File: v0.22.0.rst

package info (click to toggle)
pandas 2.2.3%2Bdfsg-9
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 66,784 kB
  • sloc: python: 422,228; ansic: 9,190; sh: 270; xml: 102; makefile: 83
file content (272 lines) | stat: -rw-r--r-- 7,084 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
.. _whatsnew_0220:

Version 0.22.0 (December 29, 2017)
----------------------------------

{{ header }}

.. ipython:: python
   :suppress:

   from pandas import *  # noqa F401, F403


This is a major release from 0.21.1 and includes a single, API-breaking change.
We recommend that all users upgrade to this version after carefully reading the
release note (singular!).

.. _whatsnew_0220.api_breaking:

Backwards incompatible API changes
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

pandas 0.22.0 changes the handling of empty and all-*NA* sums and products. The
summary is that

* The sum of an empty or all-*NA* ``Series`` is now ``0``
* The product of an empty or all-*NA* ``Series`` is now ``1``
* We've added a ``min_count`` parameter to ``.sum()`` and ``.prod()`` controlling
  the minimum number of valid values for the result to be valid. If fewer than
  ``min_count`` non-*NA* values are present, the result is *NA*. The default is
  ``0``. To return ``NaN``, the 0.21 behavior, use ``min_count=1``.

Some background: In pandas 0.21, we fixed a long-standing inconsistency
in the return value of all-*NA* series depending on whether or not bottleneck
was installed. See :ref:`whatsnew_0210.api_breaking.bottleneck`. At the same
time, we changed the sum and prod of an empty ``Series`` to also be ``NaN``.

Based on feedback, we've partially reverted those changes.

Arithmetic operations
^^^^^^^^^^^^^^^^^^^^^

The default sum for empty or all-*NA* ``Series`` is now ``0``.

*pandas 0.21.x*

.. code-block:: ipython

   In [1]: pd.Series([]).sum()
   Out[1]: nan

   In [2]: pd.Series([np.nan]).sum()
   Out[2]: nan

*pandas 0.22.0*

.. ipython:: python
   :okwarning:

   pd.Series([]).sum()
   pd.Series([np.nan]).sum()

The default behavior is the same as pandas 0.20.3 with bottleneck installed. It
also matches the behavior of NumPy's ``np.nansum`` on empty and all-*NA* arrays.

To have the sum of an empty series return ``NaN`` (the default behavior of
pandas 0.20.3 without bottleneck, or pandas 0.21.x), use the ``min_count``
keyword.

.. ipython:: python
   :okwarning:

   pd.Series([]).sum(min_count=1)

Thanks to the ``skipna`` parameter, the ``.sum`` on an all-*NA*
series is conceptually the same as the ``.sum`` of an empty one with
``skipna=True`` (the default).

.. ipython:: python

   pd.Series([np.nan]).sum(min_count=1)  # skipna=True by default

The ``min_count`` parameter refers to the minimum number of *non-null* values
required for a non-NA sum or product.

:meth:`Series.prod` has been updated to behave the same as :meth:`Series.sum`,
returning ``1`` instead.

.. ipython:: python
   :okwarning:

   pd.Series([]).prod()
   pd.Series([np.nan]).prod()
   pd.Series([]).prod(min_count=1)

These changes affect :meth:`DataFrame.sum` and :meth:`DataFrame.prod` as well.
Finally, a few less obvious places in pandas are affected by this change.

Grouping by a Categorical
^^^^^^^^^^^^^^^^^^^^^^^^^

Grouping by a ``Categorical`` and summing now returns ``0`` instead of
``NaN`` for categories with no observations. The product now returns ``1``
instead of ``NaN``.

*pandas 0.21.x*

.. code-block:: ipython

   In [8]: grouper = pd.Categorical(['a', 'a'], categories=['a', 'b'])

   In [9]: pd.Series([1, 2]).groupby(grouper, observed=False).sum()
   Out[9]:
   a    3.0
   b    NaN
   dtype: float64

*pandas 0.22*

.. ipython:: python

   grouper = pd.Categorical(["a", "a"], categories=["a", "b"])
   pd.Series([1, 2]).groupby(grouper, observed=False).sum()

To restore the 0.21 behavior of returning ``NaN`` for unobserved groups,
use ``min_count>=1``.

