [4, 5, 6]
This does not raise any obvious exceptions, but also does not create a new column:
.. code-block:: ipython
In [3]: df
Out[3]:
one
0 1.0
1 2.0
2 3.0
Setting a list-like data structure into a new attribute now raises a ``UserWarning`` about the potential for unexpected behavior. See :ref:`Attribute Access <indexing.attribute_access>`.
.. _whatsnew_0210.enhancements.drop_api:
Method ``drop`` now also accepts index/columns keywords
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
The :meth:`~DataFrame.drop` method has gained ``index``/``columns`` keywords as an
alternative to specifying the ``axis``. This is similar to the behavior of ``reindex``
(:issue:`12392`).
For example:
.. ipython:: python
df = pd.DataFrame(np.arange(8).reshape(2, 4),
columns=['A', 'B', 'C', 'D'])
df
df.drop(['B', 'C'], axis=1)
# the following is now equivalent
df.drop(columns=['B', 'C'])
.. _whatsnew_0210.enhancements.rename_reindex_axis:
Methods ``rename``, ``reindex`` now also accept axis keyword
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
The :meth:`DataFrame.rename` and :meth:`DataFrame.reindex` methods have gained
the ``axis`` keyword to specify the axis to target with the operation
(:issue:`12392`).
Here's ``rename``:
.. ipython:: python
df = pd.DataFrame({"A": [1, 2, 3], "B": [4, 5, 6]})
df.rename(str.lower, axis='columns')
df.rename(id, axis='index')
And ``reindex``:
.. ipython:: python
df.reindex(['A', 'B', 'C'], axis='columns')
df.reindex([0, 1, 3], axis='index')
The "index, columns" style continues to work as before.
.. ipython:: python
df.rename(index=id, columns=str.lower)
df.reindex(index=[0, 1, 3], columns=['A', 'B', 'C'])
We *highly* encourage using named arguments to avoid confusion when using either
style.
.. _whatsnew_0210.enhancements.categorical_dtype:
``CategoricalDtype`` for specifying categoricals
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
:class:`pandas.api.types.CategoricalDtype` has been added to the public API and
expanded to include the ``categories`` and ``ordered`` attributes. A
``CategoricalDtype`` can be used to specify the set of categories and
orderedness of an array, independent of the data. This can be useful for example,
when converting string data to a ``Categorical`` (:issue:`14711`,
:issue:`15078`, :issue:`16015`, :issue:`17643`):
.. ipython:: python
from pandas.api.types import CategoricalDtype
s = pd.Series(['a', 'b', 'c', 'a']) # strings
dtype = CategoricalDtype(categories=['a', 'b', 'c', 'd'], ordered=True)
s.astype(dtype)
One place that deserves special mention is in :meth:`read_csv`. Previously, with
``dtype={'col': 'category'}``, the returned values and categories would always
be strings.
.. ipython:: python
:suppress:
from io import StringIO
.. ipython:: python
data = 'A,B\na,1\nb,2\nc,3'
pd.read_csv(StringIO(data), dtype={'B': 'category'}).B.cat.categories
Notice the "object" dtype.
With a ``CategoricalDtype`` of all numerics, datetimes, or
timedeltas, we can automatically convert to the correct type
.. ipython:: python
dtype = {'B': CategoricalDtype([1, 2, 3])}
pd.read_csv(StringIO(data), dtype=dtype).B.cat.categories
The values have been correctly interpreted as integers.
The ``.dtype`` property of a ``Categorical``, ``CategoricalIndex`` or a
``Series`` with categorical type will now return an instance of
``CategoricalDtype``. While the repr has changed, ``str(CategoricalDtype())`` is
still the string ``'category'``. We'll take this moment to remind users that the
*preferred* way to detect categorical data is to use
:func:`pandas.api.types.is_categorical_dtype`, and not ``str(dtype) == 'category'``.
See the :ref:`CategoricalDtype docs <categorical.categoricaldtype>` for more.
.. _whatsnew_0210.enhancements.GroupBy_pipe:
``GroupBy`` objects now have a ``pipe`` method
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
``GroupBy`` objects now have a ``pipe`` method, similar to the one on
``DataFrame`` and ``Series``, that allow for functions that take a
``GroupBy`` to be composed in a clean, readable syntax. (:issue:`17871`)
For a concrete example on combining ``.groupby`` and ``.pipe`` , imagine having a
DataFrame with columns for stores, products, revenue and sold quantity. We'd like to
do a groupwise calculation of *prices* (i.e. revenue/quantity) per store and per product.
We could do this in a multi-step operation, but expressing it in terms of piping can make the
code more readable.
First we set the data:
.. ipython:: python
import numpy as np
n = 1000
df = pd.DataFrame({'Store': np.random.choice(['Store_1', 'Store_2'], n),
'Product': np.random.choice(['Product_1',
'Product_2',
'Product_3'
], n),
'Revenue': (np.random.random(n) * 50 + 10).round(2),
'Quantity': np.random.randint(1, 10, size=n)})
df.head(2)
Now, to find prices per store/product, we can simply do:
.. ipython:: python
(df.groupby(['Store', 'Product'])
.pipe(lambda grp: grp.Revenue.sum() / grp.Quantity.sum())
.unstack().round(2))
See the :ref:`documentation <groupby.pipe>` for more.
.. _whatsnew_0210.enhancements.rename_categories:
``Categorical.rename_categories`` accepts a dict-like
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
:meth:`~Series.cat.rename_categories` now accepts a dict-like argument for
``new_categories``. The previous categories are looked up in the dictionary's
keys and replaced if found. The behavior of missing and extra keys is the same
as in :meth:`DataFrame.rename`.
.. ipython:: python
c = pd.Categorical(['a', 'a', 'b'])
c.rename_categories({"a": "eh", "b": "bee"})
.. warning::
To assist with upgrading pandas, ``rename_categories`` treats ``Series`` as
list-like. Typically, Series are considered to be dict-like (e.g. in
``.rename``, ``.map``). In a future version of pandas ``rename_categories``
will change to treat them as dict-like. Follow the warning message's
recommendations for writing future-proof code.
.. code-block:: ipython
In [33]: c.rename_categories(pd.Series([0, 1], index=['a', 'c']))
FutureWarning: Treating Series 'new_categories' as a list-like and using the values.
In a future version, 'rename_categories' will treat Series like a dictionary.
For dict-like, use 'new_categories.to_dict()'
For list-like, use 'new_categories.values'.
Out[33]:
[0, 0, 1]
Categories (2, int64): [0, 1]
.. _whatsnew_0210.enhancements.other:
Other enhancements
^^^^^^^^^^^^^^^^^^
New functions or methods
""""""""""""""""""""""""
- :meth:`.Resampler.nearest` is added to support nearest-neighbor upsampling (:issue:`17496`).
