1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963
|
.. _whatsnew_0240:
What's new in 0.24.0 (January 25, 2019)
---------------------------------------
.. warning::
The 0.24.x series of releases will be the last to support Python 2. Future feature
releases will support Python 3 only. See `Dropping Python 2.7 <https://pandas.pydata.org/pandas-docs/version/0.24/install.html#install-dropping-27>`_ for more
details.
{{ header }}
This is a major release from 0.23.4 and includes a number of API changes, new
features, enhancements, and performance improvements along with a large number
of bug fixes.
Highlights include:
* :ref:`Optional Integer NA Support <whatsnew_0240.enhancements.intna>`
* :ref:`New APIs for accessing the array backing a Series or Index <whatsnew_0240.values_api>`
* :ref:`A new top-level method for creating arrays <whatsnew_0240.enhancements.array>`
* :ref:`Store Interval and Period data in a Series or DataFrame <whatsnew_0240.enhancements.interval>`
* :ref:`Support for joining on two MultiIndexes <whatsnew_0240.enhancements.join_with_two_multiindexes>`
Check the :ref:`API Changes <whatsnew_0240.api_breaking>` and :ref:`deprecations <whatsnew_0240.deprecations>` before updating.
These are the changes in pandas 0.24.0. See :ref:`release` for a full changelog
including other versions of pandas.
Enhancements
~~~~~~~~~~~~
.. _whatsnew_0240.enhancements.intna:
Optional integer NA support
^^^^^^^^^^^^^^^^^^^^^^^^^^^
pandas has gained the ability to hold integer dtypes with missing values. This long requested feature is enabled through the use of :ref:`extension types <extending.extension-types>`.
.. note::
IntegerArray is currently experimental. Its API or implementation may
change without warning.
We can construct a ``Series`` with the specified dtype. The dtype string ``Int64`` is a pandas ``ExtensionDtype``. Specifying a list or array using the traditional missing value
marker of ``np.nan`` will infer to integer dtype. The display of the ``Series`` will also use the ``NaN`` to indicate missing values in string outputs. (:issue:`20700`, :issue:`20747`, :issue:`22441`, :issue:`21789`, :issue:`22346`)
.. ipython:: python
s = pd.Series([1, 2, np.nan], dtype='Int64')
s
Operations on these dtypes will propagate ``NaN`` as other pandas operations.
.. ipython:: python
# arithmetic
s + 1
# comparison
s == 1
# indexing
s.iloc[1:3]
# operate with other dtypes
s + s.iloc[1:3].astype('Int8')
# coerce when needed
s + 0.01
These dtypes can operate as part of a ``DataFrame``.
.. ipython:: python
df = pd.DataFrame({'A': s, 'B': [1, 1, 3], 'C': list('aab')})
df
df.dtypes
These dtypes can be merged, reshaped, and casted.
.. ipython:: python
pd.concat([df[['A']], df[['B', 'C']]], axis=1).dtypes
df['A'].astype(float)
Reduction and groupby operations such as ``sum`` work.
.. ipython:: python
df.sum()
df.groupby('B').A.sum()
.. warning::
The Integer NA support currently uses the capitalized dtype version, e.g. ``Int8`` as compared to the traditional ``int8``. This may be changed at a future date.
See :ref:`integer_na` for more.
.. _whatsnew_0240.values_api:
Accessing the values in a Series or Index
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
:attr:`Series.array` and :attr:`Index.array` have been added for extracting the array backing a
``Series`` or ``Index``. (:issue:`19954`, :issue:`23623`)
.. ipython:: python
idx = pd.period_range('2000', periods=4)
idx.array
pd.Series(idx).array
Historically, this would have been done with ``series.values``, but with
``.values`` it was unclear whether the returned value would be the actual array,
some transformation of it, or one of pandas custom arrays (like
``Categorical``). For example, with :class:`PeriodIndex`, ``.values`` generates
a new ndarray of period objects each time.
.. ipython:: python
idx.values
id(idx.values)
id(idx.values)
If you need an actual NumPy array, use :meth:`Series.to_numpy` or :meth:`Index.to_numpy`.
.. ipython:: python
idx.to_numpy()
pd.Series(idx).to_numpy()
For Series and Indexes backed by normal NumPy arrays, :attr:`Series.array` will return a
new :class:`arrays.PandasArray`, which is a thin (no-copy) wrapper around a
:class:`numpy.ndarray`. :class:`~arrays.PandasArray` isn't especially useful on its own,
but it does provide the same interface as any extension array defined in pandas or by
a third-party library.
.. ipython:: python
ser = pd.Series([1, 2, 3])
ser.array
ser.to_numpy()
We haven't removed or deprecated :attr:`Series.values` or :attr:`DataFrame.values`, but we
highly recommend and using ``.array`` or ``.to_numpy()`` instead.
See :ref:`Dtypes <basics.dtypes>` and :ref:`Attributes and Underlying Data <basics.attrs>` for more.
.. _whatsnew_0240.enhancements.array:
``pandas.array``: a new top-level method for creating arrays
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
A new top-level method :func:`array` has been added for creating 1-dimensional arrays (:issue:`22860`).
This can be used to create any :ref:`extension array <extending.extension-types>`, including
extension arrays registered by `3rd party libraries <https://pandas.pydata.org/community/ecosystem.html>`_.
See the :ref:`dtypes docs <basics.dtypes>` for more on extension arrays.
.. ipython:: python
pd.array([1, 2, np.nan], dtype='Int64')
pd.array(['a', 'b', 'c'], dtype='category')
Passing data for which there isn't dedicated extension type (e.g. float, integer, etc.)
will return a new :class:`arrays.PandasArray`, which is just a thin (no-copy)
wrapper around a :class:`numpy.ndarray` that satisfies the pandas extension array interface.
.. ipython:: python
pd.array([1, 2, 3])
On their own, a :class:`~arrays.PandasArray` isn't a very useful object.
But if you need write low-level code that works generically for any
:class:`~pandas.api.extensions.ExtensionArray`, :class:`~arrays.PandasArray`
satisfies that need.
Notice that by default, if no ``dtype`` is specified, the dtype of the returned
array is inferred from the data. In particular, note that the first example of
``[1, 2, np.nan]`` would have returned a floating-point array, since ``NaN``
is a float.
.. ipython:: python
pd.array([1, 2, np.nan])
.. _whatsnew_0240.enhancements.interval:
Storing Interval and Period data in Series and DataFrame
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
:class:`Interval` and :class:`Period` data may now be stored in a :class:`Series` or :class:`DataFrame`, in addition to an
:class:`IntervalIndex` and :class:`PeriodIndex` like previously (:issue:`19453`, :issue:`22862`).
.. ipython:: python
ser = pd.Series(pd.interval_range(0, 5))
ser
ser.dtype
For periods:
.. ipython:: python
pser = pd.Series(pd.period_range("2000", freq="D", periods=5))
pser
pser.dtype
Previously, these would be cast to a NumPy array with object dtype. In general,
this should result in better performance when storing an array of intervals or periods
in a :class:`Series` or column of a :class:`DataFrame`.
Use :attr:`Series.array` to extract the underlying array of intervals or periods
from the ``Series``:
.. ipython:: python
ser.array
pser.array
These return an instance of :class:`arrays.IntervalArray` or :class:`arrays.PeriodArray`,
the new extension arrays that back interval and period data.
.. warning::
For backwards compatibility, :attr:`Series.values` continues to return
a NumPy array of objects for Interval and Period data. We recommend
using :attr:`Series.array` when you need the array of data stored in the
``Series``, and :meth:`Series.to_numpy` when you know you need a NumPy array.
See :ref:`Dtypes <basics.dtypes>` and :ref:`Attributes and Underlying Data <basics.attrs>`
for more.
.. _whatsnew_0240.enhancements.join_with_two_multiindexes:
Joining with two multi-indexes
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
:func:`DataFrame.merge` and :func:`DataFrame.join` can now be used to join multi-indexed ``Dataframe`` instances on the overlapping index levels (:issue:`6360`)
See the :ref:`Merge, join, and concatenate
<merging.Join_with_two_multi_indexes>` documentation section.
.. ipython:: python
index_left = pd.MultiIndex.from_tuples([('K0', 'X0'), ('K0', 'X1'),
('K1', 'X2')],
names=['key', 'X'])
left = pd.DataFrame({'A': ['A0', 'A1', 'A2'],
'B': ['B0', 'B1', 'B2']}, index=index_left)
index_right = pd.MultiIndex.from_tuples([('K0', 'Y0'), ('K1', 'Y1'),
('K2', 'Y2'), ('K2', 'Y3')],
names=['key', 'Y'])
right = pd.DataFrame({'C': ['C0', 'C1', 'C2', 'C3'],
'D': ['D0', 'D1', 'D2', 'D3']}, index=index_right)
left.join(right)
For earlier versions this can be done using the following.
.. ipython:: python
pd.merge(left.reset_index(), right.reset_index(),
on=['key'], how='inner').set_index(['key', 'X', 'Y'])
.. _whatsnew_0240.enhancements.read_html:
Function ``read_html`` enhancements
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
:func:`read_html` previously ignored ``colspan`` and ``rowspan`` attributes.
Now it understands them, treating them as sequences of cells with the same
value. (:issue:`17054`)
.. ipython:: python
from io import StringIO
result = pd.read_html(StringIO("""
<table>
<thead>
<tr>
<th>A</th><th>B</th><th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td colspan="2">1</td><td>2</td>
</tr>
</tbody>
</table>"""))
*Previous behavior*:
.. code-block:: ipython
In [13]: result
Out [13]:
[ A B C
0 1 2 NaN]
*New behavior*:
.. ipython:: python
result
New ``Styler.pipe()`` method
^^^^^^^^^^^^^^^^^^^^^^^^^^^^
The :class:`~pandas.io.formats.style.Styler` class has gained a
:meth:`~pandas.io.formats.style.Styler.pipe` method. This provides a
convenient way to apply users' predefined styling functions, and can help reduce
"boilerplate" when using DataFrame styling functionality repeatedly within a notebook. (:issue:`23229`)
.. ipython:: python
df = pd.DataFrame({'N': [1250, 1500, 1750], 'X': [0.25, 0.35, 0.50]})
def format_and_align(styler):
return (styler.format({'N': '{:,}', 'X': '{:.1%}'})
.set_properties(**{'text-align': 'right'}))
df.style.pipe(format_and_align).set_caption('Summary of results.')
Similar methods already exist for other classes in pandas, including :meth:`DataFrame.pipe`,
:meth:`GroupBy.pipe() <.GroupBy.pipe>`, and :meth:`Resampler.pipe() <.Resampler.pipe>`.
.. _whatsnew_0240.enhancements.rename_axis:
Renaming names in a MultiIndex
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
:func:`DataFrame.rename_axis` now supports ``index`` and ``columns`` arguments
and :func:`Series.rename_axis` supports ``index`` argument (:issue:`19978`).
This change allows a dictionary to be passed so that some of the names
of a ``MultiIndex`` can be changed.
Example:
.. ipython:: python
mi = pd.MultiIndex.from_product([list('AB'), list('CD'), list('EF')],
names=['AB', 'CD', 'EF'])
df = pd.DataFrame(list(range(len(mi))), index=mi, columns=['N'])
df
df.rename_axis(index={'CD': 'New'})
See the :ref:`Advanced documentation on renaming<advanced.index_names>` for more details.
.. _whatsnew_0240.enhancements.other:
Other enhancements
^^^^^^^^^^^^^^^^^^
- :func:`merge` now directly allows merge between objects of type ``DataFrame`` and named ``Series``, without the need to convert the ``Series`` object into a ``DataFrame`` beforehand (:issue:`21220`)
- ``ExcelWriter`` now accepts ``mode`` as a keyword argument, enabling append to existing workbooks when using the ``openpyxl`` engine (:issue:`3441`)
- ``FrozenList`` has gained the ``.union()`` and ``.difference()`` methods. This functionality greatly simplifies groupby's that rely on explicitly excluding certain columns. See :ref:`Splitting an object into groups <groupby.split>` for more information (:issue:`15475`, :issue:`15506`).
- :func:`DataFrame.to_parquet` now accepts ``index`` as an argument, allowing
the user to override the engine's default behavior to include or omit the
dataframe's indexes from the resulting Parquet file. (:issue:`20768`)
- :func:`read_feather` now accepts ``columns`` as an argument, allowing the user to specify which columns should be read. (:issue:`24025`)
- :meth:`DataFrame.corr` and :meth:`Series.corr` now accept a callable for generic calculation methods of correlation, e.g. histogram intersection (:issue:`22684`)
- :func:`DataFrame.to_string` now accepts ``decimal`` as an argument, allowing the user to specify which decimal separator should be used in the output. (:issue:`23614`)
- :func:`DataFrame.to_html` now accepts ``render_links`` as an argument, allowing the user to generate HTML with links to any URLs that appear in the DataFrame.
See the :ref:`section on writing HTML <io.html>` in the IO docs for example usage. (:issue:`2679`)
- :func:`pandas.read_csv` now supports pandas extension types as an argument to ``dtype``, allowing the user to use pandas extension types when reading CSVs. (:issue:`23228`)
- The :meth:`~DataFrame.shift` method now accepts ``fill_value`` as an argument, allowing the user to specify a value which will be used instead of NA/NaT in the empty periods. (:issue:`15486`)
- :func:`to_datetime` now supports the ``%Z`` and ``%z`` directive when passed into ``format`` (:issue:`13486`)
- :func:`Series.mode` and :func:`DataFrame.mode` now support the ``dropna`` parameter which can be used to specify whether ``NaN``/``NaT`` values should be considered (:issue:`17534`)
- :func:`DataFrame.to_csv` and :func:`Series.to_csv` now support the ``compression`` keyword when a file handle is passed. (:issue:`21227`)
- :meth:`Index.droplevel` is now implemented also for flat indexes, for compatibility with :class:`MultiIndex` (:issue:`21115`)
- :meth:`Series.droplevel` and :meth:`DataFrame.droplevel` are now implemented (:issue:`20342`)
- Added support for reading from/writing to Google Cloud Storage via the ``gcsfs`` library (:issue:`19454`, :issue:`23094`)
- :func:`DataFrame.to_gbq` and :func:`read_gbq` signature and documentation updated to
reflect changes from the `pandas-gbq library version 0.8.0
<https://pandas-gbq.readthedocs.io/en/latest/changelog.html#changelog-0-8-0>`__.
Adds a ``credentials`` argument, which enables the use of any kind of
`google-auth credentials
<https://google-auth.readthedocs.io/en/latest/>`__. (:issue:`21627`,
:issue:`22557`, :issue:`23662`)
- New method :meth:`HDFStore.walk` will recursively walk the group hierarchy of an HDF5 file (:issue:`10932`)
- :func:`read_html` copies cell data across ``colspan`` and ``rowspan``, and it treats all-``th`` table rows as headers if ``header`` kwarg is not given and there is no ``thead`` (:issue:`17054`)
- :meth:`Series.nlargest`, :meth:`Series.nsmallest`, :meth:`DataFrame.nlargest`, and :meth:`DataFrame.nsmallest` now accept the value ``"all"`` for the ``keep`` argument. This keeps all ties for the nth largest/smallest value (:issue:`16818`)
- :class:`IntervalIndex` has gained the :meth:`~IntervalIndex.set_closed` method to change the existing ``closed`` value (:issue:`21670`)
- :func:`~DataFrame.to_csv`, :func:`~Series.to_csv`, :func:`~DataFrame.to_json`, and :func:`~Series.to_json` now support ``compression='infer'`` to infer compression based on filename extension (:issue:`15008`).
