File: v0.24.0.rst

package info (click to toggle)
pandas 2.2.3%2Bdfsg-9
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 66,784 kB
  • sloc: python: 422,228; ansic: 9,190; sh: 270; xml: 102; makefile: 83
file content (1963 lines) | stat: -rw-r--r-- 115,557 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
.. _whatsnew_0240:

What's new in 0.24.0 (January 25, 2019)
---------------------------------------

.. warning::

   The 0.24.x series of releases will be the last to support Python 2. Future feature
   releases will support Python 3 only. See `Dropping Python 2.7 <https://pandas.pydata.org/pandas-docs/version/0.24/install.html#install-dropping-27>`_ for more
   details.

{{ header }}

This is a major release from 0.23.4 and includes a number of API changes, new
features, enhancements, and performance improvements along with a large number
of bug fixes.

Highlights include:

* :ref:`Optional Integer NA Support <whatsnew_0240.enhancements.intna>`
* :ref:`New APIs for accessing the array backing a Series or Index <whatsnew_0240.values_api>`
* :ref:`A new top-level method for creating arrays <whatsnew_0240.enhancements.array>`
* :ref:`Store Interval and Period data in a Series or DataFrame <whatsnew_0240.enhancements.interval>`
* :ref:`Support for joining on two MultiIndexes <whatsnew_0240.enhancements.join_with_two_multiindexes>`


Check the :ref:`API Changes <whatsnew_0240.api_breaking>` and :ref:`deprecations <whatsnew_0240.deprecations>` before updating.

These are the changes in pandas 0.24.0. See :ref:`release` for a full changelog
including other versions of pandas.