- :class:`~pandas.Index` has added support for a ``to_frame`` method (:issue:`15230`).
New keywords
""""""""""""
- Added a ``skipna`` parameter to :func:`~pandas.api.types.infer_dtype` to
support type inference in the presence of missing values (:issue:`17059`).
- :func:`Series.to_dict` and :func:`DataFrame.to_dict` now support an ``into`` keyword which allows you to specify the ``collections.Mapping`` subclass that you would like returned. The default is ``dict``, which is backwards compatible. (:issue:`16122`)
- :func:`Series.set_axis` and :func:`DataFrame.set_axis` now support the ``inplace`` parameter. (:issue:`14636`)
- :func:`Series.to_pickle` and :func:`DataFrame.to_pickle` have gained a ``protocol`` parameter (:issue:`16252`). By default, this parameter is set to `HIGHEST_PROTOCOL <https://docs.python.org/3/library/pickle.html#data-stream-format>`__
- :func:`read_feather` has gained the ``nthreads`` parameter for multi-threaded operations (:issue:`16359`)
- :func:`DataFrame.clip()` and :func:`Series.clip()` have gained an ``inplace`` argument. (:issue:`15388`)
- :func:`crosstab` has gained a ``margins_name`` parameter to define the name of the row / column that will contain the totals when ``margins=True``. (:issue:`15972`)
- :func:`read_json` now accepts a ``chunksize`` parameter that can be used when ``lines=True``. If ``chunksize`` is passed, read_json now returns an iterator which reads in ``chunksize`` lines with each iteration. (:issue:`17048`)
- :func:`read_json` and :func:`~DataFrame.to_json` now accept a ``compression`` argument which allows them to transparently handle compressed files. (:issue:`17798`)
Various enhancements
""""""""""""""""""""
- Improved the import time of pandas by about 2.25x. (:issue:`16764`)
- Support for `PEP 519 -- Adding a file system path protocol
<https://www.python.org/dev/peps/pep-0519/>`_ on most readers (e.g.
:func:`read_csv`) and writers (e.g. :meth:`DataFrame.to_csv`) (:issue:`13823`).
- Added a ``__fspath__`` method to ``pd.HDFStore``, ``pd.ExcelFile``,
and ``pd.ExcelWriter`` to work properly with the file system path protocol (:issue:`13823`).
- The ``validate`` argument for :func:`merge` now checks whether a merge is one-to-one, one-to-many, many-to-one, or many-to-many. If a merge is found to not be an example of specified merge type, an exception of type ``MergeError`` will be raised. For more, see :ref:`here <merging.validation>` (:issue:`16270`)
- Added support for `PEP 518 <https://www.python.org/dev/peps/pep-0518/>`_ (``pyproject.toml``) to the build system (:issue:`16745`)
- :func:`RangeIndex.append` now returns a ``RangeIndex`` object when possible (:issue:`16212`)
- :func:`Series.rename_axis` and :func:`DataFrame.rename_axis` with ``inplace=True`` now return ``None`` while renaming the axis inplace. (:issue:`15704`)
- :func:`api.types.infer_dtype` now infers decimals. (:issue:`15690`)
- :func:`DataFrame.select_dtypes` now accepts scalar values for include/exclude as well as list-like. (:issue:`16855`)
- :func:`date_range` now accepts 'YS' in addition to 'AS' as an alias for start of year. (:issue:`9313`)
- :func:`date_range` now accepts 'Y' in addition to 'A' as an alias for end of year. (:issue:`9313`)
- :func:`DataFrame.add_prefix` and :func:`DataFrame.add_suffix` now accept strings containing the '%' character. (:issue:`17151`)
- Read/write methods that infer compression (:func:`read_csv`, :func:`read_table`, :func:`read_pickle`, and :meth:`~DataFrame.to_pickle`) can now infer from path-like objects, such as ``pathlib.Path``. (:issue:`17206`)
- :func:`read_sas` now recognizes much more of the most frequently used date (datetime) formats in SAS7BDAT files. (:issue:`15871`)
- :func:`DataFrame.items` and :func:`Series.items` are now present in both Python 2 and 3 and is lazy in all cases. (:issue:`13918`, :issue:`17213`)
- :meth:`pandas.io.formats.style.Styler.where` has been implemented as a convenience for :meth:`pandas.io.formats.style.Styler.applymap`. (:issue:`17474`)
- :func:`MultiIndex.is_monotonic_decreasing` has been implemented. Previously returned ``False`` in all cases. (:issue:`16554`)
- :func:`read_excel` raises ``ImportError`` with a better message if ``xlrd`` is not installed. (:issue:`17613`)
- :meth:`DataFrame.assign` will preserve the original order of ``**kwargs`` for Python 3.6+ users instead of sorting the column names. (:issue:`14207`)
- :func:`Series.reindex`, :func:`DataFrame.reindex`, :func:`Index.get_indexer` now support list-like argument for ``tolerance``. (:issue:`17367`)
.. _whatsnew_0210.api_breaking:
Backwards incompatible API changes
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. _whatsnew_0210.api_breaking.deps:
Dependencies have increased minimum versions
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
We have updated our minimum supported versions of dependencies (:issue:`15206`, :issue:`15543`, :issue:`15214`).
If installed, we now require:
+--------------+-----------------+----------+
| Package | Minimum Version | Required |
+==============+=================+==========+
| Numpy | 1.9.0 | X |
+--------------+-----------------+----------+
| Matplotlib | 1.4.3 | |
+--------------+-----------------+----------+
| Scipy | 0.14.0 | |
+--------------+-----------------+----------+
| Bottleneck | 1.0.0 | |
+--------------+-----------------+----------+
Additionally, support has been dropped for Python 3.4 (:issue:`15251`).
.. _whatsnew_0210.api_breaking.bottleneck:
Sum/prod of all-NaN or empty Series/DataFrames is now consistently NaN
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.. note::
The changes described here have been partially reverted. See
the :ref:`v0.22.0 Whatsnew <whatsnew_0220>` for more.
The behavior of ``sum`` and ``prod`` on all-NaN Series/DataFrames no longer depends on
whether `bottleneck <https://bottleneck.readthedocs.io>`__ is installed, and return value of ``sum`` and ``prod`` on an empty Series has changed (:issue:`9422`, :issue:`15507`).
Calling ``sum`` or ``prod`` on an empty or all-``NaN`` ``Series``, or columns of a ``DataFrame``, will result in ``NaN``. See the :ref:`docs <missing_data.calculations>`.