The default compression for ``to_csv``, ``to_json``, and ``to_pickle`` methods has been updated to ``'infer'`` (:issue:`22004`).
- :meth:`DataFrame.to_sql` now supports writing ``TIMESTAMP WITH TIME ZONE`` types for supported databases. For databases that don't support timezones, datetime data will be stored as timezone unaware local timestamps. See the :ref:`io.sql_datetime_data` for implications (:issue:`9086`).
- :func:`to_timedelta` now supports iso-formatted timedelta strings (:issue:`21877`)
- :class:`Series` and :class:`DataFrame` now support :class:`Iterable` objects in the constructor (:issue:`2193`)
- :class:`DatetimeIndex` has gained the :attr:`DatetimeIndex.timetz` attribute. This returns the local time with timezone information. (:issue:`21358`)
- :meth:`~Timestamp.round`, :meth:`~Timestamp.ceil`, and :meth:`~Timestamp.floor` for :class:`DatetimeIndex` and :class:`Timestamp`
now support an ``ambiguous`` argument for handling datetimes that are rounded to ambiguous times (:issue:`18946`)
and a ``nonexistent`` argument for handling datetimes that are rounded to nonexistent times. See :ref:`timeseries.timezone_nonexistent` (:issue:`22647`)
- The result of :meth:`~DataFrame.resample` is now iterable similar to ``groupby()`` (:issue:`15314`).
- :meth:`Series.resample` and :meth:`DataFrame.resample` have gained the :meth:`.Resampler.quantile` (:issue:`15023`).
- :meth:`DataFrame.resample` and :meth:`Series.resample` with a :class:`PeriodIndex` will now respect the ``base`` argument in the same fashion as with a :class:`DatetimeIndex`. (:issue:`23882`)
- :meth:`pandas.api.types.is_list_like` has gained a keyword ``allow_sets`` which is ``True`` by default; if ``False``,
all instances of ``set`` will not be considered "list-like" anymore (:issue:`23061`)
- :meth:`Index.to_frame` now supports overriding column name(s) (:issue:`22580`).
- :meth:`Categorical.from_codes` now can take a ``dtype`` parameter as an alternative to passing ``categories`` and ``ordered`` (:issue:`24398`).
- New attribute ``__git_version__`` will return git commit sha of current build (:issue:`21295`).
- Compatibility with Matplotlib 3.0 (:issue:`22790`).
- Added :meth:`Interval.overlaps`, :meth:`arrays.IntervalArray.overlaps`, and :meth:`IntervalIndex.overlaps` for determining overlaps between interval-like objects (:issue:`21998`)
- :func:`read_fwf` now accepts keyword ``infer_nrows`` (:issue:`15138`).
- :func:`~DataFrame.to_parquet` now supports writing a ``DataFrame`` as a directory of parquet files partitioned by a subset of the columns when ``engine = 'pyarrow'`` (:issue:`23283`)
- :meth:`Timestamp.tz_localize`, :meth:`DatetimeIndex.tz_localize`, and :meth:`Series.tz_localize` have gained the ``nonexistent`` argument for alternative handling of nonexistent times. See :ref:`timeseries.timezone_nonexistent` (:issue:`8917`, :issue:`24466`)
- :meth:`Index.difference`, :meth:`Index.intersection`, :meth:`Index.union`, and :meth:`Index.symmetric_difference` now have an optional ``sort`` parameter to control whether the results should be sorted if possible (:issue:`17839`, :issue:`24471`)
- :meth:`read_excel()` now accepts ``usecols`` as a list of column names or callable (:issue:`18273`)
- :meth:`MultiIndex.to_flat_index` has been added to flatten multiple levels into a single-level :class:`Index` object.
- :meth:`DataFrame.to_stata` and :class:`pandas.io.stata.StataWriter117` can write mixed string columns to Stata strl format (:issue:`23633`)
- :meth:`DataFrame.between_time` and :meth:`DataFrame.at_time` have gained the ``axis`` parameter (:issue:`8839`)
- :meth:`DataFrame.to_records` now accepts ``index_dtypes`` and ``column_dtypes`` parameters to allow different data types in stored column and index records (:issue:`18146`)
- :class:`IntervalIndex` has gained the :attr:`~IntervalIndex.is_overlapping` attribute to indicate if the ``IntervalIndex`` contains any overlapping intervals (:issue:`23309`)
- :func:`pandas.DataFrame.to_sql` has gained the ``method`` argument to control SQL insertion clause. See the :ref:`insertion method <io.sql.method>` section in the documentation. (:issue:`8953`)
- :meth:`DataFrame.corrwith` now supports Spearman's rank correlation, Kendall's tau as well as callable correlation methods. (:issue:`21925`)
- :meth:`DataFrame.to_json`, :meth:`DataFrame.to_csv`, :meth:`DataFrame.to_pickle`, and other export methods now support tilde(~) in path argument. (:issue:`23473`)
.. _whatsnew_0240.api_breaking:
Backwards incompatible API changes
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
pandas 0.24.0 includes a number of API breaking changes.
.. _whatsnew_0240.api_breaking.deps:
Increased minimum versions for dependencies
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
We have updated our minimum supported versions of dependencies (:issue:`21242`, :issue:`18742`, :issue:`23774`, :issue:`24767`).
If installed, we now require:
+-----------------+-----------------+----------+
| Package | Minimum Version | Required |
+=================+=================+==========+
| numpy | 1.12.0 | X |
+-----------------+-----------------+----------+
| bottleneck | 1.2.0 | |
+-----------------+-----------------+----------+
| fastparquet | 0.2.1 | |
+-----------------+-----------------+----------+
| matplotlib | 2.0.0 | |
+-----------------+-----------------+----------+
| numexpr | 2.6.1 | |
+-----------------+-----------------+----------+
| pandas-gbq | 0.8.0 | |
+-----------------+-----------------+----------+
| pyarrow | 0.9.0 | |
+-----------------+-----------------+----------+
| pytables | 3.4.2 | |
+-----------------+-----------------+----------+
| scipy | 0.18.1 | |
+-----------------+-----------------+----------+
| xlrd | 1.0.0 | |
+-----------------+-----------------+----------+
| pytest (dev) | 3.6 | |
+-----------------+-----------------+----------+
Additionally we no longer depend on ``feather-format`` for feather based storage
and replaced it with references to ``pyarrow`` (:issue:`21639` and :issue:`23053`).
.. _whatsnew_0240.api_breaking.csv_line_terminator:
``os.linesep`` is used for ``line_terminator`` of ``DataFrame.to_csv``
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
:func:`DataFrame.to_csv` now uses :func:`os.linesep` rather than ``'\n'``
for the default line terminator (:issue:`20353`).
This change only affects when running on Windows, where ``'\r\n'`` was used for line terminator
even when ``'\n'`` was passed in ``line_terminator``.
*Previous behavior* on Windows:
.. code-block:: ipython
In [1]: data = pd.DataFrame({"string_with_lf": ["a\nbc"],
...: "string_with_crlf": ["a\r\nbc"]})
In [2]: # When passing file PATH to to_csv,
...: # line_terminator does not work, and csv is saved with '\r\n'.
...: # Also, this converts all '\n's in the data to '\r\n'.
...: data.to_csv("test.csv", index=False, line_terminator='\n')
In [3]: with open("test.csv", mode='rb') as f:
...: print(f.read())
Out[3]: b'string_with_lf,string_with_crlf\r\n"a\r\nbc","a\r\r\nbc"\r\n'
In [4]: # When passing file OBJECT with newline option to
...: # to_csv, line_terminator works.
...: with open("test2.csv", mode='w', newline='\n') as f:
...: data.to_csv(f, index=False, line_terminator='\n')
In [5]: with open("test2.csv", mode='rb') as f:
...: print(f.read())
Out[5]: b'string_with_lf,string_with_crlf\n"a\nbc","a\r\nbc"\n'
*New behavior* on Windows:
Passing ``line_terminator`` explicitly, set the ``line terminator`` to that character.
.. code-block:: ipython
In [1]: data = pd.DataFrame({"string_with_lf": ["a\nbc"],
...: "string_with_crlf": ["a\r\nbc"]})
In [2]: data.to_csv("test.csv", index=False, line_terminator='\n')
In [3]: with open("test.csv", mode='rb') as f:
...: print(f.read())
Out[3]: b'string_with_lf,string_with_crlf\n"a\nbc","a\r\nbc"\n'
On Windows, the value of ``os.linesep`` is ``'\r\n'``, so if ``line_terminator`` is not
set, ``'\r\n'`` is used for line terminator.
.. code-block:: ipython
In [1]: data = pd.DataFrame({"string_with_lf": ["a\nbc"],
...: "string_with_crlf": ["a\r\nbc"]})
In [2]: data.to_csv("test.csv", index=False)
In [3]: with open("test.csv", mode='rb') as f:
...: print(f.read())
Out[3]: b'string_with_lf,string_with_crlf\r\n"a\nbc","a\r\nbc"\r\n'
For file objects, specifying ``newline`` is not sufficient to set the line terminator.
You must pass in the ``line_terminator`` explicitly, even in this case.
.. code-block:: ipython
In [1]: data = pd.DataFrame({"string_with_lf": ["a\nbc"],
...: "string_with_crlf": ["a\r\nbc"]})
In [2]: with open("test2.csv", mode='w', newline='\n') as f:
...: data.to_csv(f, index=False)
In [3]: with open("test2.csv", mode='rb') as f:
...: print(f.read())
Out[3]: b'string_with_lf,string_with_crlf\r\n"a\nbc","a\r\nbc"\r\n'
.. _whatsnew_0240.bug_fixes.nan_with_str_dtype:
Proper handling of ``np.nan`` in a string data-typed column with the Python engine
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
There was bug in :func:`read_excel` and :func:`read_csv` with the Python
engine, where missing values turned to ``'nan'`` with ``dtype=str`` and
``na_filter=True``. Now, these missing values are converted to the string
missing indicator, ``np.nan``. (:issue:`20377`)
.. ipython:: python
:suppress:
from io import StringIO
*Previous behavior*:
.. code-block:: ipython
In [5]: data = 'a,b,c\n1,,3\n4,5,6'
In [6]: df = pd.read_csv(StringIO(data), engine='python', dtype=str, na_filter=True)
In [7]: df.loc[0, 'b']
Out[7]:
'nan'
*New behavior*:
.. ipython:: python
data = 'a,b,c\n1,,3\n4,5,6'
df = pd.read_csv(StringIO(data), engine='python', dtype=str, na_filter=True)
df.loc[0, 'b']
Notice how we now instead output ``np.nan`` itself instead of a stringified form of it.
.. _whatsnew_0240.api.timezone_offset_parsing:
Parsing datetime strings with timezone offsets
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Previously, parsing datetime strings with UTC offsets with :func:`to_datetime`
or :class:`DatetimeIndex` would automatically convert the datetime to UTC
without timezone localization. This is inconsistent from parsing the same
datetime string with :class:`Timestamp` which would preserve the UTC
offset in the ``tz`` attribute. Now, :func:`to_datetime` preserves the UTC
offset in the ``tz`` attribute when all the datetime strings have the same
UTC offset (:issue:`17697`, :issue:`11736`, :issue:`22457`)
*Previous behavior*:
.. code-block:: ipython
In [2]: pd.to_datetime("2015-11-18 15:30:00+05:30")
Out[2]: Timestamp('2015-11-18 10:00:00')
In [3]: pd.Timestamp("2015-11-18 15:30:00+05:30")
Out[3]: Timestamp('2015-11-18 15:30:00+0530', tz='pytz.FixedOffset(330)')
# Different UTC offsets would automatically convert the datetimes to UTC (without a UTC timezone)
In [4]: pd.to_datetime(["2015-11-18 15:30:00+05:30", "2015-11-18 16:30:00+06:30"])
Out[4]: DatetimeIndex(['2015-11-18 10:00:00', '2015-11-18 10:00:00'], dtype='datetime64[ns]', freq=None)
*New behavior*:
.. ipython:: python
pd.to_datetime("2015-11-18 15:30:00+05:30")
pd.Timestamp("2015-11-18 15:30:00+05:30")
Parsing datetime strings with the same UTC offset will preserve the UTC offset in the ``tz``
.. ipython:: python
pd.to_datetime(["2015-11-18 15:30:00+05:30"] * 2)
Parsing datetime strings with different UTC offsets will now create an Index of
``datetime.datetime`` objects with different UTC offsets
.. code-block:: ipython
In [59]: idx = pd.to_datetime(["2015-11-18 15:30:00+05:30",
"2015-11-18 16:30:00+06:30"])
In[60]: idx
Out[60]: Index([2015-11-18 15:30:00+05:30, 2015-11-18 16:30:00+06:30], dtype='object')
In[61]: idx[0]
Out[61]: Timestamp('2015-11-18 15:30:00+0530', tz='UTC+05:30')
In[62]: idx[1]
Out[62]: Timestamp('2015-11-18 16:30:00+0630', tz='UTC+06:30')
Passing ``utc=True`` will mimic the previous behavior but will correctly indicate
that the dates have been converted to UTC
.. ipython:: python
pd.to_datetime(["2015-11-18 15:30:00+05:30",
"2015-11-18 16:30:00+06:30"], utc=True)
.. _whatsnew_0240.api_breaking.read_csv_mixed_tz:
Parsing mixed-timezones with :func:`read_csv`
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
:func:`read_csv` no longer silently converts mixed-timezone columns to UTC (:issue:`24987`).
*Previous behavior*
.. code-block:: python
>>> import io
>>> content = """\
... a
... 2000-01-01T00:00:00+05:00
... 2000-01-01T00:00:00+06:00"""
>>> df = pd.read_csv(io.StringIO(content), parse_dates=['a'])
>>> df.a
0 1999-12-31 19:00:00
1 1999-12-31 18:00:00
Name: a, dtype: datetime64[ns]
*New behavior*
.. code-block:: ipython
In[64]: import io
In[65]: content = """\
...: a
...: 2000-01-01T00:00:00+05:00
...: 2000-01-01T00:00:00+06:00"""
In[66]: df = pd.read_csv(io.StringIO(content), parse_dates=['a'])
In[67]: df.a
Out[67]:
0 2000-01-01 00:00:00+05:00
1 2000-01-01 00:00:00+06:00
Name: a, Length: 2, dtype: object
As can be seen, the ``dtype`` is object; each value in the column is a string.
To convert the strings to an array of datetimes, the ``date_parser`` argument
.. code-block:: ipython
In [3]: df = pd.read_csv(
...: io.StringIO(content),
...: parse_dates=['a'],
...: date_parser=lambda col: pd.to_datetime(col, utc=True),
...: )
In [4]: df.a
Out[4]:
0 1999-12-31 19:00:00+00:00
1 1999-12-31 18:00:00+00:00
Name: a, dtype: datetime64[ns, UTC]
See :ref:`whatsnew_0240.api.timezone_offset_parsing` for more.