Enhancements
~~~~~~~~~~~~

.. _whatsnew_0240.enhancements.intna:

Optional integer NA support
^^^^^^^^^^^^^^^^^^^^^^^^^^^

pandas has gained the ability to hold integer dtypes with missing values. This long requested feature is enabled through the use of :ref:`extension types <extending.extension-types>`.

.. note::

   IntegerArray is currently experimental. Its API or implementation may
   change without warning.

We can construct a ``Series`` with the specified dtype. The dtype string ``Int64`` is a pandas ``ExtensionDtype``. Specifying a list or array using the traditional missing value
marker of ``np.nan`` will infer to integer dtype. The display of the ``Series`` will also use the ``NaN`` to indicate missing values in string outputs. (:issue:`20700`, :issue:`20747`, :issue:`22441`, :issue:`21789`, :issue:`22346`)

.. ipython:: python

   s = pd.Series([1, 2, np.nan], dtype='Int64')
   s


Operations on these dtypes will propagate ``NaN`` as other pandas operations.

.. ipython:: python

   # arithmetic
   s + 1

   # comparison
   s == 1

   # indexing
   s.iloc[1:3]

   # operate with other dtypes
   s + s.iloc[1:3].astype('Int8')

   # coerce when needed
   s + 0.01

These dtypes can operate as part of a ``DataFrame``.

.. ipython:: python

   df = pd.DataFrame({'A': s, 'B': [1, 1, 3], 'C': list('aab')})
   df
   df.dtypes


These dtypes can be merged, reshaped, and casted.

.. ipython:: python

   pd.concat([df[['A']], df[['B', 'C']]], axis=1).dtypes
   df['A'].astype(float)

Reduction and groupby operations such as ``sum`` work.

.. ipython:: python

   df.sum()
   df.groupby('B').A.sum()

.. warning::

   The Integer NA support currently uses the capitalized dtype version, e.g. ``Int8`` as compared to the traditional ``int8``. This may be changed at a future date.

See :ref:`integer_na` for more.


.. _whatsnew_0240.values_api:

Accessing the values in a Series or Index
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

:attr:`Series.array` and :attr:`Index.array` have been added for extracting the array backing a
``Series`` or ``Index``. (:issue:`19954`, :issue:`23623`)

.. ipython:: python

   idx = pd.period_range('2000', periods=4)
   idx.array
   pd.Series(idx).array

Historically, this would have been done with ``series.values``, but with
``.values`` it was unclear whether the returned value would be the actual array,
some transformation of it, or one of pandas custom arrays (like
``Categorical``). For example, with :class:`PeriodIndex`, ``.values`` generates
a new ndarray of period objects each time.

.. ipython:: python

   idx.values
   id(idx.values)
   id(idx.values)

If you need an actual NumPy array, use :meth:`Series.to_numpy` or :meth:`Index.to_numpy`.

.. ipython:: python

   idx.to_numpy()
   pd.Series(idx).to_numpy()

For Series and Indexes backed by normal NumPy arrays, :attr:`Series.array` will return a
new :class:`arrays.PandasArray`, which is a thin (no-copy) wrapper around a
:class:`numpy.ndarray`. :class:`~arrays.PandasArray` isn't especially useful on its own,
but it does provide the same interface as any extension array defined in pandas or by
a third-party library.

.. ipython:: python

   ser = pd.Series([1, 2, 3])
   ser.array
   ser.to_numpy()

We haven't removed or deprecated :attr:`Series.values` or :attr:`DataFrame.values`, but we
highly recommend and using ``.array`` or ``.to_numpy()`` instead.

See :ref:`Dtypes <basics.dtypes>` and :ref:`Attributes and Underlying Data <basics.attrs>` for more.


.. _whatsnew_0240.enhancements.array:

``pandas.array``: a new top-level method for creating arrays
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

A new top-level method :func:`array` has been added for creating 1-dimensional arrays (:issue:`22860`).
This can be used to create any :ref:`extension array <extending.extension-types>`, including
extension arrays registered by `3rd party libraries <https://pandas.pydata.org/community/ecosystem.html>`_.
See the :ref:`dtypes docs <basics.dtypes>` for more on extension arrays.

.. ipython:: python

   pd.array([1, 2, np.nan], dtype='Int64')
   pd.array(['a', 'b', 'c'], dtype='category')

Passing data for which there isn't dedicated extension type (e.g. float, integer, etc.)
will return a new :class:`arrays.PandasArray`, which is just a thin (no-copy)
wrapper around a :class:`numpy.ndarray` that satisfies the pandas extension array interface.

.. ipython:: python

   pd.array([1, 2, 3])

On their own, a :class:`~arrays.PandasArray` isn't a very useful object.
But if you need write low-level code that works generically for any
:class:`~pandas.api.extensions.ExtensionArray`, :class:`~arrays.PandasArray`
satisfies that need.

Notice that by default, if no ``dtype`` is specified, the dtype of the returned
array is inferred from the data. In particular, note that the first example of
``[1, 2, np.nan]`` would have returned a floating-point array, since ``NaN``
is a float.

.. ipython:: python

   pd.array([1, 2, np.nan])


.. _whatsnew_0240.enhancements.interval:

Storing Interval and Period data in Series and DataFrame
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

:class:`Interval` and :class:`Period` data may now be stored in a :class:`Series` or :class:`DataFrame`, in addition to an
:class:`IntervalIndex` and :class:`PeriodIndex` like previously (:issue:`19453`, :issue:`22862`).

.. ipython:: python

   ser = pd.Series(pd.interval_range(0, 5))
   ser
   ser.dtype

For periods:

.. ipython:: python

   pser = pd.Series(pd.period_range("2000", freq="D", periods=5))
   pser
   pser.dtype

Previously, these would be cast to a NumPy array with object dtype. In general,
this should result in better performance when storing an array of intervals or periods
in a :class:`Series` or column of a :class:`DataFrame`.

Use :attr:`Series.array` to extract the underlying array of intervals or periods
from the ``Series``:

.. ipython:: python

   ser.array
   pser.array

These return an instance of :class:`arrays.IntervalArray` or :class:`arrays.PeriodArray`,
the new extension arrays that back interval and period data.

.. warning::

   For backwards compatibility, :attr:`Series.values` continues to return
   a NumPy array of objects for Interval and Period data. We recommend
   using :attr:`Series.array` when you need the array of data stored in the
   ``Series``, and :meth:`Series.to_numpy` when you know you need a NumPy array.

   See :ref:`Dtypes <basics.dtypes>` and :ref:`Attributes and Underlying Data <basics.attrs>`
   for more.


.. _whatsnew_0240.enhancements.join_with_two_multiindexes:

Joining with two multi-indexes
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

:func:`DataFrame.merge` and :func:`DataFrame.join` can now be used to join multi-indexed ``Dataframe`` instances on the overlapping index levels (:issue:`6360`)

See the :ref:`Merge, join, and concatenate
<merging.Join_with_two_multi_indexes>` documentation section.

.. ipython:: python

   index_left = pd.MultiIndex.from_tuples([('K0', 'X0'), ('K0', 'X1'),
                                          ('K1', 'X2')],
                                          names=['key', 'X'])

   left = pd.DataFrame({'A': ['A0', 'A1', 'A2'],
                        'B': ['B0', 'B1', 'B2']}, index=index_left)

   index_right = pd.MultiIndex.from_tuples([('K0', 'Y0'), ('K1', 'Y1'),
                                           ('K2', 'Y2'), ('K2', 'Y3')],
                                           names=['key', 'Y'])

   right = pd.DataFrame({'C': ['C0', 'C1', 'C2', 'C3'],
                         'D': ['D0', 'D1', 'D2', 'D3']}, index=index_right)

   left.join(right)

For earlier versions this can be done using the following.

.. ipython:: python

   pd.merge(left.reset_index(), right.reset_index(),
            on=['key'], how='inner').set_index(['key', 'X', 'Y'])

.. _whatsnew_0240.enhancements.read_html:

Function ``read_html`` enhancements
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

:func:`read_html` previously ignored ``colspan`` and ``rowspan`` attributes.
Now it understands them, treating them as sequences of cells with the same
value. (:issue:`17054`)

.. ipython:: python

    from io import StringIO
    result = pd.read_html(StringIO("""
      <table>
        <thead>
          <tr>
            <th>A</th><th>B</th><th>C</th>
          </tr>
        </thead>
        <tbody>
          <tr>
            <td colspan="2">1</td><td>2</td>
          </tr>
        </tbody>
      </table>"""))

*Previous behavior*:

.. code-block:: ipython

    In [13]: result
    Out [13]:
    [   A  B   C
     0  1  2 NaN]

*New behavior*:

.. ipython:: python

    result


New ``Styler.pipe()`` method
^^^^^^^^^^^^^^^^^^^^^^^^^^^^
The :class:`~pandas.io.formats.style.Styler` class has gained a
:meth:`~pandas.io.formats.style.Styler.pipe` method.  This provides a
convenient way to apply users' predefined styling functions, and can help reduce
"boilerplate" when using DataFrame styling functionality repeatedly within a notebook. (:issue:`23229`)

.. ipython:: python

    df = pd.DataFrame({'N': [1250, 1500, 1750], 'X': [0.25, 0.35, 0.50]})

    def format_and_align(styler):
        return (styler.format({'N': '{:,}', 'X': '{:.1%}'})
                      .set_properties(**{'text-align': 'right'}))

    df.style.pipe(format_and_align).set_caption('Summary of results.')

Similar methods already exist for other classes in pandas, including :meth:`DataFrame.pipe`,
:meth:`GroupBy.pipe() <.GroupBy.pipe>`, and :meth:`Resampler.pipe() <.Resampler.pipe>`.

.. _whatsnew_0240.enhancements.rename_axis:

Renaming names in a MultiIndex
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

:func:`DataFrame.rename_axis` now supports ``index`` and ``columns`` arguments
and :func:`Series.rename_axis` supports ``index`` argument (:issue:`19978`).

This change allows a dictionary to be passed so that some of the names
of a ``MultiIndex`` can be changed.

Example:

.. ipython:: python

    mi = pd.MultiIndex.from_product([list('AB'), list('CD'), list('EF')],
                                    names=['AB', 'CD', 'EF'])
    df = pd.DataFrame(list(range(len(mi))), index=mi, columns=['N'])
    df
    df.rename_axis(index={'CD': 'New'})

See the :ref:`Advanced documentation on renaming<advanced.index_names>` for more details.

.. _whatsnew_0240.enhancements.other:

Other enhancements
^^^^^^^^^^^^^^^^^^

- :func:`merge` now directly allows merge between objects of type ``DataFrame`` and named ``Series``, without the need to convert the ``Series`` object into a ``DataFrame`` beforehand (:issue:`21220`)
- ``ExcelWriter`` now accepts ``mode`` as a keyword argument, enabling append to existing workbooks when using the ``openpyxl`` engine (:issue:`3441`)
- ``FrozenList`` has gained the ``.union()`` and ``.difference()`` methods. This functionality greatly simplifies groupby's that rely on explicitly excluding certain columns. See :ref:`Splitting an object into groups <groupby.split>` for more information (:issue:`15475`, :issue:`15506`).
- :func:`DataFrame.to_parquet` now accepts ``index`` as an argument, allowing
  the user to override the engine's default behavior to include or omit the
  dataframe's indexes from the resulting Parquet file. (:issue:`20768`)
- :func:`read_feather` now accepts ``columns`` as an argument, allowing the user to specify which columns should be read. (:issue:`24025`)
- :meth:`DataFrame.corr` and :meth:`Series.corr` now accept a callable for generic calculation methods of correlation, e.g. histogram intersection (:issue:`22684`)
- :func:`DataFrame.to_string` now accepts ``decimal`` as an argument, allowing the user to specify which decimal separator should be used in the output. (:issue:`23614`)
- :func:`DataFrame.to_html` now accepts ``render_links`` as an argument, allowing the user to generate HTML with links to any URLs that appear in the DataFrame.
  See the :ref:`section on writing HTML <io.html>` in the IO docs for example usage. (:issue:`2679`)
- :func:`pandas.read_csv` now supports pandas extension types as an argument to ``dtype``, allowing the user to use pandas extension types when reading CSVs. (:issue:`23228`)
- The :meth:`~DataFrame.shift` method now accepts ``fill_value`` as an argument, allowing the user to specify a value which will be used instead of NA/NaT in the empty periods. (:issue:`15486`)
- :func:`to_datetime` now supports the ``%Z`` and ``%z`` directive when passed into ``format`` (:issue:`13486`)
- :func:`Series.mode` and :func:`DataFrame.mode` now support the ``dropna`` parameter which can be used to specify whether ``NaN``/``NaT`` values should be considered (:issue:`17534`)
- :func:`DataFrame.to_csv` and :func:`Series.to_csv` now support the ``compression`` keyword when a file handle is passed. (:issue:`21227`)
- :meth:`Index.droplevel` is now implemented also for flat indexes, for compatibility with :class:`MultiIndex` (:issue:`21115`)
- :meth:`Series.droplevel` and :meth:`DataFrame.droplevel` are now implemented (:issue:`20342`)
- Added support for reading from/writing to Google Cloud Storage via the ``gcsfs`` library (:issue:`19454`, :issue:`23094`)
- :func:`DataFrame.to_gbq` and :func:`read_gbq` signature and documentation updated to
  reflect changes from the `pandas-gbq library version 0.8.0
  <https://pandas-gbq.readthedocs.io/en/latest/changelog.html#changelog-0-8-0>`__.
  Adds a ``credentials`` argument, which enables the use of any kind of
  `google-auth credentials
  <https://google-auth.readthedocs.io/en/latest/>`__. (:issue:`21627`,
  :issue:`22557`, :issue:`23662`)
- New method :meth:`HDFStore.walk` will recursively walk the group hierarchy of an HDF5 file (:issue:`10932`)
- :func:`read_html` copies cell data across ``colspan`` and ``rowspan``, and it treats all-``th`` table rows as headers if ``header`` kwarg is not given and there is no ``thead`` (:issue:`17054`)
- :meth:`Series.nlargest`, :meth:`Series.nsmallest`, :meth:`DataFrame.nlargest`, and :meth:`DataFrame.nsmallest` now accept the value ``"all"`` for the ``keep`` argument. This keeps all ties for the nth largest/smallest value (:issue:`16818`)
- :class:`IntervalIndex` has gained the :meth:`~IntervalIndex.set_closed` method to change the existing ``closed`` value (:issue:`21670`)
- :func:`~DataFrame.to_csv`, :func:`~Series.to_csv`, :func:`~DataFrame.to_json`, and :func:`~Series.to_json` now support ``compression='infer'`` to infer compression based on filename extension (:issue:`15008`).
  The default compression for ``to_csv``, ``to_json``, and ``to_pickle`` methods has been updated to ``'infer'`` (:issue:`22004`).
- :meth:`DataFrame.to_sql` now supports writing ``TIMESTAMP WITH TIME ZONE`` types for supported databases. For databases that don't support timezones, datetime data will be stored as timezone unaware local timestamps. See the :ref:`io.sql_datetime_data` for implications (:issue:`9086`).
- :func:`to_timedelta` now supports iso-formatted timedelta strings (:issue:`21877`)
- :class:`Series` and :class:`DataFrame` now support :class:`Iterable` objects in the constructor (:issue:`2193`)
- :class:`DatetimeIndex` has gained the :attr:`DatetimeIndex.timetz` attribute. This returns the local time with timezone information. (:issue:`21358`)
- :meth:`~Timestamp.round`, :meth:`~Timestamp.ceil`, and :meth:`~Timestamp.floor` for :class:`DatetimeIndex` and :class:`Timestamp`
  now support an ``ambiguous`` argument for handling datetimes that are rounded to ambiguous times (:issue:`18946`)
  and a ``nonexistent`` argument for handling datetimes that are rounded to nonexistent times. See :ref:`timeseries.timezone_nonexistent` (:issue:`22647`)
- The result of :meth:`~DataFrame.resample` is now iterable similar to ``groupby()`` (:issue:`15314`).
- :meth:`Series.resample` and :meth:`DataFrame.resample` have gained the :meth:`.Resampler.quantile` (:issue:`15023`).
- :meth:`DataFrame.resample` and :meth:`Series.resample` with a :class:`PeriodIndex` will now respect the ``base`` argument in the same fashion as with a :class:`DatetimeIndex`. (:issue:`23882`)
- :meth:`pandas.api.types.is_list_like` has gained a keyword ``allow_sets`` which is ``True`` by default; if ``False``,
  all instances of ``set`` will not be considered "list-like" anymore (:issue:`23061`)
- :meth:`Index.to_frame` now supports overriding column name(s) (:issue:`22580`).
- :meth:`Categorical.from_codes` now can take a ``dtype`` parameter as an alternative to passing ``categories`` and ``ordered`` (:issue:`24398`).
- New attribute ``__git_version__`` will return git commit sha of current build (:issue:`21295`).
- Compatibility with Matplotlib 3.0 (:issue:`22790`).
- Added :meth:`Interval.overlaps`, :meth:`arrays.IntervalArray.overlaps`, and :meth:`IntervalIndex.overlaps` for determining overlaps between interval-like objects (:issue:`21998`)
- :func:`read_fwf` now accepts keyword ``infer_nrows`` (:issue:`15138`).
- :func:`~DataFrame.to_parquet` now supports writing a ``DataFrame`` as a directory of parquet files partitioned by a subset of the columns when ``engine = 'pyarrow'`` (:issue:`23283`)
- :meth:`Timestamp.tz_localize`, :meth:`DatetimeIndex.tz_localize`, and :meth:`Series.tz_localize` have gained the ``nonexistent`` argument for alternative handling of nonexistent times. See :ref:`timeseries.timezone_nonexistent` (:issue:`8917`, :issue:`24466`)
- :meth:`Index.difference`, :meth:`Index.intersection`, :meth:`Index.union`, and :meth:`Index.symmetric_difference` now have an optional ``sort`` parameter to control whether the results should be sorted if possible (:issue:`17839`, :issue:`24471`)
- :meth:`read_excel()` now accepts ``usecols`` as a list of column names or callable (:issue:`18273`)
- :meth:`MultiIndex.to_flat_index` has been added to flatten multiple levels into a single-level :class:`Index` object.
- :meth:`DataFrame.to_stata` and :class:`pandas.io.stata.StataWriter117` can write mixed string columns to Stata strl format (:issue:`23633`)
- :meth:`DataFrame.between_time` and :meth:`DataFrame.at_time` have gained the ``axis`` parameter (:issue:`8839`)
- :meth:`DataFrame.to_records` now accepts ``index_dtypes`` and ``column_dtypes`` parameters to allow different data types in stored column and index records (:issue:`18146`)
- :class:`IntervalIndex` has gained the :attr:`~IntervalIndex.is_overlapping` attribute to indicate if the ``IntervalIndex`` contains any overlapping intervals (:issue:`23309`)
- :func:`pandas.DataFrame.to_sql` has gained the ``method`` argument to control SQL insertion clause. See the :ref:`insertion method <io.sql.method>` section in the documentation. (:issue:`8953`)
- :meth:`DataFrame.corrwith` now supports Spearman's rank correlation, Kendall's tau as well as callable correlation methods. (:issue:`21925`)
- :meth:`DataFrame.to_json`, :meth:`DataFrame.to_csv`, :meth:`DataFrame.to_pickle`, and other export methods now support tilde(~) in path argument. (:issue:`23473`)

.. _whatsnew_0240.api_breaking:

Backwards incompatible API changes
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

pandas 0.24.0 includes a number of API breaking changes.


.. _whatsnew_0240.api_breaking.deps:

Increased minimum versions for dependencies
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

We have updated our minimum supported versions of dependencies (:issue:`21242`, :issue:`18742`, :issue:`23774`, :issue:`24767`).
If installed, we now require:

+-----------------+-----------------+----------+
| Package         | Minimum Version | Required |
+=================+=================+==========+
| numpy           | 1.12.0          |    X     |
+-----------------+-----------------+----------+
| bottleneck      | 1.2.0           |          |
+-----------------+-----------------+----------+
| fastparquet     | 0.2.1           |          |
+-----------------+-----------------+----------+
| matplotlib      | 2.0.0           |          |
+-----------------+-----------------+----------+
| numexpr         | 2.6.1           |          |
+-----------------+-----------------+----------+
| pandas-gbq      | 0.8.0           |          |
+-----------------+-----------------+----------+
| pyarrow         | 0.9.0           |          |
+-----------------+-----------------+----------+
| pytables        | 3.4.2           |          |
+-----------------+-----------------+----------+
| scipy           | 0.18.1          |          |
+-----------------+-----------------+----------+
| xlrd            | 1.0.0           |          |
+-----------------+-----------------+----------+
| pytest (dev)    | 3.6             |          |
+-----------------+-----------------+----------+

Additionally we no longer depend on ``feather-format`` for feather based storage
and replaced it with references to ``pyarrow`` (:issue:`21639` and :issue:`23053`).

.. _whatsnew_0240.api_breaking.csv_line_terminator:

``os.linesep`` is used for ``line_terminator`` of ``DataFrame.to_csv``
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

:func:`DataFrame.to_csv` now uses :func:`os.linesep` rather than ``'\n'``
for the default line terminator (:issue:`20353`).
This change only affects when running on Windows, where ``'\r\n'`` was used for line terminator
even when ``'\n'`` was passed in ``line_terminator``.

*Previous behavior* on Windows:

.. code-block:: ipython

    In [1]: data = pd.DataFrame({"string_with_lf": ["a\nbc"],
       ...:                      "string_with_crlf": ["a\r\nbc"]})

    In [2]: # When passing file PATH to to_csv,
       ...: # line_terminator does not work, and csv is saved with '\r\n'.
       ...: # Also, this converts all '\n's in the data to '\r\n'.
       ...: data.to_csv("test.csv", index=False, line_terminator='\n')

    In [3]: with open("test.csv", mode='rb') as f:
       ...:     print(f.read())
    Out[3]: b'string_with_lf,string_with_crlf\r\n"a\r\nbc","a\r\r\nbc"\r\n'

    In [4]: # When passing file OBJECT with newline option to
       ...: # to_csv, line_terminator works.
       ...: with open("test2.csv", mode='w', newline='\n') as f:
       ...:     data.to_csv(f, index=False, line_terminator='\n')

    In [5]: with open("test2.csv", mode='rb') as f:
       ...:     print(f.read())
    Out[5]: b'string_with_lf,string_with_crlf\n"a\nbc","a\r\nbc"\n'


*New behavior* on Windows:

Passing ``line_terminator`` explicitly, set the ``line terminator`` to that character.

.. code-block:: ipython

   In [1]: data = pd.DataFrame({"string_with_lf": ["a\nbc"],
      ...:                      "string_with_crlf": ["a\r\nbc"]})

   In [2]: data.to_csv("test.csv", index=False, line_terminator='\n')

   In [3]: with open("test.csv", mode='rb') as f:
      ...:     print(f.read())
   Out[3]: b'string_with_lf,string_with_crlf\n"a\nbc","a\r\nbc"\n'


On Windows, the value of ``os.linesep`` is ``'\r\n'``, so if ``line_terminator`` is not
set, ``'\r\n'`` is used for line terminator.

.. code-block:: ipython

   In [1]: data = pd.DataFrame({"string_with_lf": ["a\nbc"],
      ...:                      "string_with_crlf": ["a\r\nbc"]})

   In [2]: data.to_csv("test.csv", index=False)

   In [3]: with open("test.csv", mode='rb') as f:
      ...:     print(f.read())
   Out[3]: b'string_with_lf,string_with_crlf\r\n"a\nbc","a\r\nbc"\r\n'


For file objects, specifying ``newline`` is not sufficient to set the line terminator.
You must pass in the ``line_terminator`` explicitly, even in this case.

.. code-block:: ipython

   In [1]: data = pd.DataFrame({"string_with_lf": ["a\nbc"],
      ...:                      "string_with_crlf": ["a\r\nbc"]})

   In [2]: with open("test2.csv", mode='w', newline='\n') as f:
      ...:     data.to_csv(f, index=False)

   In [3]: with open("test2.csv", mode='rb') as f:
      ...:     print(f.read())
   Out[3]: b'string_with_lf,string_with_crlf\r\n"a\nbc","a\r\nbc"\r\n'

.. _whatsnew_0240.bug_fixes.nan_with_str_dtype:

Proper handling of ``np.nan`` in a string data-typed column with the Python engine
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

There was bug in :func:`read_excel` and :func:`read_csv` with the Python
engine, where missing values turned to ``'nan'`` with ``dtype=str`` and
``na_filter=True``. Now, these missing values are converted to the string
missing indicator, ``np.nan``. (:issue:`20377`)

.. ipython:: python