.. ipython:: python
s = pd.Series([np.nan])
Previously WITHOUT ``bottleneck`` installed:
.. code-block:: ipython
In [2]: s.sum()
Out[2]: np.nan
Previously WITH ``bottleneck``:
.. code-block:: ipython
In [2]: s.sum()
Out[2]: 0.0
New behavior, without regard to the bottleneck installation:
.. ipython:: python
s.sum()
Note that this also changes the sum of an empty ``Series``. Previously this always returned 0 regardless of a ``bottleneck`` installation:
.. code-block:: ipython
In [1]: pd.Series([]).sum()
Out[1]: 0
but for consistency with the all-NaN case, this was changed to return 0 as well:
.. code-block:: ipython
In [2]: pd.Series([]).sum()
Out[2]: 0
.. _whatsnew_0210.api_breaking.loc:
Indexing with a list with missing labels is deprecated
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Previously, selecting with a list of labels, where one or more labels were missing would always succeed, returning ``NaN`` for missing labels.
This will now show a ``FutureWarning``. In the future this will raise a ``KeyError`` (:issue:`15747`).
This warning will trigger on a ``DataFrame`` or a ``Series`` for using ``.loc[]`` or ``[[]]`` when passing a list-of-labels with at least 1 missing label.
.. ipython:: python
s = pd.Series([1, 2, 3])
s
Previous behavior
.. code-block:: ipython
In [4]: s.loc[[1, 2, 3]]
Out[4]:
1 2.0
2 3.0
3 NaN
dtype: float64
Current behavior
.. code-block:: ipython
In [4]: s.loc[[1, 2, 3]]
Passing list-likes to .loc or [] with any missing label will raise
KeyError in the future, you can use .reindex() as an alternative.
See the documentation here:
https://pandas.pydata.org/pandas-docs/stable/indexing.html#deprecate-loc-reindex-listlike
Out[4]:
1 2.0
2 3.0
3 NaN
dtype: float64
The idiomatic way to achieve selecting potentially not-found elements is via ``.reindex()``
.. ipython:: python
s.reindex([1, 2, 3])
Selection with all keys found is unchanged.
.. ipython:: python
s.loc[[1, 2]]
.. _whatsnew_0210.api.na_changes:
NA naming changes
^^^^^^^^^^^^^^^^^
In order to promote more consistency among the pandas API, we have added additional top-level
functions :func:`isna` and :func:`notna` that are aliases for :func:`isnull` and :func:`notnull`.
The naming scheme is now more consistent with methods like ``.dropna()`` and ``.fillna()``. Furthermore
in all cases where ``.isnull()`` and ``.notnull()`` methods are defined, these have additional methods
named ``.isna()`` and ``.notna()``, these are included for classes ``Categorical``,
``Index``, ``Series``, and ``DataFrame``. (:issue:`15001`).
The configuration option ``pd.options.mode.use_inf_as_null`` is deprecated, and ``pd.options.mode.use_inf_as_na`` is added as a replacement.
.. _whatsnew_0210.api_breaking.iteration_scalars:
Iteration of Series/Index will now return Python scalars
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Previously, when using certain iteration methods for a ``Series`` with dtype ``int`` or ``float``, you would receive a ``numpy`` scalar, e.g. a ``np.int64``, rather than a Python ``int``. Issue (:issue:`10904`) corrected this for ``Series.tolist()`` and ``list(Series)``. This change makes all iteration methods consistent, in particular, for ``__iter__()`` and ``.map()``; note that this only affects int/float dtypes. (:issue:`13236`, :issue:`13258`, :issue:`14216`).
.. ipython:: python
s = pd.Series([1, 2, 3])
s
Previously:
.. code-block:: ipython
In [2]: type(list(s)[0])
Out[2]: numpy.int64
New behavior:
.. ipython:: python
type(list(s)[0])
Furthermore this will now correctly box the results of iteration for :func:`DataFrame.to_dict` as well.
.. ipython:: python
d = {'a': [1], 'b': ['b']}
df = pd.DataFrame(d)
Previously:
.. code-block:: ipython
In [8]: type(df.to_dict()['a'][0])
Out[8]: numpy.int64
New behavior:
.. ipython:: python
type(df.to_dict()['a'][0])
.. _whatsnew_0210.api_breaking.loc_with_index:
Indexing with a Boolean Index
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Previously when passing a boolean ``Index`` to ``.loc``, if the index of the ``Series/DataFrame`` had ``boolean`` labels,
you would get a label based selection, potentially duplicating result labels, rather than a boolean indexing selection
(where ``True`` selects elements), this was inconsistent how a boolean numpy array indexed. The new behavior is to
act like a boolean numpy array indexer. (:issue:`17738`)
Previous behavior:
.. ipython:: python
s = pd.Series([1, 2, 3], index=[False, True, False])
s
.. code-block:: ipython
In [59]: s.loc[pd.Index([True, False, True])]
Out[59]:
True 2
False 1
False 3
True 2
dtype: int64
Current behavior
.. ipython:: python
s.loc[pd.Index([True, False, True])]
Furthermore, previously if you had an index that was non-numeric (e.g. strings), then a boolean Index would raise a ``KeyError``.
This will now be treated as a boolean indexer.
Previously behavior:
.. ipython:: python
s = pd.Series([1, 2, 3], index=['a', 'b', 'c'])
s
.. code-block:: ipython
In [39]: s.loc[pd.Index([True, False, True])]
KeyError: "None of [Index([True, False, True], dtype='object')] are in the [index]"
Current behavior
.. ipython:: python
s.loc[pd.Index([True, False, True])]
.. _whatsnew_0210.api_breaking.period_index_resampling:
``PeriodIndex`` resampling
^^^^^^^^^^^^^^^^^^^^^^^^^^
In previous versions of pandas, resampling a ``Series``/``DataFrame`` indexed by a ``PeriodIndex`` returned a ``DatetimeIndex`` in some cases (:issue:`12884`). Resampling to a multiplied frequency now returns a ``PeriodIndex`` (:issue:`15944`). As a minor enhancement, resampling a ``PeriodIndex`` can now handle ``NaT`` values (:issue:`13224`)
Previous behavior:
.. code-block:: ipython
In [1]: pi = pd.period_range('2017-01', periods=12, freq='M')
In [2]: s = pd.Series(np.arange(12), index=pi)
In [3]: resampled = s.resample('2Q').mean()
In [4]: resampled
Out[4]:
2017-03-31 1.0
2017-09-30 5.5
2018-03-31 10.0
Freq: 2Q-DEC, dtype: float64
In [5]: resampled.index
Out[5]: DatetimeIndex(['2017-03-31', '2017-09-30', '2018-03-31'], dtype='datetime64[ns]', freq='2Q-DEC')
New behavior:
.. code-block:: ipython
In [1]: pi = pd.period_range('2017-01', periods=12, freq='M')
In [2]: s = pd.Series(np.arange(12), index=pi)
In [3]: resampled = s.resample('2Q').mean()
In [4]: resampled
Out[4]:
2017Q1 2.5
2017Q3 8.5
Freq: 2Q-DEC, dtype: float64
In [5]: resampled.index
Out[5]: PeriodIndex(['2017Q1', '2017Q3'], dtype='period[2Q-DEC]')
Upsampling and calling ``.ohlc()`` previously returned a ``Series``, basically identical to calling ``.asfreq()``. OHLC upsampling now returns a DataFrame with columns ``open``, ``high``, ``low`` and ``close`` (:issue:`13083`). This is consistent with downsampling and ``DatetimeIndex`` behavior.