.. _whatsnew_0240.api_breaking.period_end_time:
Time values in ``dt.end_time`` and ``to_timestamp(how='end')``
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
The time values in :class:`Period` and :class:`PeriodIndex` objects are now set
to '23:59:59.999999999' when calling :attr:`Series.dt.end_time`, :attr:`Period.end_time`,
:attr:`PeriodIndex.end_time`, :func:`Period.to_timestamp()` with ``how='end'``,
or :func:`PeriodIndex.to_timestamp()` with ``how='end'`` (:issue:`17157`)
*Previous behavior*:
.. code-block:: ipython
In [2]: p = pd.Period('2017-01-01', 'D')
In [3]: pi = pd.PeriodIndex([p])
In [4]: pd.Series(pi).dt.end_time[0]
Out[4]: Timestamp(2017-01-01 00:00:00)
In [5]: p.end_time
Out[5]: Timestamp(2017-01-01 23:59:59.999999999)
*New behavior*:
Calling :attr:`Series.dt.end_time` will now result in a time of '23:59:59.999999999' as
is the case with :attr:`Period.end_time`, for example
.. ipython:: python
p = pd.Period('2017-01-01', 'D')
pi = pd.PeriodIndex([p])
pd.Series(pi).dt.end_time[0]
p.end_time
.. _whatsnew_0240.api_breaking.datetime_unique:
Series.unique for timezone-aware data
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
The return type of :meth:`Series.unique` for datetime with timezone values has changed
from an :class:`numpy.ndarray` of :class:`Timestamp` objects to a :class:`arrays.DatetimeArray` (:issue:`24024`).
.. ipython:: python
ser = pd.Series([pd.Timestamp('2000', tz='UTC'),
pd.Timestamp('2000', tz='UTC')])
*Previous behavior*:
.. code-block:: ipython
In [3]: ser.unique()
Out[3]: array([Timestamp('2000-01-01 00:00:00+0000', tz='UTC')], dtype=object)
*New behavior*:
.. ipython:: python
ser.unique()
.. _whatsnew_0240.api_breaking.sparse_values:
Sparse data structure refactor
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
``SparseArray``, the array backing ``SparseSeries`` and the columns in a ``SparseDataFrame``,
is now an extension array (:issue:`21978`, :issue:`19056`, :issue:`22835`).
To conform to this interface and for consistency with the rest of pandas, some API breaking
changes were made:
- ``SparseArray`` is no longer a subclass of :class:`numpy.ndarray`. To convert a ``SparseArray`` to a NumPy array, use :func:`numpy.asarray`.
- ``SparseArray.dtype`` and ``SparseSeries.dtype`` are now instances of :class:`SparseDtype`, rather than ``np.dtype``. Access the underlying dtype with ``SparseDtype.subtype``.
- ``numpy.asarray(sparse_array)`` now returns a dense array with all the values, not just the non-fill-value values (:issue:`14167`)
- ``SparseArray.take`` now matches the API of :meth:`pandas.api.extensions.ExtensionArray.take` (:issue:`19506`):
* The default value of ``allow_fill`` has changed from ``False`` to ``True``.
* The ``out`` and ``mode`` parameters are now longer accepted (previously, this raised if they were specified).
* Passing a scalar for ``indices`` is no longer allowed.
- The result of :func:`concat` with a mix of sparse and dense Series is a Series with sparse values, rather than a ``SparseSeries``.
- ``SparseDataFrame.combine`` and ``DataFrame.combine_first`` no longer supports combining a sparse column with a dense column while preserving the sparse subtype. The result will be an object-dtype SparseArray.
- Setting :attr:`SparseArray.fill_value` to a fill value with a different dtype is now allowed.
- ``DataFrame[column]`` is now a :class:`Series` with sparse values, rather than a :class:`SparseSeries`, when slicing a single column with sparse values (:issue:`23559`).
- The result of :meth:`Series.where` is now a ``Series`` with sparse values, like with other extension arrays (:issue:`24077`)
Some new warnings are issued for operations that require or are likely to materialize a large dense array:
- A :class:`errors.PerformanceWarning` is issued when using fillna with a ``method``, as a dense array is constructed to create the filled array. Filling with a ``value`` is the efficient way to fill a sparse array.
- A :class:`errors.PerformanceWarning` is now issued when concatenating sparse Series with differing fill values. The fill value from the first sparse array continues to be used.
In addition to these API breaking changes, many :ref:`Performance Improvements and Bug Fixes have been made <whatsnew_0240.bug_fixes.sparse>`.
Finally, a ``Series.sparse`` accessor was added to provide sparse-specific methods like :meth:`Series.sparse.from_coo`.
.. ipython:: python
s = pd.Series([0, 0, 1, 1, 1], dtype='Sparse[int]')
s.sparse.density
.. _whatsnew_0240.api_breaking.get_dummies:
:meth:`get_dummies` always returns a DataFrame
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Previously, when ``sparse=True`` was passed to :func:`get_dummies`, the return value could be either
a :class:`DataFrame` or a :class:`SparseDataFrame`, depending on whether all or a just a subset
of the columns were dummy-encoded. Now, a :class:`DataFrame` is always returned (:issue:`24284`).
*Previous behavior*
The first :func:`get_dummies` returns a :class:`DataFrame` because the column ``A``
is not dummy encoded. When just ``["B", "C"]`` are passed to ``get_dummies``,
then all the columns are dummy-encoded, and a :class:`SparseDataFrame` was returned.
.. code-block:: ipython
In [2]: df = pd.DataFrame({"A": [1, 2], "B": ['a', 'b'], "C": ['a', 'a']})
In [3]: type(pd.get_dummies(df, sparse=True))
Out[3]: pandas.core.frame.DataFrame
In [4]: type(pd.get_dummies(df[['B', 'C']], sparse=True))
Out[4]: pandas.core.sparse.frame.SparseDataFrame
.. ipython:: python
:suppress:
df = pd.DataFrame({"A": [1, 2], "B": ['a', 'b'], "C": ['a', 'a']})
*New behavior*
Now, the return type is consistently a :class:`DataFrame`.
.. ipython:: python
type(pd.get_dummies(df, sparse=True))
type(pd.get_dummies(df[['B', 'C']], sparse=True))
.. note::
There's no difference in memory usage between a :class:`SparseDataFrame`
and a :class:`DataFrame` with sparse values. The memory usage will
be the same as in the previous version of pandas.
.. _whatsnew_0240.api_breaking.frame_to_dict_index_orient:
Raise ValueError in ``DataFrame.to_dict(orient='index')``
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Bug in :func:`DataFrame.to_dict` raises ``ValueError`` when used with
``orient='index'`` and a non-unique index instead of losing data (:issue:`22801`)
.. ipython:: python
:okexcept:
df = pd.DataFrame({'a': [1, 2], 'b': [0.5, 0.75]}, index=['A', 'A'])
df
df.to_dict(orient='index')
.. _whatsnew_0240.api.datetimelike.normalize:
Tick DateOffset normalize restrictions
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Creating a ``Tick`` object (:class:`Day`, :class:`Hour`, :class:`Minute`,
:class:`Second`, :class:`Milli`, :class:`Micro`, :class:`Nano`) with
``normalize=True`` is no longer supported. This prevents unexpected behavior
where addition could fail to be monotone or associative. (:issue:`21427`)
*Previous behavior*:
.. code-block:: ipython
In [2]: ts = pd.Timestamp('2018-06-11 18:01:14')
In [3]: ts
Out[3]: Timestamp('2018-06-11 18:01:14')
In [4]: tic = pd.offsets.Hour(n=2, normalize=True)
...:
In [5]: tic
Out[5]: <2 * Hours>
In [6]: ts + tic
Out[6]: Timestamp('2018-06-11 00:00:00')
In [7]: ts + tic + tic + tic == ts + (tic + tic + tic)
Out[7]: False
*New behavior*:
.. ipython:: python
ts = pd.Timestamp('2018-06-11 18:01:14')
tic = pd.offsets.Hour(n=2)
ts + tic + tic + tic == ts + (tic + tic + tic)
.. _whatsnew_0240.api.datetimelike:
.. _whatsnew_0240.api.period_subtraction:
Period subtraction
^^^^^^^^^^^^^^^^^^
Subtraction of a ``Period`` from another ``Period`` will give a ``DateOffset``.
instead of an integer (:issue:`21314`)
*Previous behavior*:
.. code-block:: ipython
In [2]: june = pd.Period('June 2018')
In [3]: april = pd.Period('April 2018')
In [4]: june - april
Out [4]: 2
*New behavior*:
.. ipython:: python
june = pd.Period('June 2018')
april = pd.Period('April 2018')
june - april
Similarly, subtraction of a ``Period`` from a ``PeriodIndex`` will now return
an ``Index`` of ``DateOffset`` objects instead of an ``Int64Index``
*Previous behavior*:
.. code-block:: ipython
In [2]: pi = pd.period_range('June 2018', freq='M', periods=3)
In [3]: pi - pi[0]
Out[3]: Int64Index([0, 1, 2], dtype='int64')
*New behavior*:
.. ipython:: python
pi = pd.period_range('June 2018', freq='M', periods=3)
pi - pi[0]
.. _whatsnew_0240.api.timedelta64_subtract_nan:
Addition/subtraction of ``NaN`` from :class:`DataFrame`
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Adding or subtracting ``NaN`` from a :class:`DataFrame` column with
``timedelta64[ns]`` dtype will now raise a ``TypeError`` instead of returning
all-``NaT``. This is for compatibility with ``TimedeltaIndex`` and
``Series`` behavior (:issue:`22163`)
.. ipython:: python
df = pd.DataFrame([pd.Timedelta(days=1)])
df
*Previous behavior*:
.. code-block:: ipython
In [4]: df = pd.DataFrame([pd.Timedelta(days=1)])
In [5]: df - np.nan
Out[5]:
0
0 NaT
*New behavior*:
.. code-block:: ipython
In [2]: df - np.nan
...
TypeError: unsupported operand type(s) for -: 'TimedeltaIndex' and 'float'
.. _whatsnew_0240.api.dataframe_cmp_broadcasting:
DataFrame comparison operations broadcasting changes
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Previously, the broadcasting behavior of :class:`DataFrame` comparison
operations (``==``, ``!=``, ...) was inconsistent with the behavior of
arithmetic operations (``+``, ``-``, ...). The behavior of the comparison
operations has been changed to match the arithmetic operations in these cases.
(:issue:`22880`)
The affected cases are:
- operating against a 2-dimensional ``np.ndarray`` with either 1 row or 1 column will now broadcast the same way a ``np.ndarray`` would (:issue:`23000`).
- a list or tuple with length matching the number of rows in the :class:`DataFrame` will now raise ``ValueError`` instead of operating column-by-column (:issue:`22880`.
- a list or tuple with length matching the number of columns in the :class:`DataFrame` will now operate row-by-row instead of raising ``ValueError`` (:issue:`22880`).
.. ipython:: python
arr = np.arange(6).reshape(3, 2)
df = pd.DataFrame(arr)
df
*Previous behavior*:
.. code-block:: ipython
In [5]: df == arr[[0], :]
...: # comparison previously broadcast where arithmetic would raise
Out[5]:
0 1
0 True True
1 False False
2 False False
In [6]: df + arr[[0], :]
...
ValueError: Unable to coerce to DataFrame, shape must be (3, 2): given (1, 2)
In [7]: df == (1, 2)
...: # length matches number of columns;
...: # comparison previously raised where arithmetic would broadcast
...
ValueError: Invalid broadcasting comparison [(1, 2)] with block values
In [8]: df + (1, 2)
Out[8]:
0 1
0 1 3
1 3 5
2 5 7
In [9]: df == (1, 2, 3)
...: # length matches number of rows
...: # comparison previously broadcast where arithmetic would raise
Out[9]:
0 1
0 False True
1 True False
2 False False
In [10]: df + (1, 2, 3)
...
ValueError: Unable to coerce to Series, length must be 2: given 3
*New behavior*:
.. ipython:: python
# Comparison operations and arithmetic operations both broadcast.
df == arr[[0], :]
df + arr[[0], :]
.. ipython:: python
# Comparison operations and arithmetic operations both broadcast.
df == (1, 2)
df + (1, 2)
.. code-block:: ipython
# Comparison operations and arithmetic operations both raise ValueError.
In [6]: df == (1, 2, 3)
...
ValueError: Unable to coerce to Series, length must be 2: given 3
In [7]: df + (1, 2, 3)
...
ValueError: Unable to coerce to Series, length must be 2: given 3
.. _whatsnew_0240.api.dataframe_arithmetic_broadcasting:
DataFrame arithmetic operations broadcasting changes
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
:class:`DataFrame` arithmetic operations when operating with 2-dimensional
``np.ndarray`` objects now broadcast in the same way as ``np.ndarray``
broadcast. (:issue:`23000`)
.. ipython:: python
arr = np.arange(6).reshape(3, 2)
df = pd.DataFrame(arr)
df
*Previous behavior*:
.. code-block:: ipython
In [5]: df + arr[[0], :] # 1 row, 2 columns
...
ValueError: Unable to coerce to DataFrame, shape must be (3, 2): given (1, 2)
In [6]: df + arr[:, [1]] # 1 column, 3 rows
...
ValueError: Unable to coerce to DataFrame, shape must be (3, 2): given (3, 1)
*New behavior*:
.. ipython:: python
df + arr[[0], :] # 1 row, 2 columns
df + arr[:, [1]] # 1 column, 3 rows
.. _whatsnew_0240.api.incompatibilities:
Series and Index data-dtype incompatibilities
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
``Series`` and ``Index`` constructors now raise when the
data is incompatible with a passed ``dtype=`` (:issue:`15832`)
*Previous behavior*:
.. code-block:: ipython
In [4]: pd.Series([-1], dtype="uint64")
Out [4]:
0 18446744073709551615
dtype: uint64
*New behavior*:
.. code-block:: ipython
In [4]: pd.Series([-1], dtype="uint64")
Out [4]:
...
