1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272
|
.. _whatsnew_0220:
Version 0.22.0 (December 29, 2017)
----------------------------------
{{ header }}
.. ipython:: python
:suppress:
from pandas import * # noqa F401, F403
This is a major release from 0.21.1 and includes a single, API-breaking change.
We recommend that all users upgrade to this version after carefully reading the
release note (singular!).
.. _whatsnew_0220.api_breaking:
Backwards incompatible API changes
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
pandas 0.22.0 changes the handling of empty and all-*NA* sums and products. The
summary is that
* The sum of an empty or all-*NA* ``Series`` is now ``0``
* The product of an empty or all-*NA* ``Series`` is now ``1``
* We've added a ``min_count`` parameter to ``.sum()`` and ``.prod()`` controlling
the minimum number of valid values for the result to be valid. If fewer than
``min_count`` non-*NA* values are present, the result is *NA*. The default is
``0``. To return ``NaN``, the 0.21 behavior, use ``min_count=1``.
Some background: In pandas 0.21, we fixed a long-standing inconsistency
in the return value of all-*NA* series depending on whether or not bottleneck
was installed. See :ref:`whatsnew_0210.api_breaking.bottleneck`. At the same
time, we changed the sum and prod of an empty ``Series`` to also be ``NaN``.
Based on feedback, we've partially reverted those changes.
Arithmetic operations
^^^^^^^^^^^^^^^^^^^^^
The default sum for empty or all-*NA* ``Series`` is now ``0``.
*pandas 0.21.x*
.. code-block:: ipython
In [1]: pd.Series([]).sum()
Out[1]: nan
In [2]: pd.Series([np.nan]).sum()
Out[2]: nan
*pandas 0.22.0*
.. ipython:: python
:okwarning:
pd.Series([]).sum()
pd.Series([np.nan]).sum()
The default behavior is the same as pandas 0.20.3 with bottleneck installed. It
also matches the behavior of NumPy's ``np.nansum`` on empty and all-*NA* arrays.
To have the sum of an empty series return ``NaN`` (the default behavior of
pandas 0.20.3 without bottleneck, or pandas 0.21.x), use the ``min_count``
keyword.
.. ipython:: python
:okwarning:
pd.Series([]).sum(min_count=1)
Thanks to the ``skipna`` parameter, the ``.sum`` on an all-*NA*
series is conceptually the same as the ``.sum`` of an empty one with
``skipna=True`` (the default).
.. ipython:: python
pd.Series([np.nan]).sum(min_count=1) # skipna=True by default
The ``min_count`` parameter refers to the minimum number of *non-null* values
required for a non-NA sum or product.
:meth:`Series.prod` has been updated to behave the same as :meth:`Series.sum`,
returning ``1`` instead.
.. ipython:: python
:okwarning:
pd.Series([]).prod()
pd.Series([np.nan]).prod()
pd.Series([]).prod(min_count=1)
These changes affect :meth:`DataFrame.sum` and :meth:`DataFrame.prod` as well.
Finally, a few less obvious places in pandas are affected by this change.
Grouping by a Categorical
^^^^^^^^^^^^^^^^^^^^^^^^^
Grouping by a ``Categorical`` and summing now returns ``0`` instead of
``NaN`` for categories with no observations. The product now returns ``1``
instead of ``NaN``.
*pandas 0.21.x*
.. code-block:: ipython
In [8]: grouper = pd.Categorical(['a', 'a'], categories=['a', 'b'])
In [9]: pd.Series([1, 2]).groupby(grouper, observed=False).sum()
Out[9]:
a 3.0
b NaN
dtype: float64
*pandas 0.22*
.. ipython:: python
grouper = pd.Categorical(["a", "a"], categories=["a", "b"])
pd.Series([1, 2]).groupby(grouper, observed=False).sum()
To restore the 0.21 behavior of returning ``NaN`` for unobserved groups,
use ``min_count>=1``.