Previous behavior:
.. code-block:: ipython
In [1]: pi = pd.period_range(start='2000-01-01', freq='D', periods=10)
In [2]: s = pd.Series(np.arange(10), index=pi)
In [3]: s.resample('H').ohlc()
Out[3]:
2000-01-01 00:00 0.0
...
2000-01-10 23:00 NaN
Freq: H, Length: 240, dtype: float64
In [4]: s.resample('M').ohlc()
Out[4]:
open high low close
2000-01 0 9 0 9
New behavior:
.. code-block:: ipython
In [56]: pi = pd.period_range(start='2000-01-01', freq='D', periods=10)
In [57]: s = pd.Series(np.arange(10), index=pi)
In [58]: s.resample('H').ohlc()
Out[58]:
open high low close
2000-01-01 00:00 0.0 0.0 0.0 0.0
2000-01-01 01:00 NaN NaN NaN NaN
2000-01-01 02:00 NaN NaN NaN NaN
2000-01-01 03:00 NaN NaN NaN NaN
2000-01-01 04:00 NaN NaN NaN NaN
... ... ... ... ...
2000-01-10 19:00 NaN NaN NaN NaN
2000-01-10 20:00 NaN NaN NaN NaN
2000-01-10 21:00 NaN NaN NaN NaN
2000-01-10 22:00 NaN NaN NaN NaN
2000-01-10 23:00 NaN NaN NaN NaN
[240 rows x 4 columns]
In [59]: s.resample('M').ohlc()
Out[59]:
open high low close
2000-01 0 9 0 9
[1 rows x 4 columns]
.. _whatsnew_0210.api_breaking.pandas_eval:
Improved error handling during item assignment in pd.eval
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
:func:`eval` will now raise a ``ValueError`` when item assignment malfunctions, or
inplace operations are specified, but there is no item assignment in the expression (:issue:`16732`)
.. ipython:: python
arr = np.array([1, 2, 3])
Previously, if you attempted the following expression, you would get a not very helpful error message:
.. code-block:: ipython
In [3]: pd.eval("a = 1 + 2", target=arr, inplace=True)
...
IndexError: only integers, slices (`:`), ellipsis (`...`), numpy.newaxis (`None`)
and integer or boolean arrays are valid indices
This is a very long way of saying numpy arrays don't support string-item indexing. With this
change, the error message is now this:
.. code-block:: python
In [3]: pd.eval("a = 1 + 2", target=arr, inplace=True)
...
ValueError: Cannot assign expression output to target
It also used to be possible to evaluate expressions inplace, even if there was no item assignment:
.. code-block:: ipython
In [4]: pd.eval("1 + 2", target=arr, inplace=True)
Out[4]: 3
However, this input does not make much sense because the output is not being assigned to
the target. Now, a ``ValueError`` will be raised when such an input is passed in:
.. code-block:: ipython
In [4]: pd.eval("1 + 2", target=arr, inplace=True)
...
ValueError: Cannot operate inplace if there is no assignment
.. _whatsnew_0210.api_breaking.dtype_conversions:
Dtype conversions
^^^^^^^^^^^^^^^^^
Previously assignments, ``.where()`` and ``.fillna()`` with a ``bool`` assignment, would coerce to same the type (e.g. int / float), or raise for datetimelikes. These will now preserve the bools with ``object`` dtypes. (:issue:`16821`).
.. ipython:: python
s = pd.Series([1, 2, 3])
.. code-block:: python
In [5]: s[1] = True
In [6]: s
Out[6]:
0 1
1 1
2 3
dtype: int64
New behavior
.. code-block:: ipython
In [7]: s[1] = True
In [8]: s
Out[8]:
0 1
1 True
2 3
Length: 3, dtype: object
Previously, as assignment to a datetimelike with a non-datetimelike would coerce the
non-datetime-like item being assigned (:issue:`14145`).
.. ipython:: python
s = pd.Series([pd.Timestamp('2011-01-01'), pd.Timestamp('2012-01-01')])
.. code-block:: python
In [1]: s[1] = 1
In [2]: s
Out[2]:
0 2011-01-01 00:00:00.000000000
1 1970-01-01 00:00:00.000000001
dtype: datetime64[ns]
These now coerce to ``object`` dtype.
.. code-block:: python
In [1]: s[1] = 1
In [2]: s
Out[2]:
0 2011-01-01 00:00:00
1 1
dtype: object
- Inconsistent behavior in ``.where()`` with datetimelikes which would raise rather than coerce to ``object`` (:issue:`16402`)
- Bug in assignment against ``int64`` data with ``np.ndarray`` with ``float64`` dtype may keep ``int64`` dtype (:issue:`14001`)
.. _whatsnew_210.api.multiindex_single:
MultiIndex constructor with a single level
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
The ``MultiIndex`` constructors no longer squeezes a MultiIndex with all
length-one levels down to a regular ``Index``. This affects all the
``MultiIndex`` constructors. (:issue:`17178`)
Previous behavior:
.. code-block:: ipython
In [2]: pd.MultiIndex.from_tuples([('a',), ('b',)])
Out[2]: Index(['a', 'b'], dtype='object')
Length 1 levels are no longer special-cased. They behave exactly as if you had
length 2+ levels, so a :class:`MultiIndex` is always returned from all of the
``MultiIndex`` constructors:
.. ipython:: python
pd.MultiIndex.from_tuples([('a',), ('b',)])
.. _whatsnew_0210.api.utc_localization_with_series:
UTC localization with Series
^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Previously, :func:`to_datetime` did not localize datetime ``Series`` data when ``utc=True`` was passed. Now, :func:`to_datetime` will correctly localize ``Series`` with a ``datetime64[ns, UTC]`` dtype to be consistent with how list-like and ``Index`` data are handled. (:issue:`6415`).
Previous behavior
.. ipython:: python
s = pd.Series(['20130101 00:00:00'] * 3)
.. code-block:: ipython
In [12]: pd.to_datetime(s, utc=True)
Out[12]:
0 2013-01-01
1 2013-01-01
2 2013-01-01
dtype: datetime64[ns]
New behavior
.. ipython:: python
pd.to_datetime(s, utc=True)
Additionally, DataFrames with datetime columns that were parsed by :func:`read_sql_table` and :func:`read_sql_query` will also be localized to UTC only if the original SQL columns were timezone aware datetime columns.