OverflowError: Trying to coerce negative values to unsigned integers
.. _whatsnew_0240.api.concat_categorical:
Concatenation changes
^^^^^^^^^^^^^^^^^^^^^
Calling :func:`pandas.concat` on a ``Categorical`` of ints with NA values now
causes them to be processed as objects when concatenating with anything
other than another ``Categorical`` of ints (:issue:`19214`)
.. ipython:: python
s = pd.Series([0, 1, np.nan])
c = pd.Series([0, 1, np.nan], dtype="category")
*Previous behavior*
.. code-block:: ipython
In [3]: pd.concat([s, c])
Out[3]:
0 0.0
1 1.0
2 NaN
0 0.0
1 1.0
2 NaN
dtype: float64
*New behavior*
.. ipython:: python
pd.concat([s, c])
Datetimelike API changes
^^^^^^^^^^^^^^^^^^^^^^^^
- For :class:`DatetimeIndex` and :class:`TimedeltaIndex` with non-``None`` ``freq`` attribute, addition or subtraction of integer-dtyped array or ``Index`` will return an object of the same class (:issue:`19959`)
- :class:`DateOffset` objects are now immutable. Attempting to alter one of these will now raise ``AttributeError`` (:issue:`21341`)
- :class:`PeriodIndex` subtraction of another ``PeriodIndex`` will now return an object-dtype :class:`Index` of :class:`DateOffset` objects instead of raising a ``TypeError`` (:issue:`20049`)
- :func:`cut` and :func:`qcut` now returns a :class:`DatetimeIndex` or :class:`TimedeltaIndex` bins when the input is datetime or timedelta dtype respectively and ``retbins=True`` (:issue:`19891`)
- :meth:`DatetimeIndex.to_period` and :meth:`Timestamp.to_period` will issue a warning when timezone information will be lost (:issue:`21333`)
- :meth:`PeriodIndex.tz_convert` and :meth:`PeriodIndex.tz_localize` have been removed (:issue:`21781`)
.. _whatsnew_0240.api.other:
Other API changes
^^^^^^^^^^^^^^^^^
- A newly constructed empty :class:`DataFrame` with integer as the ``dtype`` will now only be cast to ``float64`` if ``index`` is specified (:issue:`22858`)
- :meth:`Series.str.cat` will now raise if ``others`` is a ``set`` (:issue:`23009`)
- Passing scalar values to :class:`DatetimeIndex` or :class:`TimedeltaIndex` will now raise ``TypeError`` instead of ``ValueError`` (:issue:`23539`)
- ``max_rows`` and ``max_cols`` parameters removed from :class:`HTMLFormatter` since truncation is handled by :class:`DataFrameFormatter` (:issue:`23818`)
- :func:`read_csv` will now raise a ``ValueError`` if a column with missing values is declared as having dtype ``bool`` (:issue:`20591`)
- The column order of the resultant :class:`DataFrame` from :meth:`MultiIndex.to_frame` is now guaranteed to match the :attr:`MultiIndex.names` order. (:issue:`22420`)
- Incorrectly passing a :class:`DatetimeIndex` to :meth:`MultiIndex.from_tuples`, rather than a sequence of tuples, now raises a ``TypeError`` rather than a ``ValueError`` (:issue:`24024`)
- :func:`pd.offsets.generate_range` argument ``time_rule`` has been removed; use ``offset`` instead (:issue:`24157`)
- In 0.23.x, pandas would raise a ``ValueError`` on a merge of a numeric column (e.g. ``int`` dtyped column) and an ``object`` dtyped column (:issue:`9780`). We have re-enabled the ability to merge ``object`` and other dtypes; pandas will still raise on a merge between a numeric and an ``object`` dtyped column that is composed only of strings (:issue:`21681`)
- Accessing a level of a ``MultiIndex`` with a duplicate name (e.g. in
:meth:`~MultiIndex.get_level_values`) now raises a ``ValueError`` instead of a ``KeyError`` (:issue:`21678`).
- Invalid construction of ``IntervalDtype`` will now always raise a ``TypeError`` rather than a ``ValueError`` if the subdtype is invalid (:issue:`21185`)
- Trying to reindex a ``DataFrame`` with a non unique ``MultiIndex`` now raises a ``ValueError`` instead of an ``Exception`` (:issue:`21770`)
- :class:`Index` subtraction will attempt to operate element-wise instead of raising ``TypeError`` (:issue:`19369`)
- :class:`pandas.io.formats.style.Styler` supports a ``number-format`` property when using :meth:`~pandas.io.formats.style.Styler.to_excel` (:issue:`22015`)
- :meth:`DataFrame.corr` and :meth:`Series.corr` now raise a ``ValueError`` along with a helpful error message instead of a ``KeyError`` when supplied with an invalid method (:issue:`22298`)
- :meth:`shift` will now always return a copy, instead of the previous behaviour of returning self when shifting by 0 (:issue:`22397`)
- :meth:`DataFrame.set_index` now gives a better (and less frequent) KeyError, raises a ``ValueError`` for incorrect types,
and will not fail on duplicate column names with ``drop=True``. (:issue:`22484`)
- Slicing a single row of a DataFrame with multiple ExtensionArrays of the same type now preserves the dtype, rather than coercing to object (:issue:`22784`)
- :class:`DateOffset` attribute ``_cacheable`` and method ``_should_cache`` have been removed (:issue:`23118`)
- :meth:`Series.searchsorted`, when supplied a scalar value to search for, now returns a scalar instead of an array (:issue:`23801`).
- :meth:`Categorical.searchsorted`, when supplied a scalar value to search for, now returns a scalar instead of an array (:issue:`23466`).
- :meth:`Categorical.searchsorted` now raises a ``KeyError`` rather that a ``ValueError``, if a searched for key is not found in its categories (:issue:`23466`).
- :meth:`Index.hasnans` and :meth:`Series.hasnans` now always return a python boolean. Previously, a python or a numpy boolean could be returned, depending on circumstances (:issue:`23294`).
- The order of the arguments of :func:`DataFrame.to_html` and :func:`DataFrame.to_string` is rearranged to be consistent with each other. (:issue:`23614`)
- :meth:`CategoricalIndex.reindex` now raises a ``ValueError`` if the target index is non-unique and not equal to the current index. It previously only raised if the target index was not of a categorical dtype (:issue:`23963`).
- :func:`Series.to_list` and :func:`Index.to_list` are now aliases of ``Series.tolist`` respectively ``Index.tolist`` (:issue:`8826`)
- The result of ``SparseSeries.unstack`` is now a :class:`DataFrame` with sparse values, rather than a :class:`SparseDataFrame` (:issue:`24372`).
- :class:`DatetimeIndex` and :class:`TimedeltaIndex` no longer ignore the dtype precision. Passing a non-nanosecond resolution dtype will raise a ``ValueError`` (:issue:`24753`)
.. _whatsnew_0240.api.extension:
Extension type changes
~~~~~~~~~~~~~~~~~~~~~~
**Equality and hashability**
pandas now requires that extension dtypes be hashable (i.e. the respective
``ExtensionDtype`` objects; hashability is not a requirement for the values
of the corresponding ``ExtensionArray``). The base class implements
a default ``__eq__`` and ``__hash__``. If you have a parametrized dtype, you should
update the ``ExtensionDtype._metadata`` tuple to match the signature of your
``__init__`` method. See :class:`pandas.api.extensions.ExtensionDtype` for more (:issue:`22476`).
**New and changed methods**
- :meth:`~pandas.api.types.ExtensionArray.dropna` has been added (:issue:`21185`)
- :meth:`~pandas.api.types.ExtensionArray.repeat` has been added (:issue:`24349`)
- The ``ExtensionArray`` constructor, ``_from_sequence`` now take the keyword arg ``copy=False`` (:issue:`21185`)
- :meth:`pandas.api.extensions.ExtensionArray.shift` added as part of the basic ``ExtensionArray`` interface (:issue:`22387`).
- :meth:`~pandas.api.types.ExtensionArray.searchsorted` has been added (:issue:`24350`)
- Support for reduction operations such as ``sum``, ``mean`` via opt-in base class method override (:issue:`22762`)
- :func:`ExtensionArray.isna` is allowed to return an ``ExtensionArray`` (:issue:`22325`).
**Dtype changes**
- ``ExtensionDtype`` has gained the ability to instantiate from string dtypes, e.g. ``decimal`` would instantiate a registered ``DecimalDtype``; furthermore
the ``ExtensionDtype`` has gained the method ``construct_array_type`` (:issue:`21185`)
- Added ``ExtensionDtype._is_numeric`` for controlling whether an extension dtype is considered numeric (:issue:`22290`).
- Added :meth:`pandas.api.types.register_extension_dtype` to register an extension type with pandas (:issue:`22664`)
- Updated the ``.type`` attribute for ``PeriodDtype``, ``DatetimeTZDtype``, and ``IntervalDtype`` to be instances of the dtype (``Period``, ``Timestamp``, and ``Interval`` respectively) (:issue:`22938`)
.. _whatsnew_0240.enhancements.extension_array_operators:
**Operator support**
A ``Series`` based on an ``ExtensionArray`` now supports arithmetic and comparison
operators (:issue:`19577`). There are two approaches for providing operator support for an ``ExtensionArray``:
1. Define each of the operators on your ``ExtensionArray`` subclass.
2. Use an operator implementation from pandas that depends on operators that are already defined
on the underlying elements (scalars) of the ``ExtensionArray``.
See the :ref:`ExtensionArray Operator Support
<extending.extension.operator>` documentation section for details on both
ways of adding operator support.
**Other changes**
- A default repr for :class:`pandas.api.extensions.ExtensionArray` is now provided (:issue:`23601`).
- :meth:`ExtensionArray._formatting_values` is deprecated. Use :attr:`ExtensionArray._formatter` instead. (:issue:`23601`)
- An ``ExtensionArray`` with a boolean dtype now works correctly as a boolean indexer. :meth:`pandas.api.types.is_bool_dtype` now properly considers them boolean (:issue:`22326`)
**Bug fixes**
- Bug in :meth:`Series.get` for ``Series`` using ``ExtensionArray`` and integer index (:issue:`21257`)
- :meth:`~Series.shift` now dispatches to :meth:`ExtensionArray.shift` (:issue:`22386`)
- :meth:`Series.combine()` works correctly with :class:`~pandas.api.extensions.ExtensionArray` inside of :class:`Series` (:issue:`20825`)
- :meth:`Series.combine()` with scalar argument now works for any function type (:issue:`21248`)
- :meth:`Series.astype` and :meth:`DataFrame.astype` now dispatch to :meth:`ExtensionArray.astype` (:issue:`21185`).
- Slicing a single row of a ``DataFrame`` with multiple ExtensionArrays of the same type now preserves the dtype, rather than coercing to object (:issue:`22784`)
- Bug when concatenating multiple ``Series`` with different extension dtypes not casting to object dtype (:issue:`22994`)
- Series backed by an ``ExtensionArray`` now work with :func:`util.hash_pandas_object` (:issue:`23066`)
- :meth:`DataFrame.stack` no longer converts to object dtype for DataFrames where each column has the same extension dtype. The output Series will have the same dtype as the columns (:issue:`23077`).
- :meth:`Series.unstack` and :meth:`DataFrame.unstack` no longer convert extension arrays to object-dtype ndarrays. Each column in the output ``DataFrame`` will now have the same dtype as the input (:issue:`23077`).
- Bug when grouping :meth:`Dataframe.groupby()` and aggregating on ``ExtensionArray`` it was not returning the actual ``ExtensionArray`` dtype (:issue:`23227`).
- Bug in :func:`pandas.merge` when merging on an extension array-backed column (:issue:`23020`).
.. _whatsnew_0240.deprecations:
Deprecations
~~~~~~~~~~~~
- :attr:`MultiIndex.labels` has been deprecated and replaced by :attr:`MultiIndex.codes`.
The functionality is unchanged. The new name better reflects the natures of
these codes and makes the ``MultiIndex`` API more similar to the API for :class:`CategoricalIndex` (:issue:`13443`).
As a consequence, other uses of the name ``labels`` in ``MultiIndex`` have also been deprecated and replaced with ``codes``:
- You should initialize a ``MultiIndex`` instance using a parameter named ``codes`` rather than ``labels``.
- ``MultiIndex.set_labels`` has been deprecated in favor of :meth:`MultiIndex.set_codes`.
- For method :meth:`MultiIndex.copy`, the ``labels`` parameter has been deprecated and replaced by a ``codes`` parameter.
- :meth:`DataFrame.to_stata`, :meth:`read_stata`, :class:`StataReader` and :class:`StataWriter` have deprecated the ``encoding`` argument. The encoding of a Stata dta file is determined by the file type and cannot be changed (:issue:`21244`)
- :meth:`MultiIndex.to_hierarchical` is deprecated and will be removed in a future version (:issue:`21613`)
- :meth:`Series.ptp` is deprecated. Use ``numpy.ptp`` instead (:issue:`21614`)
- :meth:`Series.compress` is deprecated. Use ``Series[condition]`` instead (:issue:`18262`)
- The signature of :meth:`Series.to_csv` has been uniformed to that of :meth:`DataFrame.to_csv`: the name of the first argument is now ``path_or_buf``, the order of subsequent arguments has changed, the ``header`` argument now defaults to ``True``. (:issue:`19715`)
- :meth:`Categorical.from_codes` has deprecated providing float values for the ``codes`` argument. (:issue:`21767`)
- :func:`pandas.read_table` is deprecated. Instead, use :func:`read_csv` passing ``sep='\t'`` if necessary. This deprecation has been removed in 0.25.0. (:issue:`21948`)
- :meth:`Series.str.cat` has deprecated using arbitrary list-likes *within* list-likes. A list-like container may still contain
many ``Series``, ``Index`` or 1-dimensional ``np.ndarray``, or alternatively, only scalar values. (:issue:`21950`)
- :meth:`FrozenNDArray.searchsorted` has deprecated the ``v`` parameter in favor of ``value`` (:issue:`14645`)
- :func:`DatetimeIndex.shift` and :func:`PeriodIndex.shift` now accept ``periods`` argument instead of ``n`` for consistency with :func:`Index.shift` and :func:`Series.shift`. Using ``n`` throws a deprecation warning (:issue:`22458`, :issue:`22912`)
- The ``fastpath`` keyword of the different Index constructors is deprecated (:issue:`23110`).
- :meth:`Timestamp.tz_localize`, :meth:`DatetimeIndex.tz_localize`, and :meth:`Series.tz_localize` have deprecated the ``errors`` argument in favor of the ``nonexistent`` argument (:issue:`8917`)
- The class ``FrozenNDArray`` has been deprecated. When unpickling, ``FrozenNDArray`` will be unpickled to ``np.ndarray`` once this class is removed (:issue:`9031`)
- The methods :meth:`DataFrame.update` and :meth:`Panel.update` have deprecated the ``raise_conflict=False|True`` keyword in favor of ``errors='ignore'|'raise'`` (:issue:`23585`)
- The methods :meth:`Series.str.partition` and :meth:`Series.str.rpartition` have deprecated the ``pat`` keyword in favor of ``sep`` (:issue:`22676`)
- Deprecated the ``nthreads`` keyword of :func:`pandas.read_feather` in favor of ``use_threads`` to reflect the changes in ``pyarrow>=0.11.0``. (:issue:`23053`)
- :func:`pandas.read_excel` has deprecated accepting ``usecols`` as an integer. Please pass in a list of ints from 0 to ``usecols`` inclusive instead (:issue:`23527`)
- Constructing a :class:`TimedeltaIndex` from data with ``datetime64``-dtyped data is deprecated, will raise ``TypeError`` in a future version (:issue:`23539`)
- Constructing a :class:`DatetimeIndex` from data with ``timedelta64``-dtyped data is deprecated, will raise ``TypeError`` in a future version (:issue:`23675`)
- The ``keep_tz=False`` option (the default) of the ``keep_tz`` keyword of
:meth:`DatetimeIndex.to_series` is deprecated (:issue:`17832`).