   :suppress:

   from io import StringIO

*Previous behavior*:

.. code-block:: ipython

   In [5]: data = 'a,b,c\n1,,3\n4,5,6'
   In [6]: df = pd.read_csv(StringIO(data), engine='python', dtype=str, na_filter=True)
   In [7]: df.loc[0, 'b']
   Out[7]:
   'nan'

*New behavior*:

.. ipython:: python

   data = 'a,b,c\n1,,3\n4,5,6'
   df = pd.read_csv(StringIO(data), engine='python', dtype=str, na_filter=True)
   df.loc[0, 'b']

Notice how we now instead output ``np.nan`` itself instead of a stringified form of it.

.. _whatsnew_0240.api.timezone_offset_parsing:

Parsing datetime strings with timezone offsets
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Previously, parsing datetime strings with UTC offsets with :func:`to_datetime`
or :class:`DatetimeIndex` would automatically convert the datetime to UTC
without timezone localization. This is inconsistent from parsing the same
datetime string with :class:`Timestamp` which would preserve the UTC
offset in the ``tz`` attribute. Now, :func:`to_datetime` preserves the UTC
offset in the ``tz`` attribute when all the datetime strings have the same
UTC offset (:issue:`17697`, :issue:`11736`, :issue:`22457`)

*Previous behavior*:

.. code-block:: ipython

    In [2]: pd.to_datetime("2015-11-18 15:30:00+05:30")
    Out[2]: Timestamp('2015-11-18 10:00:00')

    In [3]: pd.Timestamp("2015-11-18 15:30:00+05:30")
    Out[3]: Timestamp('2015-11-18 15:30:00+0530', tz='pytz.FixedOffset(330)')

    # Different UTC offsets would automatically convert the datetimes to UTC (without a UTC timezone)
    In [4]: pd.to_datetime(["2015-11-18 15:30:00+05:30", "2015-11-18 16:30:00+06:30"])
    Out[4]: DatetimeIndex(['2015-11-18 10:00:00', '2015-11-18 10:00:00'], dtype='datetime64[ns]', freq=None)

*New behavior*:

.. ipython:: python

    pd.to_datetime("2015-11-18 15:30:00+05:30")
    pd.Timestamp("2015-11-18 15:30:00+05:30")

Parsing datetime strings with the same UTC offset will preserve the UTC offset in the ``tz``

.. ipython:: python

    pd.to_datetime(["2015-11-18 15:30:00+05:30"] * 2)

Parsing datetime strings with different UTC offsets will now create an Index of
``datetime.datetime`` objects with different UTC offsets

.. code-block:: ipython

    In [59]: idx = pd.to_datetime(["2015-11-18 15:30:00+05:30",
                                   "2015-11-18 16:30:00+06:30"])

    In[60]: idx
    Out[60]: Index([2015-11-18 15:30:00+05:30, 2015-11-18 16:30:00+06:30], dtype='object')

    In[61]: idx[0]
    Out[61]: Timestamp('2015-11-18 15:30:00+0530', tz='UTC+05:30')

    In[62]: idx[1]
    Out[62]: Timestamp('2015-11-18 16:30:00+0630', tz='UTC+06:30')

Passing ``utc=True`` will mimic the previous behavior but will correctly indicate
that the dates have been converted to UTC

.. ipython:: python

    pd.to_datetime(["2015-11-18 15:30:00+05:30",
                    "2015-11-18 16:30:00+06:30"], utc=True)


.. _whatsnew_0240.api_breaking.read_csv_mixed_tz:

Parsing mixed-timezones with :func:`read_csv`
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

:func:`read_csv` no longer silently converts mixed-timezone columns to UTC (:issue:`24987`).

*Previous behavior*

.. code-block:: python

   >>> import io
   >>> content = """\
   ... a
   ... 2000-01-01T00:00:00+05:00
   ... 2000-01-01T00:00:00+06:00"""
   >>> df = pd.read_csv(io.StringIO(content), parse_dates=['a'])
   >>> df.a
   0   1999-12-31 19:00:00
   1   1999-12-31 18:00:00
   Name: a, dtype: datetime64[ns]

*New behavior*

.. code-block:: ipython

   In[64]: import io

   In[65]: content = """\
      ...: a
      ...: 2000-01-01T00:00:00+05:00
      ...: 2000-01-01T00:00:00+06:00"""

   In[66]: df = pd.read_csv(io.StringIO(content), parse_dates=['a'])

   In[67]: df.a
   Out[67]:
   0   2000-01-01 00:00:00+05:00
   1   2000-01-01 00:00:00+06:00
   Name: a, Length: 2, dtype: object

As can be seen, the ``dtype`` is object; each value in the column is a string.
To convert the strings to an array of datetimes, the ``date_parser`` argument

.. code-block:: ipython

   In [3]: df = pd.read_csv(
      ...:     io.StringIO(content),
      ...:     parse_dates=['a'],
      ...:     date_parser=lambda col: pd.to_datetime(col, utc=True),
      ...: )

   In [4]: df.a
   Out[4]:
   0   1999-12-31 19:00:00+00:00
   1   1999-12-31 18:00:00+00:00
   Name: a, dtype: datetime64[ns, UTC]

See :ref:`whatsnew_0240.api.timezone_offset_parsing` for more.

.. _whatsnew_0240.api_breaking.period_end_time:

Time values in ``dt.end_time`` and ``to_timestamp(how='end')``
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

The time values in :class:`Period` and :class:`PeriodIndex` objects are now set
to '23:59:59.999999999' when calling :attr:`Series.dt.end_time`, :attr:`Period.end_time`,
:attr:`PeriodIndex.end_time`, :func:`Period.to_timestamp()` with ``how='end'``,
or :func:`PeriodIndex.to_timestamp()` with ``how='end'`` (:issue:`17157`)

*Previous behavior*:

.. code-block:: ipython

   In [2]: p = pd.Period('2017-01-01', 'D')
   In [3]: pi = pd.PeriodIndex([p])

   In [4]: pd.Series(pi).dt.end_time[0]
   Out[4]: Timestamp(2017-01-01 00:00:00)

   In [5]: p.end_time
   Out[5]: Timestamp(2017-01-01 23:59:59.999999999)

*New behavior*:

Calling :attr:`Series.dt.end_time` will now result in a time of '23:59:59.999999999' as
is the case with :attr:`Period.end_time`, for example

.. ipython:: python

   p = pd.Period('2017-01-01', 'D')
   pi = pd.PeriodIndex([p])

   pd.Series(pi).dt.end_time[0]

   p.end_time

.. _whatsnew_0240.api_breaking.datetime_unique:

Series.unique for timezone-aware data
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

The return type of :meth:`Series.unique` for datetime with timezone values has changed
from an :class:`numpy.ndarray` of :class:`Timestamp` objects to a :class:`arrays.DatetimeArray` (:issue:`24024`).

.. ipython:: python

   ser = pd.Series([pd.Timestamp('2000', tz='UTC'),
                    pd.Timestamp('2000', tz='UTC')])

*Previous behavior*:

.. code-block:: ipython

   In [3]: ser.unique()
   Out[3]: array([Timestamp('2000-01-01 00:00:00+0000', tz='UTC')], dtype=object)


*New behavior*:

.. ipython:: python

   ser.unique()


.. _whatsnew_0240.api_breaking.sparse_values:

Sparse data structure refactor
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

``SparseArray``, the array backing ``SparseSeries`` and the columns in a ``SparseDataFrame``,
is now an extension array (:issue:`21978`, :issue:`19056`, :issue:`22835`).
To conform to this interface and for consistency with the rest of pandas, some API breaking
changes were made:

- ``SparseArray`` is no longer a subclass of :class:`numpy.ndarray`. To convert a ``SparseArray`` to a NumPy array, use :func:`numpy.asarray`.
- ``SparseArray.dtype`` and ``SparseSeries.dtype`` are now instances of :class:`SparseDtype`, rather than ``np.dtype``. Access the underlying dtype with ``SparseDtype.subtype``.
- ``numpy.asarray(sparse_array)`` now returns a dense array with all the values, not just the non-fill-value values (:issue:`14167`)
- ``SparseArray.take`` now matches the API of :meth:`pandas.api.extensions.ExtensionArray.take` (:issue:`19506`):

  * The default value of ``allow_fill`` has changed from ``False`` to ``True``.
  * The ``out`` and ``mode`` parameters are now longer accepted (previously, this raised if they were specified).
  * Passing a scalar for ``indices`` is no longer allowed.

- The result of :func:`concat` with a mix of sparse and dense Series is a Series with sparse values, rather than a ``SparseSeries``.
- ``SparseDataFrame.combine`` and ``DataFrame.combine_first`` no longer supports combining a sparse column with a dense column while preserving the sparse subtype. The result will be an object-dtype SparseArray.
- Setting :attr:`SparseArray.fill_value` to a fill value with a different dtype is now allowed.
- ``DataFrame[column]`` is now a :class:`Series` with sparse values, rather than a :class:`SparseSeries`, when slicing a single column with sparse values (:issue:`23559`).
- The result of :meth:`Series.where` is now a ``Series`` with sparse values, like with other extension arrays (:issue:`24077`)

Some new warnings are issued for operations that require or are likely to materialize a large dense array:

- A :class:`errors.PerformanceWarning` is issued when using fillna with a ``method``, as a dense array is constructed to create the filled array. Filling with a ``value`` is the efficient way to fill a sparse array.
- A :class:`errors.PerformanceWarning` is now issued when concatenating sparse Series with differing fill values. The fill value from the first sparse array continues to be used.

In addition to these API breaking changes, many :ref:`Performance Improvements and Bug Fixes have been made <whatsnew_0240.bug_fixes.sparse>`.

Finally, a ``Series.sparse`` accessor was added to provide sparse-specific methods like :meth:`Series.sparse.from_coo`.

.. ipython:: python

   s = pd.Series([0, 0, 1, 1, 1], dtype='Sparse[int]')
   s.sparse.density

.. _whatsnew_0240.api_breaking.get_dummies:

:meth:`get_dummies` always returns a DataFrame
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Previously, when ``sparse=True`` was passed to :func:`get_dummies`, the return value could be either
a :class:`DataFrame` or a :class:`SparseDataFrame`, depending on whether all or a just a subset
of the columns were dummy-encoded. Now, a :class:`DataFrame` is always returned (:issue:`24284`).

*Previous behavior*

The first :func:`get_dummies` returns a :class:`DataFrame` because the column ``A``
is not dummy encoded. When just ``["B", "C"]`` are passed to ``get_dummies``,
then all the columns are dummy-encoded, and a :class:`SparseDataFrame` was returned.

.. code-block:: ipython

   In [2]: df = pd.DataFrame({"A": [1, 2], "B": ['a', 'b'], "C": ['a', 'a']})

   In [3]: type(pd.get_dummies(df, sparse=True))
   Out[3]: pandas.core.frame.DataFrame

   In [4]: type(pd.get_dummies(df[['B', 'C']], sparse=True))
   Out[4]: pandas.core.sparse.frame.SparseDataFrame

.. ipython:: python
   :suppress:

   df = pd.DataFrame({"A": [1, 2], "B": ['a', 'b'], "C": ['a', 'a']})

*New behavior*

Now, the return type is consistently a :class:`DataFrame`.

.. ipython:: python

   type(pd.get_dummies(df, sparse=True))
   type(pd.get_dummies(df[['B', 'C']], sparse=True))

.. note::

   There's no difference in memory usage between a :class:`SparseDataFrame`
   and a :class:`DataFrame` with sparse values. The memory usage will
   be the same as in the previous version of pandas.

.. _whatsnew_0240.api_breaking.frame_to_dict_index_orient:

Raise ValueError in ``DataFrame.to_dict(orient='index')``
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Bug in :func:`DataFrame.to_dict` raises ``ValueError`` when used with
``orient='index'`` and a non-unique index instead of losing data (:issue:`22801`)

.. ipython:: python
    :okexcept:

    df = pd.DataFrame({'a': [1, 2], 'b': [0.5, 0.75]}, index=['A', 'A'])
    df

    df.to_dict(orient='index')

.. _whatsnew_0240.api.datetimelike.normalize:

Tick DateOffset normalize restrictions
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Creating a ``Tick`` object (:class:`Day`, :class:`Hour`, :class:`Minute`,
:class:`Second`, :class:`Milli`, :class:`Micro`, :class:`Nano`) with
``normalize=True`` is no longer supported.  This prevents unexpected behavior
where addition could fail to be monotone or associative.  (:issue:`21427`)

*Previous behavior*:

.. code-block:: ipython


   In [2]: ts = pd.Timestamp('2018-06-11 18:01:14')

   In [3]: ts
   Out[3]: Timestamp('2018-06-11 18:01:14')

   In [4]: tic = pd.offsets.Hour(n=2, normalize=True)
      ...:

   In [5]: tic
   Out[5]: <2 * Hours>

   In [6]: ts + tic
   Out[6]: Timestamp('2018-06-11 00:00:00')

   In [7]: ts + tic + tic + tic == ts + (tic + tic + tic)
   Out[7]: False

*New behavior*:

.. ipython:: python

    ts = pd.Timestamp('2018-06-11 18:01:14')
    tic = pd.offsets.Hour(n=2)
    ts + tic + tic + tic == ts + (tic + tic + tic)


.. _whatsnew_0240.api.datetimelike:


.. _whatsnew_0240.api.period_subtraction:

Period subtraction
^^^^^^^^^^^^^^^^^^

Subtraction of a ``Period`` from another ``Period`` will give a ``DateOffset``.
instead of an integer (:issue:`21314`)

*Previous behavior*:

.. code-block:: ipython

    In [2]: june = pd.Period('June 2018')

    In [3]: april = pd.Period('April 2018')

    In [4]: june - april
    Out [4]: 2

*New behavior*:

.. ipython:: python

    june = pd.Period('June 2018')
    april = pd.Period('April 2018')
    june - april

Similarly, subtraction of a ``Period`` from a ``PeriodIndex`` will now return
an ``Index`` of ``DateOffset`` objects instead of an ``Int64Index``

*Previous behavior*:

.. code-block:: ipython

    In [2]: pi = pd.period_range('June 2018', freq='M', periods=3)

    In [3]: pi - pi[0]
    Out[3]: Int64Index([0, 1, 2], dtype='int64')

*New behavior*:

.. ipython:: python

    pi = pd.period_range('June 2018', freq='M', periods=3)
    pi - pi[0]


.. _whatsnew_0240.api.timedelta64_subtract_nan:

Addition/subtraction of ``NaN`` from :class:`DataFrame`
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Adding or subtracting ``NaN`` from a :class:`DataFrame` column with
``timedelta64[ns]`` dtype will now raise a ``TypeError`` instead of returning
all-``NaT``.  This is for compatibility with ``TimedeltaIndex`` and
``Series`` behavior (:issue:`22163`)

.. ipython:: python

   df = pd.DataFrame([pd.Timedelta(days=1)])
   df

*Previous behavior*:

.. code-block:: ipython

    In [4]: df = pd.DataFrame([pd.Timedelta(days=1)])

    In [5]: df - np.nan
    Out[5]:
        0
    0 NaT

*New behavior*:

.. code-block:: ipython

    In [2]: df - np.nan
    ...
    TypeError: unsupported operand type(s) for -: 'TimedeltaIndex' and 'float'

.. _whatsnew_0240.api.dataframe_cmp_broadcasting:

DataFrame comparison operations broadcasting changes
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Previously, the broadcasting behavior of :class:`DataFrame` comparison
operations (``==``, ``!=``, ...) was inconsistent with the behavior of
arithmetic operations (``+``, ``-``, ...).  The behavior of the comparison
operations has been changed to match the arithmetic operations in these cases.
(:issue:`22880`)

The affected cases are:

- operating against a 2-dimensional ``np.ndarray`` with either 1 row or 1 column will now broadcast the same way a ``np.ndarray`` would (:issue:`23000`).
- a list or tuple with length matching the number of rows in the :class:`DataFrame` will now raise ``ValueError`` instead of operating column-by-column (:issue:`22880`.
- a list or tuple with length matching the number of columns in the :class:`DataFrame` will now operate row-by-row instead of raising ``ValueError`` (:issue:`22880`).

.. ipython:: python

   arr = np.arange(6).reshape(3, 2)
   df = pd.DataFrame(arr)
   df

*Previous behavior*:

.. code-block:: ipython

   In [5]: df == arr[[0], :]
       ...: # comparison previously broadcast where arithmetic would raise
   Out[5]:
          0      1
   0   True   True
   1  False  False
   2  False  False
   In [6]: df + arr[[0], :]
   ...
   ValueError: Unable to coerce to DataFrame, shape must be (3, 2): given (1, 2)

   In [7]: df == (1, 2)
       ...: # length matches number of columns;
       ...: # comparison previously raised where arithmetic would broadcast
   ...
   ValueError: Invalid broadcasting comparison [(1, 2)] with block values
   In [8]: df + (1, 2)
   Out[8]:
      0  1
   0  1  3
   1  3  5
   2  5  7

   In [9]: df == (1, 2, 3)
       ...:  # length matches number of rows
       ...:  # comparison previously broadcast where arithmetic would raise
   Out[9]:
          0      1
   0  False   True
   1   True  False
   2  False  False
   In [10]: df + (1, 2, 3)
   ...
   ValueError: Unable to coerce to Series, length must be 2: given 3

*New behavior*:

.. ipython:: python

   # Comparison operations and arithmetic operations both broadcast.
   df == arr[[0], :]
   df + arr[[0], :]

.. ipython:: python

   # Comparison operations and arithmetic operations both broadcast.
   df == (1, 2)
   df + (1, 2)

.. code-block:: ipython

   # Comparison operations and arithmetic operations both raise ValueError.
   In [6]: df == (1, 2, 3)
   ...
   ValueError: Unable to coerce to Series, length must be 2: given 3

   In [7]: df + (1, 2, 3)
   ...
   ValueError: Unable to coerce to Series, length must be 2: given 3

.. _whatsnew_0240.api.dataframe_arithmetic_broadcasting:

DataFrame arithmetic operations broadcasting changes
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

:class:`DataFrame` arithmetic operations when operating with 2-dimensional
``np.ndarray`` objects now broadcast in the same way as ``np.ndarray``
broadcast.  (:issue:`23000`)

.. ipython:: python

   arr = np.arange(6).reshape(3, 2)
   df = pd.DataFrame(arr)
   df

*Previous behavior*:

.. code-block:: ipython

   In [5]: df + arr[[0], :]   # 1 row, 2 columns
   ...
   ValueError: Unable to coerce to DataFrame, shape must be (3, 2): given (1, 2)
   In [6]: df + arr[:, [1]]   # 1 column, 3 rows
   ...
   ValueError: Unable to coerce to DataFrame, shape must be (3, 2): given (3, 1)

*New behavior*:

.. ipython:: python

   df + arr[[0], :]   # 1 row, 2 columns
   df + arr[:, [1]]   # 1 column, 3 rows

.. _whatsnew_0240.api.incompatibilities:

Series and Index data-dtype incompatibilities
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

``Series`` and ``Index`` constructors now raise when the
data is incompatible with a passed ``dtype=`` (:issue:`15832`)

*Previous behavior*:

.. code-block:: ipython

    In [4]: pd.Series([-1], dtype="uint64")
    Out [4]:
    0    18446744073709551615
    dtype: uint64

*New behavior*:

.. code-block:: ipython

    In [4]: pd.Series([-1], dtype="uint64")
    Out [4]:
    ...
    OverflowError: Trying to coerce negative values to unsigned integers

.. _whatsnew_0240.api.concat_categorical:

Concatenation changes
^^^^^^^^^^^^^^^^^^^^^

Calling :func:`pandas.concat` on a ``Categorical`` of ints with NA values now
causes them to be processed as objects when concatenating with anything
other than another ``Categorical`` of ints (:issue:`19214`)

.. ipython:: python

    s = pd.Series([0, 1, np.nan])
    c = pd.Series([0, 1, np.nan], dtype="category")

*Previous behavior*

.. code-block:: ipython

    In [3]: pd.concat([s, c])
    Out[3]:
    0    0.0
    1    1.0
    2    NaN
    0    0.0
    1    1.0
    2    NaN
    dtype: float64

*New behavior*

.. ipython:: python

    pd.concat([s, c])

Datetimelike API changes
^^^^^^^^^^^^^^^^^^^^^^^^

- For :class:`DatetimeIndex` and :class:`TimedeltaIndex` with non-``None`` ``freq`` attribute, addition or subtraction of integer-dtyped array or ``Index`` will return an object of the same class (:issue:`19959`)
- :class:`DateOffset` objects are now immutable. Attempting to alter one of these will now raise ``AttributeError`` (:issue:`21341`)
- :class:`PeriodIndex` subtraction of another ``PeriodIndex`` will now return an object-dtype :class:`Index` of :class:`DateOffset` objects instead of raising a ``TypeError`` (:issue:`20049`)
- :func:`cut` and :func:`qcut` now returns a :class:`DatetimeIndex` or :class:`TimedeltaIndex` bins when the input is datetime or timedelta dtype respectively and ``retbins=True`` (:issue:`19891`)
- :meth:`DatetimeIndex.to_period` and :meth:`Timestamp.to_period` will issue a warning when timezone information will be lost (:issue:`21333`)
- :meth:`PeriodIndex.tz_convert` and :meth:`PeriodIndex.tz_localize` have been removed (:issue:`21781`)

.. _whatsnew_0240.api.other:

Other API changes
^^^^^^^^^^^^^^^^^

- A newly constructed empty :class:`DataFrame` with integer as the ``dtype`` will now only be cast to ``float64`` if ``index`` is specified (:issue:`22858`)
- :meth:`Series.str.cat` will now raise if ``others`` is a ``set`` (:issue:`23009`)
- Passing scalar values to :class:`DatetimeIndex` or :class:`TimedeltaIndex` will now raise ``TypeError`` instead of ``ValueError`` (:issue:`23539`)
- ``max_rows`` and ``max_cols`` parameters removed from :class:`HTMLFormatter` since truncation is handled by :class:`DataFrameFormatter` (:issue:`23818`)
- :func:`read_csv` will now raise a ``ValueError`` if a column with missing values is declared as having dtype ``bool`` (:issue:`20591`)
- The column order of the resultant :class:`DataFrame` from :meth:`MultiIndex.to_frame` is now guaranteed to match the :attr:`MultiIndex.names` order. (:issue:`22420`)
- Incorrectly passing a :class:`DatetimeIndex` to :meth:`MultiIndex.from_tuples`, rather than a sequence of tuples, now raises a ``TypeError`` rather than a ``ValueError`` (:issue:`24024`)
- :func:`pd.offsets.generate_range` argument ``time_rule`` has been removed; use ``offset`` instead (:issue:`24157`)
- In 0.23.x, pandas would raise a ``ValueError`` on a merge of a numeric column (e.g. ``int`` dtyped column) and an ``object`` dtyped column (:issue:`9780`). We have re-enabled the ability to merge ``object`` and other dtypes; pandas will still raise on a merge between a numeric and an ``object`` dtyped column that is composed only of strings (:issue:`21681`)
- Accessing a level of a ``MultiIndex`` with a duplicate name (e.g. in
  :meth:`~MultiIndex.get_level_values`) now raises a ``ValueError`` instead of a ``KeyError`` (:issue:`21678`).
- Invalid construction of ``IntervalDtype`` will now always raise a ``TypeError`` rather than a ``ValueError`` if the subdtype is invalid (:issue:`21185`)
- Trying to reindex a ``DataFrame`` with a non unique ``MultiIndex`` now raises a ``ValueError`` instead of an ``Exception`` (:issue:`21770`)
- :class:`Index` subtraction will attempt to operate element-wise instead of raising ``TypeError`` (:issue:`19369`)
- :class:`pandas.io.formats.style.Styler` supports a ``number-format`` property when using :meth:`~pandas.io.formats.style.Styler.to_excel` (:issue:`22015`)
- :meth:`DataFrame.corr` and :meth:`Series.corr` now raise a ``ValueError`` along with a helpful error message instead of a ``KeyError`` when supplied with an invalid method (:issue:`22298`)
- :meth:`shift` will now always return a copy, instead of the previous behaviour of returning self when shifting by 0 (:issue:`22397`)
- :meth:`DataFrame.set_index` now gives a better (and less frequent) KeyError, raises a ``ValueError`` for incorrect types,
  and will not fail on duplicate column names with ``drop=True``. (:issue:`22484`)
- Slicing a single row of a DataFrame with multiple ExtensionArrays of the same type now preserves the dtype, rather than coercing to object (:issue:`22784`)
- :class:`DateOffset` attribute ``_cacheable`` and method ``_should_cache`` have been removed (:issue:`23118`)
- :meth:`Series.searchsorted`, when supplied a scalar value to search for, now returns a scalar instead of an array (:issue:`23801`).
- :meth:`Categorical.searchsorted`, when supplied a scalar value to search for, now returns a scalar instead of an array (:issue:`23466`).
- :meth:`Categorical.searchsorted` now raises a ``KeyError`` rather that a ``ValueError``, if a searched for key is not found in its categories (:issue:`23466`).
- :meth:`Index.hasnans` and :meth:`Series.hasnans` now always return a python boolean. Previously, a python or a numpy boolean could be returned, depending on circumstances (:issue:`23294`).
- The order of the arguments of :func:`DataFrame.to_html` and :func:`DataFrame.to_string` is rearranged to be consistent with each other. (:issue:`23614`)
- :meth:`CategoricalIndex.reindex` now raises a ``ValueError`` if the target index is non-unique and not equal to the current index. It previously only raised if the target index was not of a categorical dtype (:issue:`23963`).
- :func:`Series.to_list` and :func:`Index.to_list` are now aliases of ``Series.tolist`` respectively ``Index.tolist`` (:issue:`8826`)
- The result of ``SparseSeries.unstack`` is now a :class:`DataFrame` with sparse values, rather than a :class:`SparseDataFrame` (:issue:`24372`).
- :class:`DatetimeIndex` and :class:`TimedeltaIndex` no longer ignore the dtype precision. Passing a non-nanosecond resolution dtype will raise a ``ValueError`` (:issue:`24753`)


.. _whatsnew_0240.api.extension:

Extension type changes
~~~~~~~~~~~~~~~~~~~~~~