.. ipython:: python

   pd.Series([1, 2]).groupby(grouper, observed=False).sum(min_count=1)

Resample
^^^^^^^^

The sum and product of all-*NA* bins has changed from ``NaN`` to ``0`` for
sum and ``1`` for product.

*pandas 0.21.x*

.. code-block:: ipython

   In [11]: s = pd.Series([1, 1, np.nan, np.nan],
      ....:               index=pd.date_range('2017', periods=4))
      ....: s
   Out[11]:
   2017-01-01    1.0
   2017-01-02    1.0
   2017-01-03    NaN
   2017-01-04    NaN
   Freq: D, dtype: float64

   In [12]: s.resample('2d').sum()
   Out[12]:
   2017-01-01    2.0
   2017-01-03    NaN
   Freq: 2D, dtype: float64

*pandas 0.22.0*

.. ipython:: python

   s = pd.Series([1, 1, np.nan, np.nan], index=pd.date_range("2017", periods=4))
   s.resample("2d").sum()

To restore the 0.21 behavior of returning ``NaN``, use ``min_count>=1``.

.. ipython:: python

   s.resample("2d").sum(min_count=1)

In particular, upsampling and taking the sum or product is affected, as
upsampling introduces missing values even if the original series was
entirely valid.

*pandas 0.21.x*

.. code-block:: ipython

   In [14]: idx = pd.DatetimeIndex(['2017-01-01', '2017-01-02'])

   In [15]: pd.Series([1, 2], index=idx).resample('12H').sum()
   Out[15]:
   2017-01-01 00:00:00    1.0
   2017-01-01 12:00:00    NaN
   2017-01-02 00:00:00    2.0
   Freq: 12H, dtype: float64

*pandas 0.22.0*

.. code-block:: ipython

   In [14]: idx = pd.DatetimeIndex(["2017-01-01", "2017-01-02"])
   In [15]: pd.Series([1, 2], index=idx).resample("12H").sum()
   Out[15]:
   2017-01-01 00:00:00    1
   2017-01-01 12:00:00    0
   2017-01-02 00:00:00    2
   Freq: 12H, Length: 3, dtype: int64

Once again, the ``min_count`` keyword is available to restore the 0.21 behavior.

.. code-block:: ipython

   In [16]: pd.Series([1, 2], index=idx).resample("12H").sum(min_count=1)
   Out[16]:
   2017-01-01 00:00:00    1.0
   2017-01-01 12:00:00    NaN
   2017-01-02 00:00:00    2.0
   Freq: 12H, Length: 3, dtype: float64


Rolling and expanding
^^^^^^^^^^^^^^^^^^^^^

Rolling and expanding already have a ``min_periods`` keyword that behaves
similar to ``min_count``. The only case that changes is when doing a rolling
or expanding sum with ``min_periods=0``. Previously this returned ``NaN``,
when fewer than ``min_periods`` non-*NA* values were in the window. Now it
returns ``0``.

*pandas 0.21.1*

.. code-block:: ipython

   In [17]: s = pd.Series([np.nan, np.nan])

   In [18]: s.rolling(2, min_periods=0).sum()
   Out[18]:
   0   NaN
   1   NaN
   dtype: float64

*pandas 0.22.0*

.. ipython:: python

   s = pd.Series([np.nan, np.nan])
   s.rolling(2, min_periods=0).sum()

The default behavior of ``min_periods=None``, implying that ``min_periods``
equals the window size, is unchanged.

Compatibility
~~~~~~~~~~~~~

If you maintain a library that should work across pandas versions, it
may be easiest to exclude pandas 0.21 from your requirements. Otherwise, all your
``sum()`` calls would need to check if the ``Series`` is empty before summing.

With setuptools, in your ``setup.py`` use::

    install_requires=['pandas!=0.21.*', ...]

With conda, use

.. code-block:: yaml

    requirements:
      run:
        - pandas !=0.21.0,!=0.21.1

Note that the inconsistency in the return value for all-*NA* series is still
there for pandas 0.20.3 and earlier. Avoiding pandas 0.21 will only help with
the empty case.


.. _whatsnew_0.22.0.contributors:

Contributors
~~~~~~~~~~~~

.. contributors:: v0.21.1..v0.22.0