- Timezone converting a tz-aware ``datetime.datetime`` or :class:`Timestamp` with :class:`Timestamp` and the ``tz`` argument is now deprecated. Instead, use :meth:`Timestamp.tz_convert` (:issue:`23579`)
- :func:`pandas.api.types.is_period` is deprecated in favor of ``pandas.api.types.is_period_dtype`` (:issue:`23917`)
- :func:`pandas.api.types.is_datetimetz` is deprecated in favor of ``pandas.api.types.is_datetime64tz`` (:issue:`23917`)
- Creating a :class:`TimedeltaIndex`, :class:`DatetimeIndex`, or :class:`PeriodIndex` by passing range arguments ``start``, ``end``, and ``periods`` is deprecated in favor of :func:`timedelta_range`, :func:`date_range`, or :func:`period_range` (:issue:`23919`)
- Passing a string alias like ``'datetime64[ns, UTC]'`` as the ``unit`` parameter to :class:`DatetimeTZDtype` is deprecated. Use :class:`DatetimeTZDtype.construct_from_string` instead (:issue:`23990`).
- The ``skipna`` parameter of :meth:`~pandas.api.types.infer_dtype` will switch to ``True`` by default in a future version of pandas (:issue:`17066`, :issue:`24050`)
- In :meth:`Series.where` with Categorical data, providing an ``other`` that is not present in the categories is deprecated. Convert the categorical to a different dtype or add the ``other`` to the categories first (:issue:`24077`).
- :meth:`Series.clip_lower`, :meth:`Series.clip_upper`, :meth:`DataFrame.clip_lower` and :meth:`DataFrame.clip_upper` are deprecated and will be removed in a future version. Use ``Series.clip(lower=threshold)``, ``Series.clip(upper=threshold)`` and the equivalent ``DataFrame`` methods (:issue:`24203`)
- :meth:`Series.nonzero` is deprecated and will be removed in a future version (:issue:`18262`)
- Passing an integer to :meth:`Series.fillna` and :meth:`DataFrame.fillna` with ``timedelta64[ns]`` dtypes is deprecated, will raise ``TypeError`` in a future version. Use ``obj.fillna(pd.Timedelta(...))`` instead (:issue:`24694`)
- ``Series.cat.categorical``, ``Series.cat.name`` and ``Series.cat.index`` have been deprecated. Use the attributes on ``Series.cat`` or ``Series`` directly. (:issue:`24751`).
- Passing a dtype without a precision like ``np.dtype('datetime64')`` or ``timedelta64`` to :class:`Index`, :class:`DatetimeIndex` and :class:`TimedeltaIndex` is now deprecated. Use the nanosecond-precision dtype instead (:issue:`24753`).
.. _whatsnew_0240.deprecations.datetimelike_int_ops:
Integer addition/subtraction with datetimes and timedeltas is deprecated
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
In the past, users could—in some cases—add or subtract integers or integer-dtype
arrays from :class:`Timestamp`, :class:`DatetimeIndex` and :class:`TimedeltaIndex`.
This usage is now deprecated. Instead add or subtract integer multiples of
the object's ``freq`` attribute (:issue:`21939`, :issue:`23878`).
*Previous behavior*:
.. code-block:: ipython
In [5]: ts = pd.Timestamp('1994-05-06 12:15:16', freq=pd.offsets.Hour())
In [6]: ts + 2
Out[6]: Timestamp('1994-05-06 14:15:16', freq='H')
In [7]: tdi = pd.timedelta_range('1D', periods=2)
In [8]: tdi - np.array([2, 1])
Out[8]: TimedeltaIndex(['-1 days', '1 days'], dtype='timedelta64[ns]', freq=None)
In [9]: dti = pd.date_range('2001-01-01', periods=2, freq='7D')
In [10]: dti + pd.Index([1, 2])
Out[10]: DatetimeIndex(['2001-01-08', '2001-01-22'], dtype='datetime64[ns]', freq=None)
*New behavior*:
.. code-block:: ipython
In [108]: ts = pd.Timestamp('1994-05-06 12:15:16', freq=pd.offsets.Hour())
In[109]: ts + 2 * ts.freq
Out[109]: Timestamp('1994-05-06 14:15:16', freq='H')
In [110]: tdi = pd.timedelta_range('1D', periods=2)
In [111]: tdi - np.array([2 * tdi.freq, 1 * tdi.freq])
Out[111]: TimedeltaIndex(['-1 days', '1 days'], dtype='timedelta64[ns]', freq=None)
In [112]: dti = pd.date_range('2001-01-01', periods=2, freq='7D')
In [113]: dti + pd.Index([1 * dti.freq, 2 * dti.freq])
Out[113]: DatetimeIndex(['2001-01-08', '2001-01-22'], dtype='datetime64[ns]', freq=None)
.. _whatsnew_0240.deprecations.integer_tz:
Passing integer data and a timezone to DatetimeIndex
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
The behavior of :class:`DatetimeIndex` when passed integer data and
a timezone is changing in a future version of pandas. Previously, these
were interpreted as wall times in the desired timezone. In the future,
these will be interpreted as wall times in UTC, which are then converted
to the desired timezone (:issue:`24559`).
The default behavior remains the same, but issues a warning:
.. code-block:: ipython
In [3]: pd.DatetimeIndex([946684800000000000], tz="US/Central")
/bin/ipython:1: FutureWarning:
Passing integer-dtype data and a timezone to DatetimeIndex. Integer values
will be interpreted differently in a future version of pandas. Previously,
these were viewed as datetime64[ns] values representing the wall time
*in the specified timezone*. In the future, these will be viewed as
datetime64[ns] values representing the wall time *in UTC*. This is similar
to a nanosecond-precision UNIX epoch. To accept the future behavior, use
pd.to_datetime(integer_data, utc=True).tz_convert(tz)
To keep the previous behavior, use
pd.to_datetime(integer_data).tz_localize(tz)
#!/bin/python3
Out[3]: DatetimeIndex(['2000-01-01 00:00:00-06:00'], dtype='datetime64[ns, US/Central]', freq=None)
As the warning message explains, opt in to the future behavior by specifying that
the integer values are UTC, and then converting to the final timezone:
.. ipython:: python
pd.to_datetime([946684800000000000], utc=True).tz_convert('US/Central')
The old behavior can be retained with by localizing directly to the final timezone:
.. ipython:: python
pd.to_datetime([946684800000000000]).tz_localize('US/Central')
.. _whatsnew_0240.deprecations.tz_aware_array:
Converting timezone-aware Series and Index to NumPy arrays
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
The conversion from a :class:`Series` or :class:`Index` with timezone-aware
datetime data will change to preserve timezones by default (:issue:`23569`).
NumPy doesn't have a dedicated dtype for timezone-aware datetimes.
In the past, converting a :class:`Series` or :class:`DatetimeIndex` with
timezone-aware datatimes would convert to a NumPy array by
1. converting the tz-aware data to UTC
2. dropping the timezone-info
3. returning a :class:`numpy.ndarray` with ``datetime64[ns]`` dtype
Future versions of pandas will preserve the timezone information by returning an
object-dtype NumPy array where each value is a :class:`Timestamp` with the correct
timezone attached
.. ipython:: python
ser = pd.Series(pd.date_range('2000', periods=2, tz="CET"))
ser
The default behavior remains the same, but issues a warning
.. code-block:: python
In [8]: np.asarray(ser)
/bin/ipython:1: FutureWarning: Converting timezone-aware DatetimeArray to timezone-naive
ndarray with 'datetime64[ns]' dtype. In the future, this will return an ndarray
with 'object' dtype where each element is a 'pandas.Timestamp' with the correct 'tz'.
To accept the future behavior, pass 'dtype=object'.
To keep the old behavior, pass 'dtype="datetime64[ns]"'.
#!/bin/python3
Out[8]:
array(['1999-12-31T23:00:00.000000000', '2000-01-01T23:00:00.000000000'],
dtype='datetime64[ns]')
The previous or future behavior can be obtained, without any warnings, by specifying
the ``dtype``
*Previous behavior*
.. ipython:: python
np.asarray(ser, dtype='datetime64[ns]')
*Future behavior*
.. ipython:: python
# New behavior
np.asarray(ser, dtype=object)
Or by using :meth:`Series.to_numpy`
.. ipython:: python
ser.to_numpy()
ser.to_numpy(dtype="datetime64[ns]")
All the above applies to a :class:`DatetimeIndex` with tz-aware values as well.
.. _whatsnew_0240.prior_deprecations:
Removal of prior version deprecations/changes
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
- The ``LongPanel`` and ``WidePanel`` classes have been removed (:issue:`10892`)
- :meth:`Series.repeat` has renamed the ``reps`` argument to ``repeats`` (:issue:`14645`)
- Several private functions were removed from the (non-public) module ``pandas.core.common`` (:issue:`22001`)
- Removal of the previously deprecated module ``pandas.core.datetools`` (:issue:`14105`, :issue:`14094`)
- Strings passed into :meth:`DataFrame.groupby` that refer to both column and index levels will raise a ``ValueError`` (:issue:`14432`)
- :meth:`Index.repeat` and :meth:`MultiIndex.repeat` have renamed the ``n`` argument to ``repeats`` (:issue:`14645`)
- The ``Series`` constructor and ``.astype`` method will now raise a ``ValueError`` if timestamp dtypes are passed in without a unit (e.g. ``np.datetime64``) for the ``dtype`` parameter (:issue:`15987`)
- Removal of the previously deprecated ``as_indexer`` keyword completely from ``str.match()`` (:issue:`22356`, :issue:`6581`)
- The modules ``pandas.types``, ``pandas.computation``, and ``pandas.util.decorators`` have been removed (:issue:`16157`, :issue:`16250`)
- Removed the ``pandas.formats.style`` shim for :class:`pandas.io.formats.style.Styler` (:issue:`16059`)
- ``pandas.pnow``, ``pandas.match``, ``pandas.groupby``, ``pd.get_store``, ``pd.Expr``, and ``pd.Term`` have been removed (:issue:`15538`, :issue:`15940`)
- :meth:`Categorical.searchsorted` and :meth:`Series.searchsorted` have renamed the ``v`` argument to ``value`` (:issue:`14645`)
- ``pandas.parser``, ``pandas.lib``, and ``pandas.tslib`` have been removed (:issue:`15537`)
- :meth:`Index.searchsorted` have renamed the ``key`` argument to ``value`` (:issue:`14645`)
- ``DataFrame.consolidate`` and ``Series.consolidate`` have been removed (:issue:`15501`)
- Removal of the previously deprecated module ``pandas.json`` (:issue:`19944`)
- The module ``pandas.tools`` has been removed (:issue:`15358`, :issue:`16005`)
- :meth:`SparseArray.get_values` and :meth:`SparseArray.to_dense` have dropped the ``fill`` parameter (:issue:`14686`)
- ``DataFrame.sortlevel`` and ``Series.sortlevel`` have been removed (:issue:`15099`)
- :meth:`SparseSeries.to_dense` has dropped the ``sparse_only`` parameter (:issue:`14686`)
- :meth:`DataFrame.astype` and :meth:`Series.astype` have renamed the ``raise_on_error`` argument to ``errors`` (:issue:`14967`)
- ``is_sequence``, ``is_any_int_dtype``, and ``is_floating_dtype`` have been removed from ``pandas.api.types`` (:issue:`16163`, :issue:`16189`)
.. _whatsnew_0240.performance:
Performance improvements
~~~~~~~~~~~~~~~~~~~~~~~~
- Slicing Series and DataFrames with an monotonically increasing :class:`CategoricalIndex`
is now very fast and has speed comparable to slicing with an ``Int64Index``.
The speed increase is both when indexing by label (using .loc) and position(.iloc) (:issue:`20395`)
Slicing a monotonically increasing :class:`CategoricalIndex` itself (i.e. ``ci[1000:2000]``)
shows similar speed improvements as above (:issue:`21659`)
- Improved performance of :meth:`CategoricalIndex.equals` when comparing to another :class:`CategoricalIndex` (:issue:`24023`)
- Improved performance of :func:`Series.describe` in case of numeric dtpyes (:issue:`21274`)
- Improved performance of :func:`.GroupBy.rank` when dealing with tied rankings (:issue:`21237`)
- Improved performance of :func:`DataFrame.set_index` with columns consisting of :class:`Period` objects (:issue:`21582`, :issue:`21606`)
- Improved performance of :meth:`Series.at` and :meth:`Index.get_value` for Extension Arrays values (e.g. :class:`Categorical`) (:issue:`24204`)
- Improved performance of membership checks in :class:`Categorical` and :class:`CategoricalIndex`
(i.e. ``x in cat``-style checks are much faster). :meth:`CategoricalIndex.contains`
is likewise much faster (:issue:`21369`, :issue:`21508`)
- Improved performance of :meth:`HDFStore.groups` (and dependent functions like
:meth:`HDFStore.keys`. (i.e. ``x in store`` checks are much faster)
(:issue:`21372`)
- Improved the performance of :func:`pandas.get_dummies` with ``sparse=True`` (:issue:`21997`)
- Improved performance of :func:`IndexEngine.get_indexer_non_unique` for sorted, non-unique indexes (:issue:`9466`)
- Improved performance of :func:`PeriodIndex.unique` (:issue:`23083`)
- Improved performance of :func:`concat` for ``Series`` objects (:issue:`23404`)
- Improved performance of :meth:`DatetimeIndex.normalize` and :meth:`Timestamp.normalize` for timezone naive or UTC datetimes (:issue:`23634`)
- Improved performance of :meth:`DatetimeIndex.tz_localize` and various ``DatetimeIndex`` attributes with dateutil UTC timezone (:issue:`23772`)
- Fixed a performance regression on Windows with Python 3.7 of :func:`read_csv` (:issue:`23516`)
- Improved performance of :class:`Categorical` constructor for ``Series`` objects (:issue:`23814`)
- Improved performance of :meth:`~DataFrame.where` for Categorical data (:issue:`24077`)
- Improved performance of iterating over a :class:`Series`. Using :meth:`DataFrame.itertuples` now creates iterators
without internally allocating lists of all elements (:issue:`20783`)
- Improved performance of :class:`Period` constructor, additionally benefitting ``PeriodArray`` and ``PeriodIndex`` creation (:issue:`24084`, :issue:`24118`)
- Improved performance of tz-aware :class:`DatetimeArray` binary operations (:issue:`24491`)
.. _whatsnew_0240.bug_fixes:
Bug fixes
~~~~~~~~~
Categorical
^^^^^^^^^^^
- Bug in :meth:`Categorical.from_codes` where ``NaN`` values in ``codes`` were silently converted to ``0`` (:issue:`21767`). In the future this will raise a ``ValueError``. Also changes the behavior of ``.from_codes([1.1, 2.0])``.
- Bug in :meth:`Categorical.sort_values` where ``NaN`` values were always positioned in front regardless of ``na_position`` value. (:issue:`22556`).
- Bug when indexing with a boolean-valued ``Categorical``. Now a boolean-valued ``Categorical`` is treated as a boolean mask (:issue:`22665`)
- Constructing a :class:`CategoricalIndex` with empty values and boolean categories was raising a ``ValueError`` after a change to dtype coercion (:issue:`22702`).