**Equality and hashability**

pandas now requires that extension dtypes be hashable (i.e. the respective
``ExtensionDtype`` objects; hashability is not a requirement for the values
of the corresponding ``ExtensionArray``). The base class implements
a default ``__eq__`` and ``__hash__``. If you have a parametrized dtype, you should
update the ``ExtensionDtype._metadata`` tuple to match the signature of your
``__init__`` method. See :class:`pandas.api.extensions.ExtensionDtype` for more (:issue:`22476`).

**New and changed methods**

- :meth:`~pandas.api.types.ExtensionArray.dropna` has been added (:issue:`21185`)
- :meth:`~pandas.api.types.ExtensionArray.repeat` has been added (:issue:`24349`)
- The ``ExtensionArray`` constructor, ``_from_sequence`` now take the keyword arg ``copy=False`` (:issue:`21185`)
- :meth:`pandas.api.extensions.ExtensionArray.shift` added as part of the basic ``ExtensionArray`` interface (:issue:`22387`).
- :meth:`~pandas.api.types.ExtensionArray.searchsorted` has been added (:issue:`24350`)
- Support for reduction operations such as ``sum``, ``mean`` via opt-in base class method override (:issue:`22762`)
- :func:`ExtensionArray.isna` is allowed to return an ``ExtensionArray`` (:issue:`22325`).

**Dtype changes**

- ``ExtensionDtype`` has gained the ability to instantiate from string dtypes, e.g. ``decimal`` would instantiate a registered ``DecimalDtype``; furthermore
  the ``ExtensionDtype`` has gained the method ``construct_array_type`` (:issue:`21185`)
- Added ``ExtensionDtype._is_numeric`` for controlling whether an extension dtype is considered numeric (:issue:`22290`).
- Added :meth:`pandas.api.types.register_extension_dtype` to register an extension type with pandas (:issue:`22664`)
- Updated the ``.type`` attribute for ``PeriodDtype``, ``DatetimeTZDtype``, and ``IntervalDtype`` to be instances of the dtype (``Period``, ``Timestamp``, and ``Interval`` respectively) (:issue:`22938`)

.. _whatsnew_0240.enhancements.extension_array_operators:

**Operator support**

A ``Series`` based on an ``ExtensionArray`` now supports arithmetic and comparison
operators (:issue:`19577`). There are two approaches for providing operator support for an ``ExtensionArray``:

1. Define each of the operators on your ``ExtensionArray`` subclass.
2. Use an operator implementation from pandas that depends on operators that are already defined
   on the underlying elements (scalars) of the ``ExtensionArray``.

See the :ref:`ExtensionArray Operator Support
<extending.extension.operator>` documentation section for details on both
ways of adding operator support.

**Other changes**

- A default repr for :class:`pandas.api.extensions.ExtensionArray` is now provided (:issue:`23601`).
- :meth:`ExtensionArray._formatting_values` is deprecated. Use :attr:`ExtensionArray._formatter` instead. (:issue:`23601`)
- An ``ExtensionArray`` with a boolean dtype now works correctly as a boolean indexer. :meth:`pandas.api.types.is_bool_dtype` now properly considers them boolean (:issue:`22326`)

**Bug fixes**

- Bug in :meth:`Series.get` for ``Series`` using ``ExtensionArray`` and integer index (:issue:`21257`)
- :meth:`~Series.shift` now dispatches to :meth:`ExtensionArray.shift` (:issue:`22386`)
- :meth:`Series.combine()` works correctly with :class:`~pandas.api.extensions.ExtensionArray` inside of :class:`Series` (:issue:`20825`)
- :meth:`Series.combine()` with scalar argument now works for any function type (:issue:`21248`)
- :meth:`Series.astype` and :meth:`DataFrame.astype` now dispatch to :meth:`ExtensionArray.astype` (:issue:`21185`).
- Slicing a single row of a ``DataFrame`` with multiple ExtensionArrays of the same type now preserves the dtype, rather than coercing to object (:issue:`22784`)
- Bug when concatenating multiple ``Series`` with different extension dtypes not casting to object dtype (:issue:`22994`)
- Series backed by an ``ExtensionArray`` now work with :func:`util.hash_pandas_object` (:issue:`23066`)
- :meth:`DataFrame.stack` no longer converts to object dtype for DataFrames where each column has the same extension dtype. The output Series will have the same dtype as the columns (:issue:`23077`).
- :meth:`Series.unstack` and :meth:`DataFrame.unstack` no longer convert extension arrays to object-dtype ndarrays. Each column in the output ``DataFrame`` will now have the same dtype as the input (:issue:`23077`).
- Bug when grouping :meth:`Dataframe.groupby()` and aggregating on ``ExtensionArray`` it was not returning the actual ``ExtensionArray`` dtype (:issue:`23227`).
- Bug in :func:`pandas.merge` when merging on an extension array-backed column (:issue:`23020`).