.. ipython:: python
pd.Series([1, 2]).groupby(grouper, observed=False).sum(min_count=1)
Resample
^^^^^^^^
The sum and product of all-*NA* bins has changed from ``NaN`` to ``0`` for
sum and ``1`` for product.
*pandas 0.21.x*
.. code-block:: ipython
In [11]: s = pd.Series([1, 1, np.nan, np.nan],
....: index=pd.date_range('2017', periods=4))
....: s
Out[11]:
2017-01-01 1.0
2017-01-02 1.0
2017-01-03 NaN
2017-01-04 NaN
Freq: D, dtype: float64
In [12]: s.resample('2d').sum()
Out[12]:
2017-01-01 2.0
2017-01-03 NaN
Freq: 2D, dtype: float64
*pandas 0.22.0*
.. ipython:: python
s = pd.Series([1, 1, np.nan, np.nan], index=pd.date_range("2017", periods=4))
s.resample("2d").sum()
To restore the 0.21 behavior of returning ``NaN``, use ``min_count>=1``.
.. ipython:: python
s.resample("2d").sum(min_count=1)
In particular, upsampling and taking the sum or product is affected, as
upsampling introduces missing values even if the original series was
entirely valid.
*pandas 0.21.x*
.. code-block:: ipython
In [14]: idx = pd.DatetimeIndex(['2017-01-01', '2017-01-02'])
In [15]: pd.Series([1, 2], index=idx).resample('12H').sum()
Out[15]:
2017-01-01 00:00:00 1.0
2017-01-01 12:00:00 NaN
2017-01-02 00:00:00 2.0
Freq: 12H, dtype: float64
*pandas 0.22.0*
.. code-block:: ipython
In [14]: idx = pd.DatetimeIndex(["2017-01-01", "2017-01-02"])
In [15]: pd.Series([1, 2], index=idx).resample("12H").sum()
Out[15]:
2017-01-01 00:00:00 1
2017-01-01 12:00:00 0
2017-01-02 00:00:00 2
Freq: 12H, Length: 3, dtype: int64
Once again, the ``min_count`` keyword is available to restore the 0.21 behavior.
.. code-block:: ipython
In [16]: pd.Series([1, 2], index=idx).resample("12H").sum(min_count=1)
Out[16]:
2017-01-01 00:00:00 1.0
2017-01-01 12:00:00 NaN
2017-01-02 00:00:00 2.0
Freq: 12H, Length: 3, dtype: float64
Rolling and expanding
^^^^^^^^^^^^^^^^^^^^^
Rolling and expanding already have a ``min_periods`` keyword that behaves
similar to ``min_count``. The only case that changes is when doing a rolling
or expanding sum with ``min_periods=0``. Previously this returned ``NaN``,
when fewer than ``min_periods`` non-*NA* values were in the window. Now it
returns ``0``.
*pandas 0.21.1*
.. code-block:: ipython
In [17]: s = pd.Series([np.nan, np.nan])
In [18]: s.rolling(2, min_periods=0).sum()
Out[18]:
0 NaN
1 NaN
dtype: float64
*pandas 0.22.0*
.. ipython:: python
s = pd.Series([np.nan, np.nan])
s.rolling(2, min_periods=0).sum()
The default behavior of ``min_periods=None``, implying that ``min_periods``
equals the window size, is unchanged.
Compatibility
~~~~~~~~~~~~~
If you maintain a library that should work across pandas versions, it
may be easiest to exclude pandas 0.21 from your requirements. Otherwise, all your
``sum()`` calls would need to check if the ``Series`` is empty before summing.
With setuptools, in your ``setup.py`` use::
install_requires=['pandas!=0.21.*', ...]
With conda, use
.. code-block:: yaml
requirements:
run:
- pandas !=0.21.0,!=0.21.1
Note that the inconsistency in the return value for all-*NA* series is still
there for pandas 0.20.3 and earlier. Avoiding pandas 0.21 will only help with
the empty case.
.. _whatsnew_0.22.0.contributors:
Contributors
~~~~~~~~~~~~
.. contributors:: v0.21.1..v0.22.0
|