- Bug in :meth:`Categorical.take` with a user-provided ``fill_value`` not encoding the ``fill_value``, which could result in a ``ValueError``, incorrect results, or a segmentation fault (:issue:`23296`).
- In :meth:`Series.unstack`, specifying a ``fill_value`` not present in the categories now raises a ``TypeError`` rather than ignoring the ``fill_value`` (:issue:`23284`)
- Bug when resampling :meth:`DataFrame.resample()` and aggregating on categorical data, the categorical dtype was getting lost. (:issue:`23227`)
- Bug in many methods of the ``.str``-accessor, which always failed on calling the ``CategoricalIndex.str`` constructor (:issue:`23555`, :issue:`23556`)
- Bug in :meth:`Series.where` losing the categorical dtype for categorical data (:issue:`24077`)
- Bug in :meth:`Categorical.apply` where ``NaN`` values could be handled unpredictably. They now remain unchanged (:issue:`24241`)
- Bug in :class:`Categorical` comparison methods incorrectly raising ``ValueError`` when operating against a :class:`DataFrame` (:issue:`24630`)
- Bug in :meth:`Categorical.set_categories` where setting fewer new categories with ``rename=True`` caused a segmentation fault (:issue:`24675`)
Datetimelike
^^^^^^^^^^^^
- Fixed bug where two :class:`DateOffset` objects with different ``normalize`` attributes could evaluate as equal (:issue:`21404`)
- Fixed bug where :meth:`Timestamp.resolution` incorrectly returned 1-microsecond ``timedelta`` instead of 1-nanosecond :class:`Timedelta` (:issue:`21336`, :issue:`21365`)
- Bug in :func:`to_datetime` that did not consistently return an :class:`Index` when ``box=True`` was specified (:issue:`21864`)
- Bug in :class:`DatetimeIndex` comparisons where string comparisons incorrectly raises ``TypeError`` (:issue:`22074`)
- Bug in :class:`DatetimeIndex` comparisons when comparing against ``timedelta64[ns]`` dtyped arrays; in some cases ``TypeError`` was incorrectly raised, in others it incorrectly failed to raise (:issue:`22074`)
- Bug in :class:`DatetimeIndex` comparisons when comparing against object-dtyped arrays (:issue:`22074`)
- Bug in :class:`DataFrame` with ``datetime64[ns]`` dtype addition and subtraction with ``Timedelta``-like objects (:issue:`22005`, :issue:`22163`)
- Bug in :class:`DataFrame` with ``datetime64[ns]`` dtype addition and subtraction with ``DateOffset`` objects returning an ``object`` dtype instead of ``datetime64[ns]`` dtype (:issue:`21610`, :issue:`22163`)
- Bug in :class:`DataFrame` with ``datetime64[ns]`` dtype comparing against ``NaT`` incorrectly (:issue:`22242`, :issue:`22163`)
- Bug in :class:`DataFrame` with ``datetime64[ns]`` dtype subtracting ``Timestamp``-like object incorrectly returned ``datetime64[ns]`` dtype instead of ``timedelta64[ns]`` dtype (:issue:`8554`, :issue:`22163`)
- Bug in :class:`DataFrame` with ``datetime64[ns]`` dtype subtracting ``np.datetime64`` object with non-nanosecond unit failing to convert to nanoseconds (:issue:`18874`, :issue:`22163`)
- Bug in :class:`DataFrame` comparisons against ``Timestamp``-like objects failing to raise ``TypeError`` for inequality checks with mismatched types (:issue:`8932`, :issue:`22163`)
- Bug in :class:`DataFrame` with mixed dtypes including ``datetime64[ns]`` incorrectly raising ``TypeError`` on equality comparisons (:issue:`13128`, :issue:`22163`)
- Bug in :attr:`DataFrame.values` returning a :class:`DatetimeIndex` for a single-column ``DataFrame`` with tz-aware datetime values. Now a 2-D :class:`numpy.ndarray` of :class:`Timestamp` objects is returned (:issue:`24024`)
- Bug in :meth:`DataFrame.eq` comparison against ``NaT`` incorrectly returning ``True`` or ``NaN`` (:issue:`15697`, :issue:`22163`)
- Bug in :class:`DatetimeIndex` subtraction that incorrectly failed to raise ``OverflowError`` (:issue:`22492`, :issue:`22508`)
- Bug in :class:`DatetimeIndex` incorrectly allowing indexing with ``Timedelta`` object (:issue:`20464`)
- Bug in :class:`DatetimeIndex` where frequency was being set if original frequency was ``None`` (:issue:`22150`)
- Bug in rounding methods of :class:`DatetimeIndex` (:meth:`~DatetimeIndex.round`, :meth:`~DatetimeIndex.ceil`, :meth:`~DatetimeIndex.floor`) and :class:`Timestamp` (:meth:`~Timestamp.round`, :meth:`~Timestamp.ceil`, :meth:`~Timestamp.floor`) could give rise to loss of precision (:issue:`22591`)
- Bug in :func:`to_datetime` with an :class:`Index` argument that would drop the ``name`` from the result (:issue:`21697`)
- Bug in :class:`PeriodIndex` where adding or subtracting a :class:`timedelta` or :class:`Tick` object produced incorrect results (:issue:`22988`)
- Bug in the :class:`Series` repr with period-dtype data missing a space before the data (:issue:`23601`)
- Bug in :func:`date_range` when decrementing a start date to a past end date by a negative frequency (:issue:`23270`)
- Bug in :meth:`Series.min` which would return ``NaN`` instead of ``NaT`` when called on a series of ``NaT`` (:issue:`23282`)
- Bug in :meth:`Series.combine_first` not properly aligning categoricals, so that missing values in ``self`` where not filled by valid values from ``other`` (:issue:`24147`)
- Bug in :func:`DataFrame.combine` with datetimelike values raising a TypeError (:issue:`23079`)
- Bug in :func:`date_range` with frequency of ``Day`` or higher where dates sufficiently far in the future could wrap around to the past instead of raising ``OutOfBoundsDatetime`` (:issue:`14187`)
- Bug in :func:`period_range` ignoring the frequency of ``start`` and ``end`` when those are provided as :class:`Period` objects (:issue:`20535`).
- Bug in :class:`PeriodIndex` with attribute ``freq.n`` greater than 1 where adding a :class:`DateOffset` object would return incorrect results (:issue:`23215`)
- Bug in :class:`Series` that interpreted string indices as lists of characters when setting datetimelike values (:issue:`23451`)
- Bug in :class:`DataFrame` when creating a new column from an ndarray of :class:`Timestamp` objects with timezones creating an object-dtype column, rather than datetime with timezone (:issue:`23932`)
- Bug in :class:`Timestamp` constructor which would drop the frequency of an input :class:`Timestamp` (:issue:`22311`)
- Bug in :class:`DatetimeIndex` where calling ``np.array(dtindex, dtype=object)`` would incorrectly return an array of ``long`` objects (:issue:`23524`)
- Bug in :class:`Index` where passing a timezone-aware :class:`DatetimeIndex` and ``dtype=object`` would incorrectly raise a ``ValueError`` (:issue:`23524`)
- Bug in :class:`Index` where calling ``np.array(dtindex, dtype=object)`` on a timezone-naive :class:`DatetimeIndex` would return an array of ``datetime`` objects instead of :class:`Timestamp` objects, potentially losing nanosecond portions of the timestamps (:issue:`23524`)
- Bug in :class:`Categorical.__setitem__` not allowing setting with another ``Categorical`` when both are unordered and have the same categories, but in a different order (:issue:`24142`)
- Bug in :func:`date_range` where using dates with millisecond resolution or higher could return incorrect values or the wrong number of values in the index (:issue:`24110`)
- Bug in :class:`DatetimeIndex` where constructing a :class:`DatetimeIndex` from a :class:`Categorical` or :class:`CategoricalIndex` would incorrectly drop timezone information (:issue:`18664`)
- Bug in :class:`DatetimeIndex` and :class:`TimedeltaIndex` where indexing with ``Ellipsis`` would incorrectly lose the index's ``freq`` attribute (:issue:`21282`)
- Clarified error message produced when passing an incorrect ``freq`` argument to :class:`DatetimeIndex` with ``NaT`` as the first entry in the passed data (:issue:`11587`)
- Bug in :func:`to_datetime` where ``box`` and ``utc`` arguments were ignored when passing a :class:`DataFrame` or ``dict`` of unit mappings (:issue:`23760`)
- Bug in :attr:`Series.dt` where the cache would not update properly after an in-place operation (:issue:`24408`)
- Bug in :class:`PeriodIndex` where comparisons against an array-like object with length 1 failed to raise ``ValueError`` (:issue:`23078`)
- Bug in :meth:`DatetimeIndex.astype`, :meth:`PeriodIndex.astype` and :meth:`TimedeltaIndex.astype` ignoring the sign of the ``dtype`` for unsigned integer dtypes (:issue:`24405`).
- Fixed bug in :meth:`Series.max` with ``datetime64[ns]``-dtype failing to return ``NaT`` when nulls are present and ``skipna=False`` is passed (:issue:`24265`)
- Bug in :func:`to_datetime` where arrays of ``datetime`` objects containing both timezone-aware and timezone-naive ``datetimes`` would fail to raise ``ValueError`` (:issue:`24569`)
- Bug in :func:`to_datetime` with invalid datetime format doesn't coerce input to ``NaT`` even if ``errors='coerce'`` (:issue:`24763`)
Timedelta
^^^^^^^^^
- Bug in :class:`DataFrame` with ``timedelta64[ns]`` dtype division by ``Timedelta``-like scalar incorrectly returning ``timedelta64[ns]`` dtype instead of ``float64`` dtype (:issue:`20088`, :issue:`22163`)
- Bug in adding a :class:`Index` with object dtype to a :class:`Series` with ``timedelta64[ns]`` dtype incorrectly raising (:issue:`22390`)
- Bug in multiplying a :class:`Series` with numeric dtype against a ``timedelta`` object (:issue:`22390`)
- Bug in :class:`Series` with numeric dtype when adding or subtracting an array or ``Series`` with ``timedelta64`` dtype (:issue:`22390`)
- Bug in :class:`Index` with numeric dtype when multiplying or dividing an array with dtype ``timedelta64`` (:issue:`22390`)
- Bug in :class:`TimedeltaIndex` incorrectly allowing indexing with ``Timestamp`` object (:issue:`20464`)
- Fixed bug where subtracting :class:`Timedelta` from an object-dtyped array would raise ``TypeError`` (:issue:`21980`)
- Fixed bug in adding a :class:`DataFrame` with all-`timedelta64[ns]` dtypes to a :class:`DataFrame` with all-integer dtypes returning incorrect results instead of raising ``TypeError`` (:issue:`22696`)
- Bug in :class:`TimedeltaIndex` where adding a timezone-aware datetime scalar incorrectly returned a timezone-naive :class:`DatetimeIndex` (:issue:`23215`)
- Bug in :class:`TimedeltaIndex` where adding ``np.timedelta64('NaT')`` incorrectly returned an all-``NaT`` :class:`DatetimeIndex` instead of an all-``NaT`` :class:`TimedeltaIndex` (:issue:`23215`)
- Bug in :class:`Timedelta` and :func:`to_timedelta()` have inconsistencies in supported unit string (:issue:`21762`)
- Bug in :class:`TimedeltaIndex` division where dividing by another :class:`TimedeltaIndex` raised ``TypeError`` instead of returning a :class:`Float64Index` (:issue:`23829`, :issue:`22631`)
- Bug in :class:`TimedeltaIndex` comparison operations where comparing against non-``Timedelta``-like objects would raise ``TypeError`` instead of returning all-``False`` for ``__eq__`` and all-``True`` for ``__ne__`` (:issue:`24056`)
- Bug in :class:`Timedelta` comparisons when comparing with a ``Tick`` object incorrectly raising ``TypeError`` (:issue:`24710`)
Timezones
^^^^^^^^^
- Bug in :meth:`Index.shift` where an ``AssertionError`` would raise when shifting across DST (:issue:`8616`)
- Bug in :class:`Timestamp` constructor where passing an invalid timezone offset designator (``Z``) would not raise a ``ValueError`` (:issue:`8910`)
- Bug in :meth:`Timestamp.replace` where replacing at a DST boundary would retain an incorrect offset (:issue:`7825`)
- Bug in :meth:`Series.replace` with ``datetime64[ns, tz]`` data when replacing ``NaT`` (:issue:`11792`)
- Bug in :class:`Timestamp` when passing different string date formats with a timezone offset would produce different timezone offsets (:issue:`12064`)
- Bug when comparing a tz-naive :class:`Timestamp` to a tz-aware :class:`DatetimeIndex` which would coerce the :class:`DatetimeIndex` to tz-naive (:issue:`12601`)
- Bug in :meth:`Series.truncate` with a tz-aware :class:`DatetimeIndex` which would cause a core dump (:issue:`9243`)
- Bug in :class:`Series` constructor which would coerce tz-aware and tz-naive :class:`Timestamp` to tz-aware (:issue:`13051`)
- Bug in :class:`Index` with ``datetime64[ns, tz]`` dtype that did not localize integer data correctly (:issue:`20964`)
- Bug in :class:`DatetimeIndex` where constructing with an integer and tz would not localize correctly (:issue:`12619`)
- Fixed bug where :meth:`DataFrame.describe` and :meth:`Series.describe` on tz-aware datetimes did not show ``first`` and ``last`` result (:issue:`21328`)
- Bug in :class:`DatetimeIndex` comparisons failing to raise ``TypeError`` when comparing timezone-aware ``DatetimeIndex`` against ``np.datetime64`` (:issue:`22074`)
- Bug in ``DataFrame`` assignment with a timezone-aware scalar (:issue:`19843`)
- Bug in :func:`DataFrame.asof` that raised a ``TypeError`` when attempting to compare tz-naive and tz-aware timestamps (:issue:`21194`)
- Bug when constructing a :class:`DatetimeIndex` with :class:`Timestamp` constructed with the ``replace`` method across DST (:issue:`18785`)
- Bug when setting a new value with :meth:`DataFrame.loc` with a :class:`DatetimeIndex` with a DST transition (:issue:`18308`, :issue:`20724`)
- Bug in :meth:`Index.unique` that did not re-localize tz-aware dates correctly (:issue:`21737`)
- Bug when indexing a :class:`Series` with a DST transition (:issue:`21846`)
- Bug in :meth:`DataFrame.resample` and :meth:`Series.resample` where an ``AmbiguousTimeError`` or ``NonExistentTimeError`` would raise if a timezone aware timeseries ended on a DST transition (:issue:`19375`, :issue:`10117`)
- Bug in :meth:`DataFrame.drop` and :meth:`Series.drop` when specifying a tz-aware Timestamp key to drop from a :class:`DatetimeIndex` with a DST transition (:issue:`21761`)
- Bug in :class:`DatetimeIndex` constructor where ``NaT`` and ``dateutil.tz.tzlocal`` would raise an ``OutOfBoundsDatetime`` error (:issue:`23807`)
- Bug in :meth:`DatetimeIndex.tz_localize` and :meth:`Timestamp.tz_localize` with ``dateutil.tz.tzlocal`` near a DST transition that would return an incorrectly localized datetime (:issue:`23807`)
- Bug in :class:`Timestamp` constructor where a ``dateutil.tz.tzutc`` timezone passed with a ``datetime.datetime`` argument would be converted to a ``pytz.UTC`` timezone (:issue:`23807`)
- Bug in :func:`to_datetime` where ``utc=True`` was not respected when specifying a ``unit`` and ``errors='ignore'`` (:issue:`23758`)
- Bug in :func:`to_datetime` where ``utc=True`` was not respected when passing a :class:`Timestamp` (:issue:`24415`)
- Bug in :meth:`DataFrame.any` returns wrong value when ``axis=1`` and the data is of datetimelike type (:issue:`23070`)
- Bug in :meth:`DatetimeIndex.to_period` where a timezone aware index was converted to UTC first before creating :class:`PeriodIndex` (:issue:`22905`)
- Bug in :meth:`DataFrame.tz_localize`, :meth:`DataFrame.tz_convert`, :meth:`Series.tz_localize`, and :meth:`Series.tz_convert` where ``copy=False`` would mutate the original argument inplace (:issue:`6326`)
- Bug in :meth:`DataFrame.max` and :meth:`DataFrame.min` with ``axis=1`` where a :class:`Series` with ``NaN`` would be returned when all columns contained the same timezone (:issue:`10390`)
Offsets
^^^^^^^
- Bug in :class:`FY5253` where date offsets could incorrectly raise an ``AssertionError`` in arithmetic operations (:issue:`14774`)
- Bug in :class:`DateOffset` where keyword arguments ``week`` and ``milliseconds`` were accepted and ignored. Passing these will now raise ``ValueError`` (:issue:`19398`)
- Bug in adding :class:`DateOffset` with :class:`DataFrame` or :class:`PeriodIndex` incorrectly raising ``TypeError`` (:issue:`23215`)
- Bug in comparing :class:`DateOffset` objects with non-DateOffset objects, particularly strings, raising ``ValueError`` instead of returning ``False`` for equality checks and ``True`` for not-equal checks (:issue:`23524`)
Numeric
^^^^^^^
- Bug in :class:`Series` ``__rmatmul__`` doesn't support matrix vector multiplication (:issue:`21530`)
- Bug in :func:`factorize` fails with read-only array (:issue:`12813`)
- Fixed bug in :func:`unique` handled signed zeros inconsistently: for some inputs 0.0 and -0.0 were treated as equal and for some inputs as different. Now they are treated as equal for all inputs (:issue:`21866`)
- Bug in :meth:`DataFrame.agg`, :meth:`DataFrame.transform` and :meth:`DataFrame.apply` where,
when supplied with a list of functions and ``axis=1`` (e.g. ``df.apply(['sum', 'mean'], axis=1)``),
a ``TypeError`` was wrongly raised. For all three methods such calculation are now done correctly. (:issue:`16679`).