.. _whatsnew_0240.deprecations:

Deprecations
~~~~~~~~~~~~

- :attr:`MultiIndex.labels` has been deprecated and replaced by :attr:`MultiIndex.codes`.
  The functionality is unchanged. The new name better reflects the natures of
  these codes and makes the ``MultiIndex`` API more similar to the API for :class:`CategoricalIndex` (:issue:`13443`).
  As a consequence, other uses of the name ``labels`` in ``MultiIndex`` have also been deprecated and replaced with ``codes``:

  - You should initialize a ``MultiIndex`` instance using a parameter named ``codes`` rather than ``labels``.
  - ``MultiIndex.set_labels`` has been deprecated in favor of :meth:`MultiIndex.set_codes`.
  - For method :meth:`MultiIndex.copy`, the ``labels`` parameter has been deprecated and replaced by a ``codes`` parameter.
- :meth:`DataFrame.to_stata`, :meth:`read_stata`, :class:`StataReader` and :class:`StataWriter` have deprecated the ``encoding`` argument. The encoding of a Stata dta file is determined by the file type and cannot be changed (:issue:`21244`)
- :meth:`MultiIndex.to_hierarchical` is deprecated and will be removed in a future version (:issue:`21613`)
- :meth:`Series.ptp` is deprecated. Use ``numpy.ptp`` instead (:issue:`21614`)
- :meth:`Series.compress` is deprecated. Use ``Series[condition]`` instead (:issue:`18262`)
- The signature of :meth:`Series.to_csv` has been uniformed to that of :meth:`DataFrame.to_csv`: the name of the first argument is now ``path_or_buf``, the order of subsequent arguments has changed, the ``header`` argument now defaults to ``True``. (:issue:`19715`)
- :meth:`Categorical.from_codes` has deprecated providing float values for the ``codes`` argument. (:issue:`21767`)
- :func:`pandas.read_table` is deprecated. Instead, use :func:`read_csv` passing ``sep='\t'`` if necessary. This deprecation has been removed in 0.25.0. (:issue:`21948`)
- :meth:`Series.str.cat` has deprecated using arbitrary list-likes *within* list-likes. A list-like container may still contain
  many ``Series``, ``Index`` or 1-dimensional ``np.ndarray``, or alternatively, only scalar values. (:issue:`21950`)
- :meth:`FrozenNDArray.searchsorted` has deprecated the ``v`` parameter in favor of ``value`` (:issue:`14645`)
- :func:`DatetimeIndex.shift` and :func:`PeriodIndex.shift` now accept ``periods`` argument instead of ``n`` for consistency with :func:`Index.shift` and :func:`Series.shift`. Using ``n`` throws a deprecation warning (:issue:`22458`, :issue:`22912`)
- The ``fastpath`` keyword of the different Index constructors is deprecated (:issue:`23110`).
- :meth:`Timestamp.tz_localize`, :meth:`DatetimeIndex.tz_localize`, and :meth:`Series.tz_localize` have deprecated the ``errors`` argument in favor of the ``nonexistent`` argument (:issue:`8917`)
- The class ``FrozenNDArray`` has been deprecated. When unpickling, ``FrozenNDArray`` will be unpickled to ``np.ndarray`` once this class is removed (:issue:`9031`)
- The methods :meth:`DataFrame.update` and :meth:`Panel.update` have deprecated the ``raise_conflict=False|True`` keyword in favor of ``errors='ignore'|'raise'`` (:issue:`23585`)
- The methods :meth:`Series.str.partition` and :meth:`Series.str.rpartition` have deprecated the ``pat`` keyword in favor of ``sep`` (:issue:`22676`)
- Deprecated the ``nthreads`` keyword of :func:`pandas.read_feather` in favor of ``use_threads`` to reflect the changes in ``pyarrow>=0.11.0``. (:issue:`23053`)
- :func:`pandas.read_excel` has deprecated accepting ``usecols`` as an integer. Please pass in a list of ints from 0 to ``usecols`` inclusive instead (:issue:`23527`)
- Constructing a :class:`TimedeltaIndex` from data with ``datetime64``-dtyped data is deprecated, will raise ``TypeError`` in a future version (:issue:`23539`)
- Constructing a :class:`DatetimeIndex` from data with ``timedelta64``-dtyped data is deprecated, will raise ``TypeError`` in a future version (:issue:`23675`)
- The ``keep_tz=False`` option (the default) of the ``keep_tz`` keyword of
  :meth:`DatetimeIndex.to_series` is deprecated (:issue:`17832`).
- Timezone converting a tz-aware ``datetime.datetime`` or :class:`Timestamp` with :class:`Timestamp` and the ``tz`` argument is now deprecated. Instead, use :meth:`Timestamp.tz_convert` (:issue:`23579`)
- :func:`pandas.api.types.is_period` is deprecated in favor of ``pandas.api.types.is_period_dtype`` (:issue:`23917`)
- :func:`pandas.api.types.is_datetimetz` is deprecated in favor of ``pandas.api.types.is_datetime64tz`` (:issue:`23917`)
- Creating a :class:`TimedeltaIndex`, :class:`DatetimeIndex`, or :class:`PeriodIndex` by passing range arguments ``start``, ``end``, and ``periods`` is deprecated in favor of :func:`timedelta_range`, :func:`date_range`, or :func:`period_range` (:issue:`23919`)
- Passing a string alias like ``'datetime64[ns, UTC]'`` as the ``unit`` parameter to :class:`DatetimeTZDtype` is deprecated. Use :class:`DatetimeTZDtype.construct_from_string` instead (:issue:`23990`).
- The ``skipna`` parameter of :meth:`~pandas.api.types.infer_dtype` will switch to ``True`` by default in a future version of pandas (:issue:`17066`, :issue:`24050`)
- In :meth:`Series.where` with Categorical data, providing an ``other`` that is not present in the categories is deprecated. Convert the categorical to a different dtype or add the ``other`` to the categories first (:issue:`24077`).
- :meth:`Series.clip_lower`, :meth:`Series.clip_upper`, :meth:`DataFrame.clip_lower` and :meth:`DataFrame.clip_upper` are deprecated and will be removed in a future version. Use ``Series.clip(lower=threshold)``, ``Series.clip(upper=threshold)`` and the equivalent ``DataFrame`` methods (:issue:`24203`)
- :meth:`Series.nonzero` is deprecated and will be removed in a future version (:issue:`18262`)
- Passing an integer to :meth:`Series.fillna` and :meth:`DataFrame.fillna` with ``timedelta64[ns]`` dtypes is deprecated, will raise ``TypeError`` in a future version.  Use ``obj.fillna(pd.Timedelta(...))`` instead (:issue:`24694`)
- ``Series.cat.categorical``, ``Series.cat.name`` and ``Series.cat.index`` have been deprecated. Use the attributes on ``Series.cat`` or ``Series`` directly. (:issue:`24751`).
- Passing a dtype without a precision like ``np.dtype('datetime64')`` or ``timedelta64`` to :class:`Index`, :class:`DatetimeIndex` and :class:`TimedeltaIndex` is now deprecated. Use the nanosecond-precision dtype instead (:issue:`24753`).

.. _whatsnew_0240.deprecations.datetimelike_int_ops:

Integer addition/subtraction with datetimes and timedeltas is deprecated
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

In the past, users could—in some cases—add or subtract integers or integer-dtype
arrays from :class:`Timestamp`, :class:`DatetimeIndex` and :class:`TimedeltaIndex`.

This usage is now deprecated.  Instead add or subtract integer multiples of
the object's ``freq`` attribute (:issue:`21939`, :issue:`23878`).

*Previous behavior*:

.. code-block:: ipython

    In [5]: ts = pd.Timestamp('1994-05-06 12:15:16', freq=pd.offsets.Hour())
    In [6]: ts + 2
    Out[6]: Timestamp('1994-05-06 14:15:16', freq='H')

    In [7]: tdi = pd.timedelta_range('1D', periods=2)
    In [8]: tdi - np.array([2, 1])
    Out[8]: TimedeltaIndex(['-1 days', '1 days'], dtype='timedelta64[ns]', freq=None)

    In [9]: dti = pd.date_range('2001-01-01', periods=2, freq='7D')
    In [10]: dti + pd.Index([1, 2])
    Out[10]: DatetimeIndex(['2001-01-08', '2001-01-22'], dtype='datetime64[ns]', freq=None)

*New behavior*:

.. code-block:: ipython

    In [108]: ts = pd.Timestamp('1994-05-06 12:15:16', freq=pd.offsets.Hour())

    In[109]: ts + 2 * ts.freq
    Out[109]: Timestamp('1994-05-06 14:15:16', freq='H')

    In [110]: tdi = pd.timedelta_range('1D', periods=2)

    In [111]: tdi - np.array([2 * tdi.freq, 1 * tdi.freq])
    Out[111]: TimedeltaIndex(['-1 days', '1 days'], dtype='timedelta64[ns]', freq=None)

    In [112]: dti = pd.date_range('2001-01-01', periods=2, freq='7D')

    In [113]: dti + pd.Index([1 * dti.freq, 2 * dti.freq])
    Out[113]: DatetimeIndex(['2001-01-08', '2001-01-22'], dtype='datetime64[ns]', freq=None)


.. _whatsnew_0240.deprecations.integer_tz:

Passing integer data and a timezone to DatetimeIndex
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

The behavior of :class:`DatetimeIndex` when passed integer data and
a timezone is changing in a future version of pandas. Previously, these
were interpreted as wall times in the desired timezone. In the future,
these will be interpreted as wall times in UTC, which are then converted
to the desired timezone (:issue:`24559`).

The default behavior remains the same, but issues a warning:

.. code-block:: ipython

   In [3]: pd.DatetimeIndex([946684800000000000], tz="US/Central")
   /bin/ipython:1: FutureWarning:
       Passing integer-dtype data and a timezone to DatetimeIndex. Integer values
       will be interpreted differently in a future version of pandas. Previously,
       these were viewed as datetime64[ns] values representing the wall time
       *in the specified timezone*. In the future, these will be viewed as
       datetime64[ns] values representing the wall time *in UTC*. This is similar
       to a nanosecond-precision UNIX epoch. To accept the future behavior, use

           pd.to_datetime(integer_data, utc=True).tz_convert(tz)

       To keep the previous behavior, use

           pd.to_datetime(integer_data).tz_localize(tz)

    #!/bin/python3
    Out[3]: DatetimeIndex(['2000-01-01 00:00:00-06:00'], dtype='datetime64[ns, US/Central]', freq=None)

As the warning message explains, opt in to the future behavior by specifying that
the integer values are UTC, and then converting to the final timezone:

.. ipython:: python

   pd.to_datetime([946684800000000000], utc=True).tz_convert('US/Central')

The old behavior can be retained with by localizing directly to the final timezone:

.. ipython:: python

   pd.to_datetime([946684800000000000]).tz_localize('US/Central')

.. _whatsnew_0240.deprecations.tz_aware_array:

Converting timezone-aware Series and Index to NumPy arrays
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

The conversion from a :class:`Series` or :class:`Index` with timezone-aware
datetime data will change to preserve timezones by default (:issue:`23569`).

NumPy doesn't have a dedicated dtype for timezone-aware datetimes.
In the past, converting a :class:`Series` or :class:`DatetimeIndex` with
timezone-aware datatimes would convert to a NumPy array by

1. converting the tz-aware data to UTC
2. dropping the timezone-info
3. returning a :class:`numpy.ndarray` with ``datetime64[ns]`` dtype

Future versions of pandas will preserve the timezone information by returning an
object-dtype NumPy array where each value is a :class:`Timestamp` with the correct
timezone attached

.. ipython:: python

   ser = pd.Series(pd.date_range('2000', periods=2, tz="CET"))
   ser

The default behavior remains the same, but issues a warning

.. code-block:: python

   In [8]: np.asarray(ser)
   /bin/ipython:1: FutureWarning: Converting timezone-aware DatetimeArray to timezone-naive
         ndarray with 'datetime64[ns]' dtype. In the future, this will return an ndarray
         with 'object' dtype where each element is a 'pandas.Timestamp' with the correct 'tz'.

           To accept the future behavior, pass 'dtype=object'.
           To keep the old behavior, pass 'dtype="datetime64[ns]"'.
     #!/bin/python3
   Out[8]:
   array(['1999-12-31T23:00:00.000000000', '2000-01-01T23:00:00.000000000'],
         dtype='datetime64[ns]')

The previous or future behavior can be obtained, without any warnings, by specifying
the ``dtype``

*Previous behavior*

.. ipython:: python

   np.asarray(ser, dtype='datetime64[ns]')

*Future behavior*

.. ipython:: python

   # New behavior
   np.asarray(ser, dtype=object)


Or by using :meth:`Series.to_numpy`

.. ipython:: python

   ser.to_numpy()
   ser.to_numpy(dtype="datetime64[ns]")

All the above applies to a :class:`DatetimeIndex` with tz-aware values as well.

.. _whatsnew_0240.prior_deprecations:

Removal of prior version deprecations/changes
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

- The ``LongPanel`` and ``WidePanel`` classes have been removed (:issue:`10892`)
- :meth:`Series.repeat` has renamed the ``reps`` argument to ``repeats`` (:issue:`14645`)
- Several private functions were removed from the (non-public) module ``pandas.core.common`` (:issue:`22001`)
- Removal of the previously deprecated module ``pandas.core.datetools`` (:issue:`14105`, :issue:`14094`)
- Strings passed into :meth:`DataFrame.groupby` that refer to both column and index levels will raise a ``ValueError`` (:issue:`14432`)
- :meth:`Index.repeat` and :meth:`MultiIndex.repeat` have renamed the ``n`` argument to ``repeats`` (:issue:`14645`)
- The ``Series`` constructor and ``.astype`` method will now raise a ``ValueError`` if timestamp dtypes are passed in without a unit (e.g. ``np.datetime64``) for the ``dtype`` parameter (:issue:`15987`)
- Removal of the previously deprecated ``as_indexer`` keyword completely from ``str.match()`` (:issue:`22356`, :issue:`6581`)
- The modules ``pandas.types``, ``pandas.computation``, and ``pandas.util.decorators`` have been removed (:issue:`16157`, :issue:`16250`)
- Removed the ``pandas.formats.style`` shim for :class:`pandas.io.formats.style.Styler` (:issue:`16059`)
- ``pandas.pnow``, ``pandas.match``, ``pandas.groupby``, ``pd.get_store``, ``pd.Expr``, and ``pd.Term`` have been removed (:issue:`15538`, :issue:`15940`)
- :meth:`Categorical.searchsorted` and :meth:`Series.searchsorted` have renamed the ``v`` argument to ``value`` (:issue:`14645`)
- ``pandas.parser``, ``pandas.lib``, and ``pandas.tslib`` have been removed (:issue:`15537`)
- :meth:`Index.searchsorted` have renamed the ``key`` argument to ``value`` (:issue:`14645`)
- ``DataFrame.consolidate`` and ``Series.consolidate`` have been removed (:issue:`15501`)
- Removal of the previously deprecated module ``pandas.json`` (:issue:`19944`)
- The module ``pandas.tools`` has been removed (:issue:`15358`, :issue:`16005`)
- :meth:`SparseArray.get_values` and :meth:`SparseArray.to_dense` have dropped the ``fill`` parameter (:issue:`14686`)
- ``DataFrame.sortlevel`` and ``Series.sortlevel`` have been removed (:issue:`15099`)
- :meth:`SparseSeries.to_dense` has dropped the ``sparse_only`` parameter (:issue:`14686`)
- :meth:`DataFrame.astype` and :meth:`Series.astype` have renamed the ``raise_on_error`` argument to ``errors`` (:issue:`14967`)
- ``is_sequence``, ``is_any_int_dtype``, and ``is_floating_dtype`` have been removed from ``pandas.api.types`` (:issue:`16163`, :issue:`16189`)

.. _whatsnew_0240.performance:

Performance improvements
~~~~~~~~~~~~~~~~~~~~~~~~