.. _whatsnew_0210.api.consistency_of_range_functions:
Consistency of range functions
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
In previous versions, there were some inconsistencies between the various range functions: :func:`date_range`, :func:`bdate_range`, :func:`period_range`, :func:`timedelta_range`, and :func:`interval_range`. (:issue:`17471`).
One of the inconsistent behaviors occurred when the ``start``, ``end`` and ``period`` parameters were all specified, potentially leading to ambiguous ranges. When all three parameters were passed, ``interval_range`` ignored the ``period`` parameter, ``period_range`` ignored the ``end`` parameter, and the other range functions raised. To promote consistency among the range functions, and avoid potentially ambiguous ranges, ``interval_range`` and ``period_range`` will now raise when all three parameters are passed.
Previous behavior:
.. code-block:: ipython
In [2]: pd.interval_range(start=0, end=4, periods=6)
Out[2]:
IntervalIndex([(0, 1], (1, 2], (2, 3]]
closed='right',
dtype='interval[int64]')
In [3]: pd.period_range(start='2017Q1', end='2017Q4', periods=6, freq='Q')
Out[3]: PeriodIndex(['2017Q1', '2017Q2', '2017Q3', '2017Q4', '2018Q1', '2018Q2'], dtype='period[Q-DEC]', freq='Q-DEC')
New behavior:
.. code-block:: ipython
In [2]: pd.interval_range(start=0, end=4, periods=6)
---------------------------------------------------------------------------
ValueError: Of the three parameters: start, end, and periods, exactly two must be specified
In [3]: pd.period_range(start='2017Q1', end='2017Q4', periods=6, freq='Q')
---------------------------------------------------------------------------
ValueError: Of the three parameters: start, end, and periods, exactly two must be specified
Additionally, the endpoint parameter ``end`` was not included in the intervals produced by ``interval_range``. However, all other range functions include ``end`` in their output. To promote consistency among the range functions, ``interval_range`` will now include ``end`` as the right endpoint of the final interval, except if ``freq`` is specified in a way which skips ``end``.
Previous behavior:
.. code-block:: ipython
In [4]: pd.interval_range(start=0, end=4)
Out[4]:
IntervalIndex([(0, 1], (1, 2], (2, 3]]
closed='right',
dtype='interval[int64]')
New behavior:
.. ipython:: python
pd.interval_range(start=0, end=4)
.. _whatsnew_0210.api.mpl_converters:
No automatic Matplotlib converters
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
pandas no longer registers our ``date``, ``time``, ``datetime``,
``datetime64``, and ``Period`` converters with matplotlib when pandas is
imported. Matplotlib plot methods (``plt.plot``, ``ax.plot``, ...), will not
nicely format the x-axis for ``DatetimeIndex`` or ``PeriodIndex`` values. You
must explicitly register these methods:
pandas built-in ``Series.plot`` and ``DataFrame.plot`` *will* register these
converters on first-use (:issue:`17710`).
.. note::
This change has been temporarily reverted in pandas 0.21.1,
for more details see :ref:`here <whatsnew_0211.converters>`.
.. _whatsnew_0210.api:
Other API changes
^^^^^^^^^^^^^^^^^
- The Categorical constructor no longer accepts a scalar for the ``categories`` keyword. (:issue:`16022`)
- Accessing a non-existent attribute on a closed :class:`~pandas.HDFStore` will now
raise an ``AttributeError`` rather than a ``ClosedFileError`` (:issue:`16301`)
- :func:`read_csv` now issues a ``UserWarning`` if the ``names`` parameter contains duplicates (:issue:`17095`)
- :func:`read_csv` now treats ``'null'`` and ``'n/a'`` strings as missing values by default (:issue:`16471`, :issue:`16078`)
- :class:`pandas.HDFStore`'s string representation is now faster and less detailed. For the previous behavior, use ``pandas.HDFStore.info()``. (:issue:`16503`).
- Compression defaults in HDF stores now follow pytables standards. Default is no compression and if ``complib`` is missing and ``complevel`` > 0 ``zlib`` is used (:issue:`15943`)
- ``Index.get_indexer_non_unique()`` now returns a ndarray indexer rather than an ``Index``; this is consistent with ``Index.get_indexer()`` (:issue:`16819`)
- Removed the ``@slow`` decorator from ``pandas._testing``, which caused issues for some downstream packages' test suites. Use ``@pytest.mark.slow`` instead, which achieves the same thing (:issue:`16850`)
- Moved definition of ``MergeError`` to the ``pandas.errors`` module.
- The signature of :func:`Series.set_axis` and :func:`DataFrame.set_axis` has been changed from ``set_axis(axis, labels)`` to ``set_axis(labels, axis=0)``, for consistency with the rest of the API. The old signature is deprecated and will show a ``FutureWarning`` (:issue:`14636`)
- :func:`Series.argmin` and :func:`Series.argmax` will now raise a ``TypeError`` when used with ``object`` dtypes, instead of a ``ValueError`` (:issue:`13595`)
- :class:`Period` is now immutable, and will now raise an ``AttributeError`` when a user tries to assign a new value to the ``ordinal`` or ``freq`` attributes (:issue:`17116`).
- :func:`to_datetime` when passed a tz-aware ``origin=`` kwarg will now raise a more informative ``ValueError`` rather than a ``TypeError`` (:issue:`16842`)
- :func:`to_datetime` now raises a ``ValueError`` when format includes ``%W`` or ``%U`` without also including day of the week and calendar year (:issue:`16774`)
- Renamed non-functional ``index`` to ``index_col`` in :func:`read_stata` to improve API consistency (:issue:`16342`)
- Bug in :func:`DataFrame.drop` caused boolean labels ``False`` and ``True`` to be treated as labels 0 and 1 respectively when dropping indices from a numeric index. This will now raise a ValueError (:issue:`16877`)
- Restricted DateOffset keyword arguments. Previously, ``DateOffset`` subclasses allowed arbitrary keyword arguments which could lead to unexpected behavior. Now, only valid arguments will be accepted. (:issue:`17176`).
.. _whatsnew_0210.deprecations:
Deprecations
~~~~~~~~~~~~
- :meth:`DataFrame.from_csv` and :meth:`Series.from_csv` have been deprecated in favor of :func:`read_csv()` (:issue:`4191`)
- :func:`read_excel()` has deprecated ``sheetname`` in favor of ``sheet_name`` for consistency with ``.to_excel()`` (:issue:`10559`).