- Bug in :class:`Series` comparison against datetime-like scalars and arrays (:issue:`22074`)
- Bug in :class:`DataFrame` multiplication between boolean dtype and integer returning ``object`` dtype instead of integer dtype (:issue:`22047`, :issue:`22163`)
- Bug in :meth:`DataFrame.apply` where, when supplied with a string argument and additional positional or keyword arguments (e.g. ``df.apply('sum', min_count=1)``), a ``TypeError`` was wrongly raised (:issue:`22376`)
- Bug in :meth:`DataFrame.astype` to extension dtype may raise ``AttributeError`` (:issue:`22578`)
- Bug in :class:`DataFrame` with ``timedelta64[ns]`` dtype arithmetic operations with ``ndarray`` with integer dtype incorrectly treating the narray as ``timedelta64[ns]`` dtype (:issue:`23114`)
- Bug in :meth:`Series.rpow` with object dtype ``NaN`` for ``1 ** NA`` instead of ``1`` (:issue:`22922`).
- :meth:`Series.agg` can now handle numpy NaN-aware methods like :func:`numpy.nansum` (:issue:`19629`)
- Bug in :meth:`Series.rank` and :meth:`DataFrame.rank` when ``pct=True`` and more than 2\ :sup:`24` rows are present resulted in percentages greater than 1.0 (:issue:`18271`)
- Calls such as :meth:`DataFrame.round` with a non-unique :meth:`CategoricalIndex` now return expected data. Previously, data would be improperly duplicated (:issue:`21809`).
- Added ``log10``, ``floor`` and ``ceil`` to the list of supported functions in :meth:`DataFrame.eval` (:issue:`24139`, :issue:`24353`)
- Logical operations ``&, |, ^`` between :class:`Series` and :class:`Index` will no longer raise ``ValueError`` (:issue:`22092`)
- Checking PEP 3141 numbers in :func:`~pandas.api.types.is_scalar` function returns ``True`` (:issue:`22903`)
- Reduction methods like :meth:`Series.sum` now accept the default value of ``keepdims=False`` when called from a NumPy ufunc, rather than raising a ``TypeError``. Full support for ``keepdims`` has not been implemented (:issue:`24356`).
Conversion
^^^^^^^^^^
- Bug in :meth:`DataFrame.combine_first` in which column types were unexpectedly converted to float (:issue:`20699`)
- Bug in :meth:`DataFrame.clip` in which column types are not preserved and casted to float (:issue:`24162`)
- Bug in :meth:`DataFrame.clip` when order of columns of dataframes doesn't match, result observed is wrong in numeric values (:issue:`20911`)
- Bug in :meth:`DataFrame.astype` where converting to an extension dtype when duplicate column names are present causes a ``RecursionError`` (:issue:`24704`)
Strings
^^^^^^^
- Bug in :meth:`Index.str.partition` was not nan-safe (:issue:`23558`).
- Bug in :meth:`Index.str.split` was not nan-safe (:issue:`23677`).
- Bug :func:`Series.str.contains` not respecting the ``na`` argument for a ``Categorical`` dtype ``Series`` (:issue:`22158`)
- Bug in :meth:`Index.str.cat` when the result contained only ``NaN`` (:issue:`24044`)
Interval
^^^^^^^^
- Bug in the :class:`IntervalIndex` constructor where the ``closed`` parameter did not always override the inferred ``closed`` (:issue:`19370`)
- Bug in the ``IntervalIndex`` repr where a trailing comma was missing after the list of intervals (:issue:`20611`)
- Bug in :class:`Interval` where scalar arithmetic operations did not retain the ``closed`` value (:issue:`22313`)
- Bug in :class:`IntervalIndex` where indexing with datetime-like values raised a ``KeyError`` (:issue:`20636`)
- Bug in ``IntervalTree`` where data containing ``NaN`` triggered a warning and resulted in incorrect indexing queries with :class:`IntervalIndex` (:issue:`23352`)
Indexing
^^^^^^^^
- Bug in :meth:`DataFrame.ne` fails if columns contain column name "dtype" (:issue:`22383`)
- The traceback from a ``KeyError`` when asking ``.loc`` for a single missing label is now shorter and more clear (:issue:`21557`)
- :class:`PeriodIndex` now emits a ``KeyError`` when a malformed string is looked up, which is consistent with the behavior of :class:`DatetimeIndex` (:issue:`22803`)
- When ``.ix`` is asked for a missing integer label in a :class:`MultiIndex` with a first level of integer type, it now raises a ``KeyError``, consistently with the case of a flat :class:`Int64Index`, rather than falling back to positional indexing (:issue:`21593`)
- Bug in :meth:`Index.reindex` when reindexing a tz-naive and tz-aware :class:`DatetimeIndex` (:issue:`8306`)
- Bug in :meth:`Series.reindex` when reindexing an empty series with a ``datetime64[ns, tz]`` dtype (:issue:`20869`)
- Bug in :class:`DataFrame` when setting values with ``.loc`` and a timezone aware :class:`DatetimeIndex` (:issue:`11365`)
- ``DataFrame.__getitem__`` now accepts dictionaries and dictionary keys as list-likes of labels, consistently with ``Series.__getitem__`` (:issue:`21294`)
- Fixed ``DataFrame[np.nan]`` when columns are non-unique (:issue:`21428`)
- Bug when indexing :class:`DatetimeIndex` with nanosecond resolution dates and timezones (:issue:`11679`)
- Bug where indexing with a Numpy array containing negative values would mutate the indexer (:issue:`21867`)
- Bug where mixed indexes wouldn't allow integers for ``.at`` (:issue:`19860`)
- ``Float64Index.get_loc`` now raises ``KeyError`` when boolean key passed. (:issue:`19087`)
- Bug in :meth:`DataFrame.loc` when indexing with an :class:`IntervalIndex` (:issue:`19977`)
- :class:`Index` no longer mangles ``None``, ``NaN`` and ``NaT``, i.e. they are treated as three different keys. However, for numeric Index all three are still coerced to a ``NaN`` (:issue:`22332`)
- Bug in ``scalar in Index`` if scalar is a float while the ``Index`` is of integer dtype (:issue:`22085`)
- Bug in :func:`MultiIndex.set_levels` when levels value is not subscriptable (:issue:`23273`)
- Bug where setting a timedelta column by ``Index`` causes it to be casted to double, and therefore lose precision (:issue:`23511`)
- Bug in :func:`Index.union` and :func:`Index.intersection` where name of the ``Index`` of the result was not computed correctly for certain cases (:issue:`9943`, :issue:`9862`)
- Bug in :class:`Index` slicing with boolean :class:`Index` may raise ``TypeError`` (:issue:`22533`)
- Bug in ``PeriodArray.__setitem__`` when accepting slice and list-like value (:issue:`23978`)
- Bug in :class:`DatetimeIndex`, :class:`TimedeltaIndex` where indexing with ``Ellipsis`` would lose their ``freq`` attribute (:issue:`21282`)
- Bug in ``iat`` where using it to assign an incompatible value would create a new column (:issue:`23236`)
Missing
^^^^^^^
- Bug in :func:`DataFrame.fillna` where a ``ValueError`` would raise when one column contained a ``datetime64[ns, tz]`` dtype (:issue:`15522`)
- Bug in :func:`Series.hasnans` that could be incorrectly cached and return incorrect answers if null elements are introduced after an initial call (:issue:`19700`)
- :func:`Series.isin` now treats all NaN-floats as equal also for ``np.object_``-dtype. This behavior is consistent with the behavior for float64 (:issue:`22119`)
- :func:`unique` no longer mangles NaN-floats and the ``NaT``-object for ``np.object_``-dtype, i.e. ``NaT`` is no longer coerced to a NaN-value and is treated as a different entity. (:issue:`22295`)
- :class:`DataFrame` and :class:`Series` now properly handle numpy masked arrays with hardened masks. Previously, constructing a DataFrame or Series from a masked array with a hard mask would create a pandas object containing the underlying value, rather than the expected NaN. (:issue:`24574`)
- Bug in :class:`DataFrame` constructor where ``dtype`` argument was not honored when handling numpy masked record arrays. (:issue:`24874`)
MultiIndex
^^^^^^^^^^
- Bug in :func:`io.formats.style.Styler.applymap` where ``subset=`` with :class:`MultiIndex` slice would reduce to :class:`Series` (:issue:`19861`)
- Removed compatibility for :class:`MultiIndex` pickles prior to version 0.8.0; compatibility with :class:`MultiIndex` pickles from version 0.13 forward is maintained (:issue:`21654`)
- :meth:`MultiIndex.get_loc_level` (and as a consequence, ``.loc`` on a ``Series`` or ``DataFrame`` with a :class:`MultiIndex` index) will now raise a ``KeyError``, rather than returning an empty ``slice``, if asked a label which is present in the ``levels`` but is unused (:issue:`22221`)
- :class:`MultiIndex` has gained the :meth:`MultiIndex.from_frame`, it allows constructing a :class:`MultiIndex` object from a :class:`DataFrame` (:issue:`22420`)
- Fix ``TypeError`` in Python 3 when creating :class:`MultiIndex` in which some levels have mixed types, e.g. when some labels are tuples (:issue:`15457`)
IO
^^
- Bug in :func:`read_csv` in which a column specified with ``CategoricalDtype`` of boolean categories was not being correctly coerced from string values to booleans (:issue:`20498`)
- Bug in :func:`read_csv` in which unicode column names were not being properly recognized with Python 2.x (:issue:`13253`)
- Bug in :meth:`DataFrame.to_sql` when writing timezone aware data (``datetime64[ns, tz]`` dtype) would raise a ``TypeError`` (:issue:`9086`)
- Bug in :meth:`DataFrame.to_sql` where a naive :class:`DatetimeIndex` would be written as ``TIMESTAMP WITH TIMEZONE`` type in supported databases, e.g. PostgreSQL (:issue:`23510`)
- Bug in :meth:`read_excel()` when ``parse_cols`` is specified with an empty dataset (:issue:`9208`)
- :func:`read_html()` no longer ignores all-whitespace ``<tr>`` within ``<thead>`` when considering the ``skiprows`` and ``header`` arguments. Previously, users had to decrease their ``header`` and ``skiprows`` values on such tables to work around the issue. (:issue:`21641`)
- :func:`read_excel()` will correctly show the deprecation warning for previously deprecated ``sheetname`` (:issue:`17994`)
- :func:`read_csv()` and :func:`read_table()` will throw ``UnicodeError`` and not coredump on badly encoded strings (:issue:`22748`)
- :func:`read_csv()` will correctly parse timezone-aware datetimes (:issue:`22256`)
- Bug in :func:`read_csv()` in which memory management was prematurely optimized for the C engine when the data was being read in chunks (:issue:`23509`)
- Bug in :func:`read_csv()` in unnamed columns were being improperly identified when extracting a multi-index (:issue:`23687`)
- :func:`read_sas()` will parse numbers in sas7bdat-files that have width less than 8 bytes correctly. (:issue:`21616`)
- :func:`read_sas()` will correctly parse sas7bdat files with many columns (:issue:`22628`)
- :func:`read_sas()` will correctly parse sas7bdat files with data page types having also bit 7 set (so page type is 128 + 256 = 384) (:issue:`16615`)
- Bug in :func:`read_sas()` in which an incorrect error was raised on an invalid file format. (:issue:`24548`)
- Bug in :meth:`detect_client_encoding` where potential ``IOError`` goes unhandled when importing in a mod_wsgi process due to restricted access to stdout. (:issue:`21552`)
- Bug in :func:`DataFrame.to_html()` with ``index=False`` misses truncation indicators (...) on truncated DataFrame (:issue:`15019`, :issue:`22783`)
- Bug in :func:`DataFrame.to_html()` with ``index=False`` when both columns and row index are ``MultiIndex`` (:issue:`22579`)
- Bug in :func:`DataFrame.to_html()` with ``index_names=False`` displaying index name (:issue:`22747`)
- Bug in :func:`DataFrame.to_html()` with ``header=False`` not displaying row index names (:issue:`23788`)
- Bug in :func:`DataFrame.to_html()` with ``sparsify=False`` that caused it to raise ``TypeError`` (:issue:`22887`)
- Bug in :func:`DataFrame.to_string()` that broke column alignment when ``index=False`` and width of first column's values is greater than the width of first column's header (:issue:`16839`, :issue:`13032`)
- Bug in :func:`DataFrame.to_string()` that caused representations of :class:`DataFrame` to not take up the whole window (:issue:`22984`)
- Bug in :func:`DataFrame.to_csv` where a single level MultiIndex incorrectly wrote a tuple. Now just the value of the index is written (:issue:`19589`).