- Slicing Series and DataFrames with an monotonically increasing :class:`CategoricalIndex`
  is now very fast and has speed comparable to slicing with an ``Int64Index``.
  The speed increase is both when indexing by label (using .loc) and position(.iloc) (:issue:`20395`)
  Slicing a monotonically increasing :class:`CategoricalIndex` itself (i.e. ``ci[1000:2000]``)
  shows similar speed improvements as above (:issue:`21659`)
- Improved performance of :meth:`CategoricalIndex.equals` when comparing to another :class:`CategoricalIndex` (:issue:`24023`)
- Improved performance of :func:`Series.describe` in case of numeric dtpyes (:issue:`21274`)
- Improved performance of :func:`.GroupBy.rank` when dealing with tied rankings (:issue:`21237`)
- Improved performance of :func:`DataFrame.set_index` with columns consisting of :class:`Period` objects (:issue:`21582`, :issue:`21606`)
- Improved performance of :meth:`Series.at` and :meth:`Index.get_value` for Extension Arrays values (e.g. :class:`Categorical`) (:issue:`24204`)
- Improved performance of membership checks in :class:`Categorical` and :class:`CategoricalIndex`
  (i.e. ``x in cat``-style checks are much faster). :meth:`CategoricalIndex.contains`
  is likewise much faster (:issue:`21369`, :issue:`21508`)
- Improved performance of :meth:`HDFStore.groups` (and dependent functions like
  :meth:`HDFStore.keys`.  (i.e. ``x in store`` checks are much faster)
  (:issue:`21372`)
- Improved the performance of :func:`pandas.get_dummies` with ``sparse=True`` (:issue:`21997`)
- Improved performance of :func:`IndexEngine.get_indexer_non_unique` for sorted, non-unique indexes (:issue:`9466`)
- Improved performance of :func:`PeriodIndex.unique` (:issue:`23083`)
- Improved performance of :func:`concat` for ``Series`` objects (:issue:`23404`)
- Improved performance of :meth:`DatetimeIndex.normalize` and :meth:`Timestamp.normalize` for timezone naive or UTC datetimes (:issue:`23634`)
- Improved performance of :meth:`DatetimeIndex.tz_localize` and various ``DatetimeIndex`` attributes with dateutil UTC timezone (:issue:`23772`)
- Fixed a performance regression on Windows with Python 3.7 of :func:`read_csv` (:issue:`23516`)
- Improved performance of :class:`Categorical` constructor for ``Series`` objects (:issue:`23814`)
- Improved performance of :meth:`~DataFrame.where` for Categorical data (:issue:`24077`)
- Improved performance of iterating over a :class:`Series`. Using :meth:`DataFrame.itertuples` now creates iterators
  without internally allocating lists of all elements (:issue:`20783`)
- Improved performance of :class:`Period` constructor, additionally benefitting ``PeriodArray`` and ``PeriodIndex`` creation (:issue:`24084`, :issue:`24118`)
- Improved performance of tz-aware :class:`DatetimeArray` binary operations (:issue:`24491`)

.. _whatsnew_0240.bug_fixes:

Bug fixes
~~~~~~~~~

Categorical
^^^^^^^^^^^

- Bug in :meth:`Categorical.from_codes` where ``NaN`` values in ``codes`` were silently converted to ``0`` (:issue:`21767`). In the future this will raise a ``ValueError``. Also changes the behavior of ``.from_codes([1.1, 2.0])``.
- Bug in :meth:`Categorical.sort_values` where ``NaN`` values were always positioned in front regardless of ``na_position`` value. (:issue:`22556`).
- Bug when indexing with a boolean-valued ``Categorical``. Now a boolean-valued ``Categorical`` is treated as a boolean mask (:issue:`22665`)
- Constructing a :class:`CategoricalIndex` with empty values and boolean categories was raising a ``ValueError`` after a change to dtype coercion (:issue:`22702`).
- Bug in :meth:`Categorical.take` with a user-provided ``fill_value`` not encoding the ``fill_value``, which could result in a ``ValueError``, incorrect results, or a segmentation fault (:issue:`23296`).
- In :meth:`Series.unstack`, specifying a ``fill_value`` not present in the categories now raises a ``TypeError`` rather than ignoring the ``fill_value`` (:issue:`23284`)
- Bug when resampling :meth:`DataFrame.resample()` and aggregating on categorical data, the categorical dtype was getting lost. (:issue:`23227`)
- Bug in many methods of the ``.str``-accessor, which always failed on calling the ``CategoricalIndex.str`` constructor (:issue:`23555`, :issue:`23556`)
- Bug in :meth:`Series.where` losing the categorical dtype for categorical data (:issue:`24077`)
- Bug in :meth:`Categorical.apply` where ``NaN`` values could be handled unpredictably. They now remain unchanged (:issue:`24241`)
- Bug in :class:`Categorical` comparison methods incorrectly raising ``ValueError`` when operating against a :class:`DataFrame` (:issue:`24630`)
- Bug in :meth:`Categorical.set_categories` where setting fewer new categories with ``rename=True`` caused a segmentation fault (:issue:`24675`)

Datetimelike
^^^^^^^^^^^^

- Fixed bug where two :class:`DateOffset` objects with different ``normalize`` attributes could evaluate as equal (:issue:`21404`)
- Fixed bug where :meth:`Timestamp.resolution` incorrectly returned 1-microsecond ``timedelta`` instead of 1-nanosecond :class:`Timedelta` (:issue:`21336`, :issue:`21365`)
- Bug in :func:`to_datetime` that did not consistently return an :class:`Index` when ``box=True`` was specified (:issue:`21864`)
- Bug in :class:`DatetimeIndex` comparisons where string comparisons incorrectly raises ``TypeError`` (:issue:`22074`)
- Bug in :class:`DatetimeIndex` comparisons when comparing against ``timedelta64[ns]`` dtyped arrays; in some cases ``TypeError`` was incorrectly raised, in others it incorrectly failed to raise (:issue:`22074`)
- Bug in :class:`DatetimeIndex` comparisons when comparing against object-dtyped arrays (:issue:`22074`)
- Bug in :class:`DataFrame` with ``datetime64[ns]`` dtype addition and subtraction with ``Timedelta``-like objects (:issue:`22005`, :issue:`22163`)
- Bug in :class:`DataFrame` with ``datetime64[ns]`` dtype addition and subtraction with ``DateOffset`` objects returning an ``object`` dtype instead of ``datetime64[ns]`` dtype (:issue:`21610`, :issue:`22163`)
- Bug in :class:`DataFrame` with ``datetime64[ns]`` dtype comparing against ``NaT`` incorrectly (:issue:`22242`, :issue:`22163`)
- Bug in :class:`DataFrame` with ``datetime64[ns]`` dtype subtracting ``Timestamp``-like object incorrectly returned ``datetime64[ns]`` dtype instead of ``timedelta64[ns]`` dtype (:issue:`8554`, :issue:`22163`)
- Bug in :class:`DataFrame` with ``datetime64[ns]`` dtype subtracting ``np.datetime64`` object with non-nanosecond unit failing to convert to nanoseconds (:issue:`18874`, :issue:`22163`)
- Bug in :class:`DataFrame` comparisons against ``Timestamp``-like objects failing to raise ``TypeError`` for inequality checks with mismatched types (:issue:`8932`, :issue:`22163`)
- Bug in :class:`DataFrame` with mixed dtypes including ``datetime64[ns]`` incorrectly raising ``TypeError`` on equality comparisons (:issue:`13128`, :issue:`22163`)
- Bug in :attr:`DataFrame.values` returning a :class:`DatetimeIndex` for a single-column ``DataFrame`` with tz-aware datetime values. Now a 2-D :class:`numpy.ndarray` of :class:`Timestamp` objects is returned (:issue:`24024`)
- Bug in :meth:`DataFrame.eq` comparison against ``NaT`` incorrectly returning ``True`` or ``NaN`` (:issue:`15697`, :issue:`22163`)
- Bug in :class:`DatetimeIndex` subtraction that incorrectly failed to raise ``OverflowError`` (:issue:`22492`, :issue:`22508`)
- Bug in :class:`DatetimeIndex` incorrectly allowing indexing with ``Timedelta`` object (:issue:`20464`)
- Bug in :class:`DatetimeIndex` where frequency was being set if original frequency was ``None`` (:issue:`22150`)
- Bug in rounding methods of :class:`DatetimeIndex` (:meth:`~DatetimeIndex.round`, :meth:`~DatetimeIndex.ceil`, :meth:`~DatetimeIndex.floor`) and :class:`Timestamp` (:meth:`~Timestamp.round`, :meth:`~Timestamp.ceil`, :meth:`~Timestamp.floor`) could give rise to loss of precision (:issue:`22591`)
- Bug in :func:`to_datetime` with an :class:`Index` argument that would drop the ``name`` from the result (:issue:`21697`)
- Bug in :class:`PeriodIndex` where adding or subtracting a :class:`timedelta` or :class:`Tick` object produced incorrect results (:issue:`22988`)
- Bug in the :class:`Series` repr with period-dtype data missing a space before the data (:issue:`23601`)
- Bug in :func:`date_range` when decrementing a start date to a past end date by a negative frequency (:issue:`23270`)
- Bug in :meth:`Series.min` which would return ``NaN`` instead of ``NaT`` when called on a series of ``NaT`` (:issue:`23282`)
- Bug in :meth:`Series.combine_first` not properly aligning categoricals, so that missing values in ``self`` where not filled by valid values from ``other`` (:issue:`24147`)
- Bug in :func:`DataFrame.combine` with datetimelike values raising a TypeError (:issue:`23079`)
- Bug in :func:`date_range` with frequency of ``Day`` or higher where dates sufficiently far in the future could wrap around to the past instead of raising ``OutOfBoundsDatetime`` (:issue:`14187`)
- Bug in :func:`period_range` ignoring the frequency of ``start`` and ``end`` when those are provided as :class:`Period` objects (:issue:`20535`).
- Bug in :class:`PeriodIndex` with attribute ``freq.n`` greater than 1 where adding a :class:`DateOffset` object would return incorrect results (:issue:`23215`)
- Bug in :class:`Series` that interpreted string indices as lists of characters when setting datetimelike values (:issue:`23451`)
- Bug in :class:`DataFrame` when creating a new column from an ndarray of :class:`Timestamp` objects with timezones creating an object-dtype column, rather than datetime with timezone (:issue:`23932`)
- Bug in :class:`Timestamp` constructor which would drop the frequency of an input :class:`Timestamp` (:issue:`22311`)
- Bug in :class:`DatetimeIndex` where calling ``np.array(dtindex, dtype=object)`` would incorrectly return an array of ``long`` objects (:issue:`23524`)
- Bug in :class:`Index` where passing a timezone-aware :class:`DatetimeIndex` and ``dtype=object`` would incorrectly raise a ``ValueError`` (:issue:`23524`)
- Bug in :class:`Index` where calling ``np.array(dtindex, dtype=object)`` on a timezone-naive :class:`DatetimeIndex` would return an array of ``datetime`` objects instead of :class:`Timestamp` objects, potentially losing nanosecond portions of the timestamps (:issue:`23524`)
- Bug in :class:`Categorical.__setitem__` not allowing setting with another ``Categorical`` when both are unordered and have the same categories, but in a different order (:issue:`24142`)
- Bug in :func:`date_range` where using dates with millisecond resolution or higher could return incorrect values or the wrong number of values in the index (:issue:`24110`)
- Bug in :class:`DatetimeIndex` where constructing a :class:`DatetimeIndex` from a :class:`Categorical` or :class:`CategoricalIndex` would incorrectly drop timezone information (:issue:`18664`)
- Bug in :class:`DatetimeIndex` and :class:`TimedeltaIndex` where indexing with ``Ellipsis`` would incorrectly lose the index's ``freq`` attribute (:issue:`21282`)
- Clarified error message produced when passing an incorrect ``freq`` argument to :class:`DatetimeIndex` with ``NaT`` as the first entry in the passed data (:issue:`11587`)
- Bug in :func:`to_datetime` where ``box`` and ``utc`` arguments were ignored when passing a :class:`DataFrame` or ``dict`` of unit mappings (:issue:`23760`)
- Bug in :attr:`Series.dt` where the cache would not update properly after an in-place operation (:issue:`24408`)
- Bug in :class:`PeriodIndex` where comparisons against an array-like object with length 1 failed to raise ``ValueError`` (:issue:`23078`)
- Bug in :meth:`DatetimeIndex.astype`, :meth:`PeriodIndex.astype` and :meth:`TimedeltaIndex.astype` ignoring the sign of the ``dtype`` for unsigned integer dtypes (:issue:`24405`).
- Fixed bug in :meth:`Series.max` with ``datetime64[ns]``-dtype failing to return ``NaT`` when nulls are present and ``skipna=False`` is passed (:issue:`24265`)
- Bug in :func:`to_datetime` where arrays of ``datetime`` objects containing both timezone-aware and timezone-naive ``datetimes`` would fail to raise ``ValueError`` (:issue:`24569`)
- Bug in :func:`to_datetime` with invalid datetime format doesn't coerce input to ``NaT`` even if ``errors='coerce'`` (:issue:`24763`)

Timedelta
^^^^^^^^^
- Bug in :class:`DataFrame` with ``timedelta64[ns]`` dtype division by ``Timedelta``-like scalar incorrectly returning ``timedelta64[ns]`` dtype instead of ``float64`` dtype (:issue:`20088`, :issue:`22163`)
- Bug in adding a :class:`Index` with object dtype to a :class:`Series` with ``timedelta64[ns]`` dtype incorrectly raising (:issue:`22390`)
- Bug in multiplying a :class:`Series` with numeric dtype against a ``timedelta`` object (:issue:`22390`)
- Bug in :class:`Series` with numeric dtype when adding or subtracting an array or ``Series`` with ``timedelta64`` dtype (:issue:`22390`)
- Bug in :class:`Index` with numeric dtype when multiplying or dividing an array with dtype ``timedelta64`` (:issue:`22390`)
- Bug in :class:`TimedeltaIndex` incorrectly allowing indexing with ``Timestamp`` object (:issue:`20464`)
- Fixed bug where subtracting :class:`Timedelta` from an object-dtyped array would raise ``TypeError`` (:issue:`21980`)
- Fixed bug in adding a :class:`DataFrame` with all-`timedelta64[ns]` dtypes to a :class:`DataFrame` with all-integer dtypes returning incorrect results instead of raising ``TypeError`` (:issue:`22696`)
- Bug in :class:`TimedeltaIndex` where adding a timezone-aware datetime scalar incorrectly returned a timezone-naive :class:`DatetimeIndex` (:issue:`23215`)
- Bug in :class:`TimedeltaIndex` where adding ``np.timedelta64('NaT')`` incorrectly returned an all-``NaT`` :class:`DatetimeIndex` instead of an all-``NaT`` :class:`TimedeltaIndex` (:issue:`23215`)
- Bug in :class:`Timedelta` and :func:`to_timedelta()` have inconsistencies in supported unit string (:issue:`21762`)
- Bug in :class:`TimedeltaIndex` division where dividing by another :class:`TimedeltaIndex` raised ``TypeError`` instead of returning a :class:`Float64Index` (:issue:`23829`, :issue:`22631`)
- Bug in :class:`TimedeltaIndex` comparison operations where comparing against non-``Timedelta``-like objects would raise ``TypeError`` instead of returning all-``False`` for ``__eq__`` and all-``True`` for ``__ne__`` (:issue:`24056`)
- Bug in :class:`Timedelta` comparisons when comparing with a ``Tick`` object incorrectly raising ``TypeError`` (:issue:`24710`)

Timezones
^^^^^^^^^

- Bug in :meth:`Index.shift` where an ``AssertionError`` would raise when shifting across DST (:issue:`8616`)
- Bug in :class:`Timestamp` constructor where passing an invalid timezone offset designator (``Z``) would not raise a ``ValueError`` (:issue:`8910`)
- Bug in :meth:`Timestamp.replace` where replacing at a DST boundary would retain an incorrect offset (:issue:`7825`)
- Bug in :meth:`Series.replace` with ``datetime64[ns, tz]`` data when replacing ``NaT`` (:issue:`11792`)
- Bug in :class:`Timestamp` when passing different string date formats with a timezone offset would produce different timezone offsets (:issue:`12064`)
- Bug when comparing a tz-naive :class:`Timestamp` to a tz-aware :class:`DatetimeIndex` which would coerce the :class:`DatetimeIndex` to tz-naive (:issue:`12601`)
- Bug in :meth:`Series.truncate` with a tz-aware :class:`DatetimeIndex` which would cause a core dump (:issue:`9243`)
- Bug in :class:`Series` constructor which would coerce tz-aware and tz-naive :class:`Timestamp` to tz-aware (:issue:`13051`)
- Bug in :class:`Index` with ``datetime64[ns, tz]`` dtype that did not localize integer data correctly (:issue:`20964`)
- Bug in :class:`DatetimeIndex` where constructing with an integer and tz would not localize correctly (:issue:`12619`)
- Fixed bug where :meth:`DataFrame.describe` and :meth:`Series.describe` on tz-aware datetimes did not show ``first`` and ``last`` result (:issue:`21328`)
- Bug in :class:`DatetimeIndex` comparisons failing to raise ``TypeError`` when comparing timezone-aware ``DatetimeIndex`` against ``np.datetime64`` (:issue:`22074`)
- Bug in ``DataFrame`` assignment with a timezone-aware scalar (:issue:`19843`)
- Bug in :func:`DataFrame.asof` that raised a ``TypeError`` when attempting to compare tz-naive and tz-aware timestamps (:issue:`21194`)
- Bug when constructing a :class:`DatetimeIndex` with :class:`Timestamp` constructed with the ``replace`` method across DST (:issue:`18785`)
- Bug when setting a new value with :meth:`DataFrame.loc` with a :class:`DatetimeIndex` with a DST transition (:issue:`18308`, :issue:`20724`)
- Bug in :meth:`Index.unique` that did not re-localize tz-aware dates correctly (:issue:`21737`)
- Bug when indexing a :class:`Series` with a DST transition (:issue:`21846`)
- Bug in :meth:`DataFrame.resample` and :meth:`Series.resample` where an ``AmbiguousTimeError`` or ``NonExistentTimeError`` would raise if a timezone aware timeseries ended on a DST transition (:issue:`19375`, :issue:`10117`)
- Bug in :meth:`DataFrame.drop` and :meth:`Series.drop` when specifying a tz-aware Timestamp key to drop from a :class:`DatetimeIndex` with a DST transition (:issue:`21761`)
- Bug in :class:`DatetimeIndex` constructor where ``NaT`` and ``dateutil.tz.tzlocal`` would raise an ``OutOfBoundsDatetime`` error (:issue:`23807`)
- Bug in :meth:`DatetimeIndex.tz_localize` and :meth:`Timestamp.tz_localize` with ``dateutil.tz.tzlocal`` near a DST transition that would return an incorrectly localized datetime (:issue:`23807`)
- Bug in :class:`Timestamp` constructor where a ``dateutil.tz.tzutc`` timezone passed with a ``datetime.datetime`` argument would be converted to a ``pytz.UTC`` timezone (:issue:`23807`)
- Bug in :func:`to_datetime` where ``utc=True`` was not respected when specifying a ``unit`` and ``errors='ignore'`` (:issue:`23758`)
- Bug in :func:`to_datetime` where ``utc=True`` was not respected when passing a :class:`Timestamp` (:issue:`24415`)
- Bug in :meth:`DataFrame.any` returns wrong value when ``axis=1`` and the data is of datetimelike type (:issue:`23070`)
- Bug in :meth:`DatetimeIndex.to_period` where a timezone aware index was converted to UTC first before creating :class:`PeriodIndex` (:issue:`22905`)
- Bug in :meth:`DataFrame.tz_localize`, :meth:`DataFrame.tz_convert`, :meth:`Series.tz_localize`, and :meth:`Series.tz_convert` where ``copy=False`` would mutate the original argument inplace (:issue:`6326`)
- Bug in :meth:`DataFrame.max` and :meth:`DataFrame.min` with ``axis=1`` where a :class:`Series` with ``NaN`` would be returned when all columns contained the same timezone (:issue:`10390`)

Offsets
^^^^^^^

- Bug in :class:`FY5253` where date offsets could incorrectly raise an ``AssertionError`` in arithmetic operations (:issue:`14774`)
- Bug in :class:`DateOffset` where keyword arguments ``week`` and ``milliseconds`` were accepted and ignored.  Passing these will now raise ``ValueError`` (:issue:`19398`)
- Bug in adding :class:`DateOffset` with :class:`DataFrame` or :class:`PeriodIndex` incorrectly raising ``TypeError`` (:issue:`23215`)
- Bug in comparing :class:`DateOffset` objects with non-DateOffset objects, particularly strings, raising ``ValueError`` instead of returning ``False`` for equality checks and ``True`` for not-equal checks (:issue:`23524`)

Numeric
^^^^^^^

- Bug in :class:`Series` ``__rmatmul__`` doesn't support matrix vector multiplication (:issue:`21530`)
- Bug in :func:`factorize` fails with read-only array (:issue:`12813`)
- Fixed bug in :func:`unique` handled signed zeros inconsistently: for some inputs 0.0 and -0.0 were treated as equal and for some inputs as different. Now they are treated as equal for all inputs (:issue:`21866`)
- Bug in :meth:`DataFrame.agg`, :meth:`DataFrame.transform` and :meth:`DataFrame.apply` where,
  when supplied with a list of functions and ``axis=1`` (e.g. ``df.apply(['sum', 'mean'], axis=1)``),
  a ``TypeError`` was wrongly raised. For all three methods such calculation are now done correctly. (:issue:`16679`).
- Bug in :class:`Series` comparison against datetime-like scalars and arrays (:issue:`22074`)
- Bug in :class:`DataFrame` multiplication between boolean dtype and integer returning ``object`` dtype instead of integer dtype (:issue:`22047`, :issue:`22163`)
- Bug in :meth:`DataFrame.apply` where, when supplied with a string argument and additional positional or keyword arguments (e.g. ``df.apply('sum', min_count=1)``), a ``TypeError`` was wrongly raised (:issue:`22376`)
- Bug in :meth:`DataFrame.astype` to extension dtype may raise ``AttributeError`` (:issue:`22578`)