- :func:`read_excel()` has deprecated ``parse_cols`` in favor of ``usecols`` for consistency with :func:`read_csv` (:issue:`4988`)
- :func:`read_csv()` has deprecated the ``tupleize_cols`` argument. Column tuples will always be converted to a ``MultiIndex`` (:issue:`17060`)
- :meth:`DataFrame.to_csv` has deprecated the ``tupleize_cols`` argument. MultiIndex columns will be always written as rows in the CSV file (:issue:`17060`)
- The ``convert`` parameter has been deprecated in the ``.take()`` method, as it was not being respected (:issue:`16948`)
- ``pd.options.html.border`` has been deprecated in favor of ``pd.options.display.html.border`` (:issue:`15793`).
- :func:`SeriesGroupBy.nth` has deprecated ``True`` in favor of ``'all'`` for its kwarg ``dropna`` (:issue:`11038`).
- :func:`DataFrame.as_blocks` is deprecated, as this is exposing the internal implementation (:issue:`17302`)
- ``pd.TimeGrouper`` is deprecated in favor of :class:`pandas.Grouper` (:issue:`16747`)
- ``cdate_range`` has been deprecated in favor of :func:`bdate_range`, which has gained ``weekmask`` and ``holidays`` parameters for building custom frequency date ranges. See the :ref:`documentation <timeseries.custom-freq-ranges>` for more details (:issue:`17596`)
- passing ``categories`` or ``ordered`` kwargs to :func:`Series.astype` is deprecated, in favor of passing a :ref:`CategoricalDtype <whatsnew_0210.enhancements.categorical_dtype>` (:issue:`17636`)
- ``.get_value`` and ``.set_value`` on ``Series``, ``DataFrame``, ``Panel``, ``SparseSeries``, and ``SparseDataFrame`` are deprecated in favor of using ``.iat[]`` or ``.at[]`` accessors (:issue:`15269`)
- Passing a non-existent column in ``.to_excel(..., columns=)`` is deprecated and will raise a ``KeyError`` in the future (:issue:`17295`)
- ``raise_on_error`` parameter to :func:`Series.where`, :func:`Series.mask`, :func:`DataFrame.where`, :func:`DataFrame.mask` is deprecated, in favor of ``errors=`` (:issue:`14968`)
- Using :meth:`DataFrame.rename_axis` and :meth:`Series.rename_axis` to alter index or column *labels* is now deprecated in favor of using ``.rename``. ``rename_axis`` may still be used to alter the name of the index or columns (:issue:`17833`).
- :meth:`~DataFrame.reindex_axis` has been deprecated in favor of :meth:`~DataFrame.reindex`. See :ref:`here <whatsnew_0210.enhancements.rename_reindex_axis>` for more (:issue:`17833`).
.. _whatsnew_0210.deprecations.select:
Series.select and DataFrame.select
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
The :meth:`Series.select` and :meth:`DataFrame.select` methods are deprecated in favor of using ``df.loc[labels.map(crit)]`` (:issue:`12401`)
.. ipython:: python
df = pd.DataFrame({'A': [1, 2, 3]}, index=['foo', 'bar', 'baz'])
.. code-block:: ipython
In [3]: df.select(lambda x: x in ['bar', 'baz'])
FutureWarning: select is deprecated and will be removed in a future release. You can use .loc[crit] as a replacement
Out[3]:
A
bar 2
baz 3
.. ipython:: python
df.loc[df.index.map(lambda x: x in ['bar', 'baz'])]
.. _whatsnew_0210.deprecations.argmin_min:
Series.argmax and Series.argmin
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
The behavior of :func:`Series.argmax` and :func:`Series.argmin` have been deprecated in favor of :func:`Series.idxmax` and :func:`Series.idxmin`, respectively (:issue:`16830`).
For compatibility with NumPy arrays, ``pd.Series`` implements ``argmax`` and
``argmin``. Since pandas 0.13.0, ``argmax`` has been an alias for
:meth:`pandas.Series.idxmax`, and ``argmin`` has been an alias for
:meth:`pandas.Series.idxmin`. They return the *label* of the maximum or minimum,
rather than the *position*.
We've deprecated the current behavior of ``Series.argmax`` and
``Series.argmin``. Using either of these will emit a ``FutureWarning``. Use
:meth:`Series.idxmax` if you want the label of the maximum. Use
``Series.values.argmax()`` if you want the position of the maximum. Likewise for
the minimum. In a future release ``Series.argmax`` and ``Series.argmin`` will
return the position of the maximum or minimum.
.. _whatsnew_0210.prior_deprecations:
Removal of prior version deprecations/changes
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
- :func:`read_excel()` has dropped the ``has_index_names`` parameter (:issue:`10967`)
- The ``pd.options.display.height`` configuration has been dropped (:issue:`3663`)
- The ``pd.options.display.line_width`` configuration has been dropped (:issue:`2881`)
- The ``pd.options.display.mpl_style`` configuration has been dropped (:issue:`12190`)
- ``Index`` has dropped the ``.sym_diff()`` method in favor of ``.symmetric_difference()`` (:issue:`12591`)
- ``Categorical`` has dropped the ``.order()`` and ``.sort()`` methods in favor of ``.sort_values()`` (:issue:`12882`)
- :func:`eval` and :func:`DataFrame.eval` have changed the default of ``inplace`` from ``None`` to ``False`` (:issue:`11149`)
- The function ``get_offset_name`` has been dropped in favor of the ``.freqstr`` attribute for an offset (:issue:`11834`)
- pandas no longer tests for compatibility with hdf5-files created with pandas < 0.11 (:issue:`17404`).
.. _whatsnew_0210.performance:
Performance improvements
~~~~~~~~~~~~~~~~~~~~~~~~
- Improved performance of instantiating :class:`SparseDataFrame` (:issue:`16773`)
- :attr:`Series.dt` no longer performs frequency inference, yielding a large speedup when accessing the attribute (:issue:`17210`)
- Improved performance of :meth:`~Series.cat.set_categories` by not materializing the values (:issue:`17508`)
- :attr:`Timestamp.microsecond` no longer re-computes on attribute access (:issue:`17331`)
- Improved performance of the :class:`CategoricalIndex` for data that is already categorical dtype (:issue:`17513`)
- Improved performance of :meth:`RangeIndex.min` and :meth:`RangeIndex.max` by using ``RangeIndex`` properties to perform the computations (:issue:`17607`)
.. _whatsnew_0210.docs:
Documentation changes
~~~~~~~~~~~~~~~~~~~~~
- Several ``NaT`` method docstrings (e.g. :func:`NaT.ctime`) were incorrect (:issue:`17327`)
- The documentation has had references to versions < v0.17 removed and cleaned up (:issue:`17442`, :issue:`17442`, :issue:`17404` & :issue:`17504`)
.. _whatsnew_0210.bug_fixes:
Bug fixes
~~~~~~~~~
Conversion
^^^^^^^^^^
- Bug in assignment against datetime-like data with ``int`` may incorrectly convert to datetime-like (:issue:`14145`)
- Bug in assignment against ``int64`` data with ``np.ndarray`` with ``float64`` dtype may keep ``int64`` dtype (:issue:`14001`)
- Fixed the return type of ``IntervalIndex.is_non_overlapping_monotonic`` to be a Python ``bool`` for consistency with similar attributes/methods. Previously returned a ``numpy.bool_``. (:issue:`17237`)
- Bug in ``IntervalIndex.is_non_overlapping_monotonic`` when intervals are closed on both sides and overlap at a point (:issue:`16560`)
- Bug in :func:`Series.fillna` returns frame when ``inplace=True`` and ``value`` is dict (:issue:`16156`)
- Bug in :attr:`Timestamp.weekday_name` returning a UTC-based weekday name when localized to a timezone (:issue:`17354`)
- Bug in ``Timestamp.replace`` when replacing ``tzinfo`` around DST changes (:issue:`15683`)
- Bug in ``Timedelta`` construction and arithmetic that would not propagate the ``Overflow`` exception (:issue:`17367`)
- Bug in :meth:`~DataFrame.astype` converting to object dtype when passed extension type classes (``DatetimeTZDtype``, ``CategoricalDtype``) rather than instances. Now a ``TypeError`` is raised when a class is passed (:issue:`17780`).