- :class:`HDFStore` will raise ``ValueError`` when the ``format`` kwarg is passed to the constructor (:issue:`13291`)
- Bug in :meth:`HDFStore.append` when appending a :class:`DataFrame` with an empty string column and ``min_itemsize`` < 8 (:issue:`12242`)
- Bug in :func:`read_csv()` in which memory leaks occurred in the C engine when parsing ``NaN`` values due to insufficient cleanup on completion or error (:issue:`21353`)
- Bug in :func:`read_csv()` in which incorrect error messages were being raised when ``skipfooter`` was passed in along with ``nrows``, ``iterator``, or ``chunksize`` (:issue:`23711`)
- Bug in :func:`read_csv()` in which :class:`MultiIndex` index names were being improperly handled in the cases when they were not provided (:issue:`23484`)
- Bug in :func:`read_csv()` in which unnecessary warnings were being raised when the dialect's values conflicted with the default arguments (:issue:`23761`)
- Bug in :func:`read_html()` in which the error message was not displaying the valid flavors when an invalid one was provided (:issue:`23549`)
- Bug in :meth:`read_excel()` in which extraneous header names were extracted, even though none were specified (:issue:`11733`)
- Bug in :meth:`read_excel()` in which column names were not being properly converted to string sometimes in Python 2.x (:issue:`23874`)
- Bug in :meth:`read_excel()` in which ``index_col=None`` was not being respected and parsing index columns anyway (:issue:`18792`, :issue:`20480`)
- Bug in :meth:`read_excel()` in which ``usecols`` was not being validated for proper column names when passed in as a string (:issue:`20480`)
- Bug in :meth:`DataFrame.to_dict` when the resulting dict contains non-Python scalars in the case of numeric data (:issue:`23753`)
- :func:`DataFrame.to_string()`, :func:`DataFrame.to_html()`, :func:`DataFrame.to_latex()` will correctly format output when a string is passed as the ``float_format`` argument (:issue:`21625`, :issue:`22270`)
- Bug in :func:`read_csv` that caused it to raise ``OverflowError`` when trying to use 'inf' as ``na_value`` with integer index column (:issue:`17128`)
- Bug in :func:`read_csv` that caused the C engine on Python 3.6+ on Windows to improperly read CSV filenames with accented or special characters (:issue:`15086`)
- Bug in :func:`read_fwf` in which the compression type of a file was not being properly inferred (:issue:`22199`)
- Bug in :func:`pandas.io.json.json_normalize` that caused it to raise ``TypeError`` when two consecutive elements of ``record_path`` are dicts (:issue:`22706`)
- Bug in :meth:`DataFrame.to_stata`, :class:`pandas.io.stata.StataWriter` and :class:`pandas.io.stata.StataWriter117` where a exception would leave a partially written and invalid dta file (:issue:`23573`)
- Bug in :meth:`DataFrame.to_stata` and :class:`pandas.io.stata.StataWriter117` that produced invalid files when using strLs with non-ASCII characters (:issue:`23573`)
- Bug in :class:`HDFStore` that caused it to raise ``ValueError`` when reading a Dataframe in Python 3 from fixed format written in Python 2 (:issue:`24510`)
- Bug in :func:`DataFrame.to_string()` and more generally in the floating ``repr`` formatter. Zeros were not trimmed if ``inf`` was present in a columns while it was the case with NA values. Zeros are now trimmed as in the presence of NA (:issue:`24861`).
- Bug in the ``repr`` when truncating the number of columns and having a wide last column (:issue:`24849`).
Plotting
^^^^^^^^
- Bug in :func:`DataFrame.plot.scatter` and :func:`DataFrame.plot.hexbin` caused x-axis label and ticklabels to disappear when colorbar was on in IPython inline backend (:issue:`10611`, :issue:`10678`, and :issue:`20455`)
- Bug in plotting a Series with datetimes using :func:`matplotlib.axes.Axes.scatter` (:issue:`22039`)
- Bug in :func:`DataFrame.plot.bar` caused bars to use multiple colors instead of a single one (:issue:`20585`)
- Bug in validating color parameter caused extra color to be appended to the given color array. This happened to multiple plotting functions using matplotlib. (:issue:`20726`)
GroupBy/resample/rolling
^^^^^^^^^^^^^^^^^^^^^^^^
- Bug in :func:`.Rolling.min` and :func:`.Rolling.max` with ``closed='left'``, a datetime-like index and only one entry in the series leading to segfault (:issue:`24718`)
- Bug in :func:`.GroupBy.first` and :func:`.GroupBy.last` with ``as_index=False`` leading to the loss of timezone information (:issue:`15884`)
- Bug in :meth:`DateFrame.resample` when downsampling across a DST boundary (:issue:`8531`)
- Bug in date anchoring for :meth:`DateFrame.resample` with offset :class:`Day` when n > 1 (:issue:`24127`)
- Bug where ``ValueError`` is wrongly raised when calling :func:`.SeriesGroupBy.count` method of a
``SeriesGroupBy`` when the grouping variable only contains NaNs and numpy version < 1.13 (:issue:`21956`).
- Multiple bugs in :func:`.Rolling.min` with ``closed='left'`` and a
datetime-like index leading to incorrect results and also segfault. (:issue:`21704`)
- Bug in :meth:`.Resampler.apply` when passing positional arguments to applied func (:issue:`14615`).
- Bug in :meth:`Series.resample` when passing ``numpy.timedelta64`` to ``loffset`` kwarg (:issue:`7687`).
- Bug in :meth:`.Resampler.asfreq` when frequency of ``TimedeltaIndex`` is a subperiod of a new frequency (:issue:`13022`).
- Bug in :meth:`.SeriesGroupBy.mean` when values were integral but could not fit inside of int64, overflowing instead. (:issue:`22487`)
- :func:`.RollingGroupby.agg` and :func:`.ExpandingGroupby.agg` now support multiple aggregation functions as parameters (:issue:`15072`)
- Bug in :meth:`DataFrame.resample` and :meth:`Series.resample` when resampling by a weekly offset (``'W'``) across a DST transition (:issue:`9119`, :issue:`21459`)
- Bug in :meth:`DataFrame.expanding` in which the ``axis`` argument was not being respected during aggregations (:issue:`23372`)
- Bug in :meth:`.GroupBy.transform` which caused missing values when the input function can accept a :class:`DataFrame` but renames it (:issue:`23455`).
- Bug in :func:`.GroupBy.nth` where column order was not always preserved (:issue:`20760`)
- Bug in :meth:`.GroupBy.rank` with ``method='dense'`` and ``pct=True`` when a group has only one member would raise a ``ZeroDivisionError`` (:issue:`23666`).
- Calling :meth:`.GroupBy.rank` with empty groups and ``pct=True`` was raising a ``ZeroDivisionError`` (:issue:`22519`)
- Bug in :meth:`DataFrame.resample` when resampling ``NaT`` in ``TimeDeltaIndex`` (:issue:`13223`).
- Bug in :meth:`DataFrame.groupby` did not respect the ``observed`` argument when selecting a column and instead always used ``observed=False`` (:issue:`23970`)
- Bug in :func:`.SeriesGroupBy.pct_change` or :func:`.DataFrameGroupBy.pct_change` would previously work across groups when calculating the percent change, where it now correctly works per group (:issue:`21200`, :issue:`21235`).
- Bug preventing hash table creation with very large number (2^32) of rows (:issue:`22805`)
- Bug in groupby when grouping on categorical causes ``ValueError`` and incorrect grouping if ``observed=True`` and ``nan`` is present in categorical column (:issue:`24740`, :issue:`21151`).
Reshaping
^^^^^^^^^
- Bug in :func:`pandas.concat` when joining resampled DataFrames with timezone aware index (:issue:`13783`)
- Bug in :func:`pandas.concat` when joining only ``Series`` the ``names`` argument of ``concat`` is no longer ignored (:issue:`23490`)
- Bug in :meth:`Series.combine_first` with ``datetime64[ns, tz]`` dtype which would return tz-naive result (:issue:`21469`)
- Bug in :meth:`Series.where` and :meth:`DataFrame.where` with ``datetime64[ns, tz]`` dtype (:issue:`21546`)
- Bug in :meth:`DataFrame.where` with an empty DataFrame and empty ``cond`` having non-bool dtype (:issue:`21947`)
- Bug in :meth:`Series.mask` and :meth:`DataFrame.mask` with ``list`` conditionals (:issue:`21891`)
- Bug in :meth:`DataFrame.replace` raises RecursionError when converting OutOfBounds ``datetime64[ns, tz]`` (:issue:`20380`)
- :func:`.GroupBy.rank` now raises a ``ValueError`` when an invalid value is passed for argument ``na_option`` (:issue:`22124`)
- Bug in :func:`get_dummies` with Unicode attributes in Python 2 (:issue:`22084`)
- Bug in :meth:`DataFrame.replace` raises ``RecursionError`` when replacing empty lists (:issue:`22083`)
- Bug in :meth:`Series.replace` and :meth:`DataFrame.replace` when dict is used as the ``to_replace`` value and one key in the dict is another key's value, the results were inconsistent between using integer key and using string key (:issue:`20656`)
- Bug in :meth:`DataFrame.drop_duplicates` for empty ``DataFrame`` which incorrectly raises an error (:issue:`20516`)
- Bug in :func:`pandas.wide_to_long` when a string is passed to the stubnames argument and a column name is a substring of that stubname (:issue:`22468`)
- Bug in :func:`merge` when merging ``datetime64[ns, tz]`` data that contained a DST transition (:issue:`18885`)
- Bug in :func:`merge_asof` when merging on float values within defined tolerance (:issue:`22981`)
- Bug in :func:`pandas.concat` when concatenating a multicolumn DataFrame with tz-aware data against a DataFrame with a different number of columns (:issue:`22796`)
- Bug in :func:`merge_asof` where confusing error message raised when attempting to merge with missing values (:issue:`23189`)
- Bug in :meth:`DataFrame.nsmallest` and :meth:`DataFrame.nlargest` for dataframes that have a :class:`MultiIndex` for columns (:issue:`23033`).
- Bug in :func:`pandas.melt` when passing column names that are not present in ``DataFrame`` (:issue:`23575`)
- Bug in :meth:`DataFrame.append` with a :class:`Series` with a dateutil timezone would raise a ``TypeError`` (:issue:`23682`)
- Bug in :class:`Series` construction when passing no data and ``dtype=str`` (:issue:`22477`)
- Bug in :func:`cut` with ``bins`` as an overlapping ``IntervalIndex`` where multiple bins were returned per item instead of raising a ``ValueError`` (:issue:`23980`)
- Bug in :func:`pandas.concat` when joining ``Series`` datetimetz with ``Series`` category would lose timezone (:issue:`23816`)
- Bug in :meth:`DataFrame.join` when joining on partial MultiIndex would drop names (:issue:`20452`).
- :meth:`DataFrame.nlargest` and :meth:`DataFrame.nsmallest` now returns the correct n values when keep != 'all' also when tied on the first columns (:issue:`22752`)
- Constructing a DataFrame with an index argument that wasn't already an instance of :class:`.Index` was broken (:issue:`22227`).
- Bug in :class:`DataFrame` prevented list subclasses to be used to construction (:issue:`21226`)
- Bug in :func:`DataFrame.unstack` and :func:`DataFrame.pivot_table` returning a misleading error message when the resulting DataFrame has more elements than int32 can handle. Now, the error message is improved, pointing towards the actual problem (:issue:`20601`)
- Bug in :func:`DataFrame.unstack` where a ``ValueError`` was raised when unstacking timezone aware values (:issue:`18338`)
- Bug in :func:`DataFrame.stack` where timezone aware values were converted to timezone naive values (:issue:`19420`)
- Bug in :func:`merge_asof` where a ``TypeError`` was raised when ``by_col`` were timezone aware values (:issue:`21184`)
- Bug showing an incorrect shape when throwing error during ``DataFrame`` construction. (:issue:`20742`)
.. _whatsnew_0240.bug_fixes.sparse:
Sparse
^^^^^^
- Updating a boolean, datetime, or timedelta column to be Sparse now works (:issue:`22367`)
- Bug in :meth:`Series.to_sparse` with Series already holding sparse data not constructing properly (:issue:`22389`)
- Providing a ``sparse_index`` to the SparseArray constructor no longer defaults the na-value to ``np.nan`` for all dtypes. The correct na_value for ``data.dtype`` is now used.
- Bug in ``SparseArray.nbytes`` under-reporting its memory usage by not including the size of its sparse index.
- Improved performance of :meth:`Series.shift` for non-NA ``fill_value``, as values are no longer converted to a dense array.
- Bug in ``DataFrame.groupby`` not including ``fill_value`` in the groups for non-NA ``fill_value`` when grouping by a sparse column (:issue:`5078`)
- Bug in unary inversion operator (``~``) on a ``SparseSeries`` with boolean values. The performance of this has also been improved (:issue:`22835`)
- Bug in :meth:`SparseArary.unique` not returning the unique values (:issue:`19595`)
- Bug in :meth:`SparseArray.nonzero` and :meth:`SparseDataFrame.dropna` returning shifted/incorrect results (:issue:`21172`)
- Bug in :meth:`DataFrame.apply` where dtypes would lose sparseness (:issue:`23744`)
- Bug in :func:`concat` when concatenating a list of :class:`Series` with all-sparse values changing the ``fill_value`` and converting to a dense Series (:issue:`24371`)
Style
^^^^^
- :meth:`~pandas.io.formats.style.Styler.background_gradient` now takes a ``text_color_threshold`` parameter to automatically lighten the text color based on the luminance of the background color. This improves readability with dark background colors without the need to limit the background colormap range. (:issue:`21258`)
- :meth:`~pandas.io.formats.style.Styler.background_gradient` now also supports tablewise application (in addition to rowwise and columnwise) with ``axis=None`` (:issue:`15204`)
- :meth:`~pandas.io.formats.style.Styler.bar` now also supports tablewise application (in addition to rowwise and columnwise) with ``axis=None`` and setting clipping range with ``vmin`` and ``vmax`` (:issue:`21548` and :issue:`21526`). ``NaN`` values are also handled properly.
Build changes
^^^^^^^^^^^^^
- Building pandas for development now requires ``cython >= 0.28.2`` (:issue:`21688`)
- Testing pandas now requires ``hypothesis>=3.58``. You can find `the Hypothesis docs here <https://hypothesis.readthedocs.io/en/latest/index.html>`_, and a pandas-specific introduction :ref:`in the contributing guide <using-hypothesis>`. (:issue:`22280`)
- Building pandas on macOS now targets minimum macOS 10.9 if run on macOS 10.9 or above (:issue:`23424`)
Other
^^^^^
- Bug where C variables were declared with external linkage causing import errors if certain other C libraries were imported before pandas. (:issue:`24113`)
.. _whatsnew_0.24.0.contributors:
Contributors
~~~~~~~~~~~~
.. contributors:: v0.23.4..v0.24.0
|