- Bug in :meth:`to_numeric` in which elements were not always being coerced to numeric when ``errors='coerce'`` (:issue:`17007`, :issue:`17125`)
- Bug in ``DataFrame`` and ``Series`` constructors where ``range`` objects are converted to ``int32`` dtype on Windows instead of ``int64`` (:issue:`16804`)
Indexing
^^^^^^^^
- When called with a null slice (e.g. ``df.iloc[:]``), the ``.iloc`` and ``.loc`` indexers return a shallow copy of the original object. Previously they returned the original object. (:issue:`13873`).
- When called on an unsorted ``MultiIndex``, the ``loc`` indexer now will raise ``UnsortedIndexError`` only if proper slicing is used on non-sorted levels (:issue:`16734`).
- Fixes regression in 0.20.3 when indexing with a string on a ``TimedeltaIndex`` (:issue:`16896`).
- Fixed :func:`TimedeltaIndex.get_loc` handling of ``np.timedelta64`` inputs (:issue:`16909`).
- Fix :func:`MultiIndex.sort_index` ordering when ``ascending`` argument is a list, but not all levels are specified, or are in a different order (:issue:`16934`).
- Fixes bug where indexing with ``np.inf`` caused an ``OverflowError`` to be raised (:issue:`16957`)
- Bug in reindexing on an empty ``CategoricalIndex`` (:issue:`16770`)
- Fixes ``DataFrame.loc`` for setting with alignment and tz-aware ``DatetimeIndex`` (:issue:`16889`)
- Avoids ``IndexError`` when passing an Index or Series to ``.iloc`` with older numpy (:issue:`17193`)
- Allow unicode empty strings as placeholders in multilevel columns in Python 2 (:issue:`17099`)
- Bug in ``.iloc`` when used with inplace addition or assignment and an int indexer on a ``MultiIndex`` causing the wrong indexes to be read from and written to (:issue:`17148`)
- Bug in ``.isin()`` in which checking membership in empty ``Series`` objects raised an error (:issue:`16991`)
- Bug in ``CategoricalIndex`` reindexing in which specified indices containing duplicates were not being respected (:issue:`17323`)
- Bug in intersection of ``RangeIndex`` with negative step (:issue:`17296`)
- Bug in ``IntervalIndex`` where performing a scalar lookup fails for included right endpoints of non-overlapping monotonic decreasing indexes (:issue:`16417`, :issue:`17271`)
- Bug in :meth:`DataFrame.first_valid_index` and :meth:`DataFrame.last_valid_index` when no valid entry (:issue:`17400`)
- Bug in :func:`Series.rename` when called with a callable, incorrectly alters the name of the ``Series``, rather than the name of the ``Index``. (:issue:`17407`)
- Bug in :func:`String.str_get` raises ``IndexError`` instead of inserting NaNs when using a negative index. (:issue:`17704`)
IO
^^
- Bug in :func:`read_hdf` when reading a timezone aware index from ``fixed`` format HDFStore (:issue:`17618`)
- Bug in :func:`read_csv` in which columns were not being thoroughly de-duplicated (:issue:`17060`)
- Bug in :func:`read_csv` in which specified column names were not being thoroughly de-duplicated (:issue:`17095`)
- Bug in :func:`read_csv` in which non integer values for the header argument generated an unhelpful / unrelated error message (:issue:`16338`)
- Bug in :func:`read_csv` in which memory management issues in exception handling, under certain conditions, would cause the interpreter to segfault (:issue:`14696`, :issue:`16798`).
- Bug in :func:`read_csv` when called with ``low_memory=False`` in which a CSV with at least one column > 2GB in size would incorrectly raise a ``MemoryError`` (:issue:`16798`).
- Bug in :func:`read_csv` when called with a single-element list ``header`` would return a ``DataFrame`` of all NaN values (:issue:`7757`)
- Bug in :meth:`DataFrame.to_csv` defaulting to 'ascii' encoding in Python 3, instead of 'utf-8' (:issue:`17097`)
- Bug in :func:`read_stata` where value labels could not be read when using an iterator (:issue:`16923`)
- Bug in :func:`read_stata` where the index was not set (:issue:`16342`)
- Bug in :func:`read_html` where import check fails when run in multiple threads (:issue:`16928`)
- Bug in :func:`read_csv` where automatic delimiter detection caused a ``TypeError`` to be thrown when a bad line was encountered rather than the correct error message (:issue:`13374`)
- Bug in :meth:`DataFrame.to_html` with ``notebook=True`` where DataFrames with named indices or non-MultiIndex indices had undesired horizontal or vertical alignment for column or row labels, respectively (:issue:`16792`)
- Bug in :meth:`DataFrame.to_html` in which there was no validation of the ``justify`` parameter (:issue:`17527`)
- Bug in :func:`HDFStore.select` when reading a contiguous mixed-data table featuring VLArray (:issue:`17021`)
- Bug in :func:`to_json` where several conditions (including objects with unprintable symbols, objects with deep recursion, overlong labels) caused segfaults instead of raising the appropriate exception (:issue:`14256`)
Plotting
^^^^^^^^
- Bug in plotting methods using ``secondary_y`` and ``fontsize`` not setting secondary axis font size (:issue:`12565`)
- Bug when plotting ``timedelta`` and ``datetime`` dtypes on y-axis (:issue:`16953`)
- Line plots no longer assume monotonic x data when calculating xlims, they show the entire lines now even for unsorted x data. (:issue:`11310`, :issue:`11471`)
- With matplotlib 2.0.0 and above, calculation of x limits for line plots is left to matplotlib, so that its new default settings are applied. (:issue:`15495`)
- Bug in ``Series.plot.bar`` or ``DataFrame.plot.bar`` with ``y`` not respecting user-passed ``color`` (:issue:`16822`)
- Bug causing ``plotting.parallel_coordinates`` to reset the random seed when using random colors (:issue:`17525`)
GroupBy/resample/rolling
^^^^^^^^^^^^^^^^^^^^^^^^
- Bug in ``DataFrame.resample(...).size()`` where an empty ``DataFrame`` did not return a ``Series`` (:issue:`14962`)
- Bug in :func:`infer_freq` causing indices with 2-day gaps during the working week to be wrongly inferred as business daily (:issue:`16624`)
- Bug in ``.rolling(...).quantile()`` which incorrectly used different defaults than :func:`Series.quantile()` and :func:`DataFrame.quantile()` (:issue:`9413`, :issue:`16211`)
- Bug in ``groupby.transform()`` that would coerce boolean dtypes back to float (:issue:`16875`)
- Bug in ``Series.resample(...).apply()`` where an empty ``Series`` modified the source index and did not return the name of a ``Series`` (:issue:`14313`)
- Bug in ``.rolling(...).apply(...)`` with a ``DataFrame`` with a ``DatetimeIndex``, a ``window`` of a timedelta-convertible and ``min_periods >= 1`` (:issue:`15305`)
- Bug in ``DataFrame.groupby`` where index and column keys were not recognized correctly when the number of keys equaled the number of elements on the groupby axis (:issue:`16859`)
- Bug in ``groupby.nunique()`` with ``TimeGrouper`` which cannot handle ``NaT`` correctly (:issue:`17575`)
- Bug in ``DataFrame.groupby`` where a single level selection from a ``MultiIndex`` unexpectedly sorts (:issue:`17537`)
- Bug in ``DataFrame.groupby`` where spurious warning is raised when ``Grouper`` object is used to override ambiguous column name (:issue:`17383`)
- Bug in ``TimeGrouper`` differs when passes as a list and as a scalar (:issue:`17530`)
Sparse
^^^^^^
- Bug in ``SparseSeries`` raises ``AttributeError`` when a dictionary is passed in as data (:issue:`16905`)
- Bug in :func:`SparseDataFrame.fillna` not filling all NaNs when frame was instantiated from SciPy sparse matrix (:issue:`16112`)
- Bug in :func:`SparseSeries.unstack` and :func:`SparseDataFrame.stack` (:issue:`16614`, :issue:`15045`)
- Bug in :func:`make_sparse` treating two numeric/boolean data, which have same bits, as same when array ``dtype`` is ``object`` (:issue:`17574`)
- :func:`SparseArray.all` and :func:`SparseArray.any` are now implemented to handle ``SparseArray``, these were used but not implemented (:issue:`17570`)
Reshaping
^^^^^^^^^
- Joining/Merging with a non unique ``PeriodIndex`` raised a ``TypeError`` (:issue:`16871`)
- Bug in :func:`crosstab` where non-aligned series of integers were casted to float (:issue:`17005`)
- Bug in merging with categorical dtypes with datetimelikes incorrectly raised a ``TypeError`` (:issue:`16900`)
- Bug when using :func:`isin` on a large object series and large comparison array (:issue:`16012`)
- Fixes regression from 0.20, :func:`Series.aggregate` and :func:`DataFrame.aggregate` allow dictionaries as return values again (:issue:`16741`)
- Fixes dtype of result with integer dtype input, from :func:`pivot_table` when called with ``margins=True`` (:issue:`17013`)
- Bug in :func:`crosstab` where passing two ``Series`` with the same name raised a ``KeyError`` (:issue:`13279`)
- :func:`Series.argmin`, :func:`Series.argmax`, and their counterparts on ``DataFrame`` and groupby objects work correctly with floating point data that contains infinite values (:issue:`13595`).
- Bug in :func:`unique` where checking a tuple of strings raised a ``TypeError`` (:issue:`17108`)
- Bug in :func:`concat` where order of result index was unpredictable if it contained non-comparable elements (:issue:`17344`)
- Fixes regression when sorting by multiple columns on a ``datetime64`` dtype ``Series`` with ``NaT`` values (:issue:`16836`)
- Bug in :func:`pivot_table` where the result's columns did not preserve the categorical dtype of ``columns`` when ``dropna`` was ``False`` (:issue:`17842`)
- Bug in ``DataFrame.drop_duplicates`` where dropping with non-unique column names raised a ``ValueError`` (:issue:`17836`)
- Bug in :func:`unstack` which, when called on a list of levels, would discard the ``fillna`` argument (:issue:`13971`)
- Bug in the alignment of ``range`` objects and other list-likes with ``DataFrame`` leading to operations being performed row-wise instead of column-wise (:issue:`17901`)
Numeric
^^^^^^^
- Bug in ``.clip()`` with ``axis=1`` and a list-like for ``threshold`` is passed; previously this raised ``ValueError`` (:issue:`15390`)
- :func:`Series.clip()` and :func:`DataFrame.clip()` now treat NA values for upper and lower arguments as ``None`` instead of raising ``ValueError`` (:issue:`17276`).
Categorical
^^^^^^^^^^^
- Bug in :func:`Series.isin` when called with a categorical (:issue:`16639`)
- Bug in the categorical constructor with empty values and categories causing the ``.categories`` to be an empty ``Float64Index`` rather than an empty ``Index`` with object dtype (:issue:`17248`)
- Bug in categorical operations with :ref:`Series.cat <categorical.cat>` not preserving the original Series' name (:issue:`17509`)
- Bug in :func:`DataFrame.merge` failing for categorical columns with boolean/int data types (:issue:`17187`)
- Bug in constructing a ``Categorical``/``CategoricalDtype`` when the specified ``categories`` are of categorical type (:issue:`17884`).
.. _whatsnew_0210.pypy:
PyPy
^^^^
- Compatibility with PyPy in :func:`read_csv` with ``usecols=[<unsorted ints>]`` and
:func:`read_json` (:issue:`17351`)
- Split tests into cases for CPython and PyPy where needed, which highlights the fragility
of index matching with ``float('nan')``, ``np.nan`` and ``NAT`` (:issue:`17351`)
- Fix :func:`DataFrame.memory_usage` to support PyPy. Objects on PyPy do not have a fixed size,
so an approximation is used instead (:issue:`17228`)
Other
^^^^^
- Bug where some inplace operators were not being wrapped and produced a copy when invoked (:issue:`12962`)
- Bug in :func:`eval` where the ``inplace`` parameter was being incorrectly handled (:issue:`16732`)
.. _whatsnew_0.21.0.contributors:
Contributors
~~~~~~~~~~~~
.. contributors:: v0.20.3..v0.21.0
|