- Bug in :class:`DataFrame` with ``timedelta64[ns]`` dtype arithmetic operations with ``ndarray`` with integer dtype incorrectly treating the narray as ``timedelta64[ns]`` dtype (:issue:`23114`)
- Bug in :meth:`Series.rpow` with object dtype ``NaN`` for ``1 ** NA`` instead of ``1`` (:issue:`22922`).
- :meth:`Series.agg` can now handle numpy NaN-aware methods like :func:`numpy.nansum` (:issue:`19629`)
- Bug in :meth:`Series.rank` and :meth:`DataFrame.rank` when ``pct=True`` and more than 2\ :sup:`24` rows are present resulted in percentages greater than 1.0 (:issue:`18271`)
- Calls such as :meth:`DataFrame.round` with a non-unique :meth:`CategoricalIndex` now return expected data. Previously, data would be improperly duplicated (:issue:`21809`).
- Added ``log10``, ``floor`` and ``ceil`` to the list of supported functions in :meth:`DataFrame.eval` (:issue:`24139`, :issue:`24353`)
- Logical operations ``&, |, ^`` between :class:`Series` and :class:`Index` will no longer raise ``ValueError`` (:issue:`22092`)
- Checking PEP 3141 numbers in :func:`~pandas.api.types.is_scalar` function returns ``True`` (:issue:`22903`)
- Reduction methods like :meth:`Series.sum` now accept the default value of ``keepdims=False`` when called from a NumPy ufunc, rather than raising a ``TypeError``. Full support for ``keepdims`` has not been implemented (:issue:`24356`).

Conversion
^^^^^^^^^^

- Bug in :meth:`DataFrame.combine_first` in which column types were unexpectedly converted to float (:issue:`20699`)
- Bug in :meth:`DataFrame.clip` in which column types are not preserved and casted to float (:issue:`24162`)
- Bug in :meth:`DataFrame.clip` when order of columns of dataframes doesn't match, result observed is wrong in numeric values (:issue:`20911`)
- Bug in :meth:`DataFrame.astype` where converting to an extension dtype when duplicate column names are present causes a ``RecursionError`` (:issue:`24704`)

Strings
^^^^^^^

- Bug in :meth:`Index.str.partition` was not nan-safe (:issue:`23558`).
- Bug in :meth:`Index.str.split` was not nan-safe (:issue:`23677`).
- Bug :func:`Series.str.contains` not respecting the ``na`` argument for a ``Categorical`` dtype ``Series`` (:issue:`22158`)
- Bug in :meth:`Index.str.cat` when the result contained only ``NaN`` (:issue:`24044`)

Interval
^^^^^^^^

- Bug in the :class:`IntervalIndex` constructor where the ``closed`` parameter did not always override the inferred ``closed`` (:issue:`19370`)
- Bug in the ``IntervalIndex`` repr where a trailing comma was missing after the list of intervals (:issue:`20611`)
- Bug in :class:`Interval` where scalar arithmetic operations did not retain the ``closed`` value (:issue:`22313`)
- Bug in :class:`IntervalIndex` where indexing with datetime-like values raised a ``KeyError`` (:issue:`20636`)
- Bug in ``IntervalTree`` where data containing ``NaN`` triggered a warning and resulted in incorrect indexing queries with :class:`IntervalIndex` (:issue:`23352`)

Indexing
^^^^^^^^

- Bug in :meth:`DataFrame.ne` fails if columns contain column name "dtype" (:issue:`22383`)
- The traceback from a ``KeyError`` when asking ``.loc`` for a single missing label is now shorter and more clear (:issue:`21557`)
- :class:`PeriodIndex` now emits a ``KeyError`` when a malformed string is looked up, which is consistent with the behavior of :class:`DatetimeIndex` (:issue:`22803`)
- When ``.ix`` is asked for a missing integer label in a :class:`MultiIndex` with a first level of integer type, it now raises a ``KeyError``, consistently with the case of a flat :class:`Int64Index`, rather than falling back to positional indexing (:issue:`21593`)
- Bug in :meth:`Index.reindex` when reindexing a tz-naive and tz-aware :class:`DatetimeIndex` (:issue:`8306`)
- Bug in :meth:`Series.reindex` when reindexing an empty series with a ``datetime64[ns, tz]`` dtype (:issue:`20869`)
- Bug in :class:`DataFrame` when setting values with ``.loc`` and a timezone aware :class:`DatetimeIndex` (:issue:`11365`)
- ``DataFrame.__getitem__`` now accepts dictionaries and dictionary keys as list-likes of labels, consistently with ``Series.__getitem__`` (:issue:`21294`)
- Fixed ``DataFrame[np.nan]`` when columns are non-unique (:issue:`21428`)
- Bug when indexing :class:`DatetimeIndex` with nanosecond resolution dates and timezones (:issue:`11679`)
- Bug where indexing with a Numpy array containing negative values would mutate the indexer (:issue:`21867`)
- Bug where mixed indexes wouldn't allow integers for ``.at`` (:issue:`19860`)
- ``Float64Index.get_loc`` now raises ``KeyError`` when boolean key passed. (:issue:`19087`)
- Bug in :meth:`DataFrame.loc` when indexing with an :class:`IntervalIndex` (:issue:`19977`)
- :class:`Index` no longer mangles ``None``, ``NaN`` and ``NaT``, i.e. they are treated as three different keys. However, for numeric Index all three are still coerced to a ``NaN`` (:issue:`22332`)
- Bug in ``scalar in Index`` if scalar is a float while the ``Index`` is of integer dtype (:issue:`22085`)
- Bug in :func:`MultiIndex.set_levels` when levels value is not subscriptable (:issue:`23273`)
- Bug where setting a timedelta column by ``Index`` causes it to be casted to double, and therefore lose precision (:issue:`23511`)
- Bug in :func:`Index.union` and :func:`Index.intersection` where name of the ``Index`` of the result was not computed correctly for certain cases (:issue:`9943`, :issue:`9862`)
- Bug in :class:`Index` slicing with boolean :class:`Index` may raise ``TypeError`` (:issue:`22533`)
- Bug in ``PeriodArray.__setitem__`` when accepting slice and list-like value (:issue:`23978`)
- Bug in :class:`DatetimeIndex`, :class:`TimedeltaIndex` where indexing with ``Ellipsis`` would lose their ``freq`` attribute (:issue:`21282`)
- Bug in ``iat`` where using it to assign an incompatible value would create a new column (:issue:`23236`)

Missing
^^^^^^^

- Bug in :func:`DataFrame.fillna` where a ``ValueError`` would raise when one column contained a ``datetime64[ns, tz]`` dtype (:issue:`15522`)
- Bug in :func:`Series.hasnans` that could be incorrectly cached and return incorrect answers if null elements are introduced after an initial call (:issue:`19700`)
- :func:`Series.isin` now treats all NaN-floats as equal also for ``np.object_``-dtype. This behavior is consistent with the behavior for float64 (:issue:`22119`)
- :func:`unique` no longer mangles NaN-floats and the ``NaT``-object for ``np.object_``-dtype, i.e. ``NaT`` is no longer coerced to a NaN-value and is treated as a different entity. (:issue:`22295`)
- :class:`DataFrame` and :class:`Series` now properly handle numpy masked arrays with hardened masks. Previously, constructing a DataFrame or Series from a masked array with a hard mask would create a pandas object containing the underlying value, rather than the expected NaN. (:issue:`24574`)
- Bug in :class:`DataFrame` constructor where ``dtype`` argument was not honored when handling numpy masked record arrays. (:issue:`24874`)

MultiIndex
^^^^^^^^^^

- Bug in :func:`io.formats.style.Styler.applymap` where ``subset=`` with :class:`MultiIndex` slice would reduce to :class:`Series` (:issue:`19861`)
- Removed compatibility for :class:`MultiIndex` pickles prior to version 0.8.0; compatibility with :class:`MultiIndex` pickles from version 0.13 forward is maintained (:issue:`21654`)
- :meth:`MultiIndex.get_loc_level` (and as a consequence, ``.loc`` on a ``Series`` or ``DataFrame`` with a :class:`MultiIndex` index) will now raise a ``KeyError``, rather than returning an empty ``slice``, if asked a label which is present in the ``levels`` but is unused (:issue:`22221`)
- :class:`MultiIndex` has gained the :meth:`MultiIndex.from_frame`, it allows constructing a :class:`MultiIndex` object from a :class:`DataFrame` (:issue:`22420`)
- Fix ``TypeError`` in Python 3 when creating :class:`MultiIndex` in which some levels have mixed types, e.g. when some labels are tuples (:issue:`15457`)

IO
^^

- Bug in :func:`read_csv` in which a column specified with ``CategoricalDtype`` of boolean categories was not being correctly coerced from string values to booleans (:issue:`20498`)
- Bug in :func:`read_csv` in which unicode column names were not being properly recognized with Python 2.x (:issue:`13253`)
- Bug in :meth:`DataFrame.to_sql` when writing timezone aware data (``datetime64[ns, tz]`` dtype) would raise a ``TypeError`` (:issue:`9086`)
- Bug in :meth:`DataFrame.to_sql` where a naive :class:`DatetimeIndex` would be written as ``TIMESTAMP WITH TIMEZONE`` type in supported databases, e.g. PostgreSQL (:issue:`23510`)
- Bug in :meth:`read_excel()` when ``parse_cols`` is specified with an empty dataset (:issue:`9208`)
- :func:`read_html()` no longer ignores all-whitespace ``<tr>`` within ``<thead>`` when considering the ``skiprows`` and ``header`` arguments. Previously, users had to decrease their ``header`` and ``skiprows`` values on such tables to work around the issue. (:issue:`21641`)
- :func:`read_excel()` will correctly show the deprecation warning for previously deprecated ``sheetname`` (:issue:`17994`)
- :func:`read_csv()` and :func:`read_table()` will throw ``UnicodeError`` and not coredump on badly encoded strings (:issue:`22748`)
- :func:`read_csv()` will correctly parse timezone-aware datetimes (:issue:`22256`)
- Bug in :func:`read_csv()` in which memory management was prematurely optimized for the C engine when the data was being read in chunks (:issue:`23509`)
- Bug in :func:`read_csv()` in unnamed columns were being improperly identified when extracting a multi-index (:issue:`23687`)
- :func:`read_sas()` will parse numbers in sas7bdat-files that have width less than 8 bytes correctly. (:issue:`21616`)
- :func:`read_sas()` will correctly parse sas7bdat files with many columns (:issue:`22628`)
- :func:`read_sas()` will correctly parse sas7bdat files with data page types having also bit 7 set (so page type is 128 + 256 = 384) (:issue:`16615`)
- Bug in :func:`read_sas()` in which an incorrect error was raised on an invalid file format. (:issue:`24548`)
- Bug in :meth:`detect_client_encoding` where potential ``IOError`` goes unhandled when importing in a mod_wsgi process due to restricted access to stdout. (:issue:`21552`)
- Bug in :func:`DataFrame.to_html()` with ``index=False`` misses truncation indicators (...) on truncated DataFrame (:issue:`15019`, :issue:`22783`)
- Bug in :func:`DataFrame.to_html()` with ``index=False`` when both columns and row index are ``MultiIndex`` (:issue:`22579`)
- Bug in :func:`DataFrame.to_html()` with ``index_names=False`` displaying index name (:issue:`22747`)
- Bug in :func:`DataFrame.to_html()` with ``header=False`` not displaying row index names (:issue:`23788`)
- Bug in :func:`DataFrame.to_html()` with ``sparsify=False`` that caused it to raise ``TypeError`` (:issue:`22887`)
- Bug in :func:`DataFrame.to_string()` that broke column alignment when ``index=False`` and width of first column's values is greater than the width of first column's header (:issue:`16839`, :issue:`13032`)
- Bug in :func:`DataFrame.to_string()` that caused representations of :class:`DataFrame` to not take up the whole window (:issue:`22984`)
- Bug in :func:`DataFrame.to_csv` where a single level MultiIndex incorrectly wrote a tuple. Now just the value of the index is written (:issue:`19589`).
- :class:`HDFStore` will raise ``ValueError`` when the ``format`` kwarg is passed to the constructor (:issue:`13291`)
- Bug in :meth:`HDFStore.append` when appending a :class:`DataFrame` with an empty string column and ``min_itemsize`` < 8 (:issue:`12242`)
- Bug in :func:`read_csv()` in which memory leaks occurred in the C engine when parsing ``NaN`` values due to insufficient cleanup on completion or error (:issue:`21353`)
- Bug in :func:`read_csv()` in which incorrect error messages were being raised when ``skipfooter`` was passed in along with ``nrows``, ``iterator``, or ``chunksize`` (:issue:`23711`)
- Bug in :func:`read_csv()` in which :class:`MultiIndex` index names were being improperly handled in the cases when they were not provided (:issue:`23484`)
- Bug in :func:`read_csv()` in which unnecessary warnings were being raised when the dialect's values conflicted with the default arguments (:issue:`23761`)
- Bug in :func:`read_html()` in which the error message was not displaying the valid flavors when an invalid one was provided (:issue:`23549`)
- Bug in :meth:`read_excel()` in which extraneous header names were extracted, even though none were specified (:issue:`11733`)
- Bug in :meth:`read_excel()` in which column names were not being properly converted to string sometimes in Python 2.x (:issue:`23874`)
- Bug in :meth:`read_excel()` in which ``index_col=None`` was not being respected and parsing index columns anyway (:issue:`18792`, :issue:`20480`)
- Bug in :meth:`read_excel()` in which ``usecols`` was not being validated for proper column names when passed in as a string (:issue:`20480`)
- Bug in :meth:`DataFrame.to_dict` when the resulting dict contains non-Python scalars in the case of numeric data (:issue:`23753`)
- :func:`DataFrame.to_string()`, :func:`DataFrame.to_html()`, :func:`DataFrame.to_latex()` will correctly format output when a string is passed as the ``float_format`` argument (:issue:`21625`, :issue:`22270`)
- Bug in :func:`read_csv` that caused it to raise ``OverflowError`` when trying to use 'inf' as ``na_value`` with integer index column (:issue:`17128`)
- Bug in :func:`read_csv` that caused the C engine on Python 3.6+ on Windows to improperly read CSV filenames with accented or special characters (:issue:`15086`)
- Bug in :func:`read_fwf` in which the compression type of a file was not being properly inferred (:issue:`22199`)
- Bug in :func:`pandas.io.json.json_normalize` that caused it to raise ``TypeError`` when two consecutive elements of ``record_path`` are dicts (:issue:`22706`)
- Bug in :meth:`DataFrame.to_stata`, :class:`pandas.io.stata.StataWriter` and :class:`pandas.io.stata.StataWriter117` where a exception would leave a partially written and invalid dta file (:issue:`23573`)
- Bug in :meth:`DataFrame.to_stata` and :class:`pandas.io.stata.StataWriter117` that produced invalid files when using strLs with non-ASCII characters (:issue:`23573`)
- Bug in :class:`HDFStore` that caused it to raise ``ValueError`` when reading a Dataframe in Python 3 from fixed format written in Python 2 (:issue:`24510`)
- Bug in :func:`DataFrame.to_string()` and more generally in the floating ``repr`` formatter. Zeros were not trimmed if ``inf`` was present in a columns while it was the case with NA values. Zeros are now trimmed as in the presence of NA (:issue:`24861`).
- Bug in the ``repr`` when truncating the number of columns and having a wide last column (:issue:`24849`).

Plotting
^^^^^^^^

- Bug in :func:`DataFrame.plot.scatter` and :func:`DataFrame.plot.hexbin` caused x-axis label and ticklabels to disappear when colorbar was on in IPython inline backend (:issue:`10611`, :issue:`10678`, and :issue:`20455`)
- Bug in plotting a Series with datetimes using :func:`matplotlib.axes.Axes.scatter` (:issue:`22039`)
- Bug in :func:`DataFrame.plot.bar` caused bars to use multiple colors instead of a single one (:issue:`20585`)
- Bug in validating color parameter caused extra color to be appended to the given color array. This happened to multiple plotting functions using matplotlib. (:issue:`20726`)

GroupBy/resample/rolling
^^^^^^^^^^^^^^^^^^^^^^^^

- Bug in :func:`.Rolling.min` and :func:`.Rolling.max` with ``closed='left'``, a datetime-like index and only one entry in the series leading to segfault (:issue:`24718`)
- Bug in :func:`.GroupBy.first` and :func:`.GroupBy.last` with ``as_index=False`` leading to the loss of timezone information (:issue:`15884`)
- Bug in :meth:`DateFrame.resample` when downsampling across a DST boundary (:issue:`8531`)
- Bug in date anchoring for :meth:`DateFrame.resample` with offset :class:`Day` when n > 1 (:issue:`24127`)
- Bug where ``ValueError`` is wrongly raised when calling :func:`.SeriesGroupBy.count` method of a
  ``SeriesGroupBy`` when the grouping variable only contains NaNs and numpy version < 1.13 (:issue:`21956`).
- Multiple bugs in :func:`.Rolling.min` with ``closed='left'`` and a
  datetime-like index leading to incorrect results and also segfault. (:issue:`21704`)
- Bug in :meth:`.Resampler.apply` when passing positional arguments to applied func (:issue:`14615`).
- Bug in :meth:`Series.resample` when passing ``numpy.timedelta64`` to ``loffset`` kwarg (:issue:`7687`).
- Bug in :meth:`.Resampler.asfreq` when frequency of ``TimedeltaIndex`` is a subperiod of a new frequency (:issue:`13022`).
- Bug in :meth:`.SeriesGroupBy.mean` when values were integral but could not fit inside of int64, overflowing instead. (:issue:`22487`)
- :func:`.RollingGroupby.agg` and :func:`.ExpandingGroupby.agg` now support multiple aggregation functions as parameters (:issue:`15072`)
- Bug in :meth:`DataFrame.resample` and :meth:`Series.resample` when resampling by a weekly offset (``'W'``) across a DST transition (:issue:`9119`, :issue:`21459`)
- Bug in :meth:`DataFrame.expanding` in which the ``axis`` argument was not being respected during aggregations (:issue:`23372`)
- Bug in :meth:`.GroupBy.transform` which caused missing values when the input function can accept a :class:`DataFrame` but renames it (:issue:`23455`).
- Bug in :func:`.GroupBy.nth` where column order was not always preserved (:issue:`20760`)
- Bug in :meth:`.GroupBy.rank` with ``method='dense'`` and ``pct=True`` when a group has only one member would raise a ``ZeroDivisionError`` (:issue:`23666`).
- Calling :meth:`.GroupBy.rank` with empty groups and ``pct=True`` was raising a ``ZeroDivisionError`` (:issue:`22519`)
- Bug in :meth:`DataFrame.resample` when resampling ``NaT`` in ``TimeDeltaIndex`` (:issue:`13223`).
- Bug in :meth:`DataFrame.groupby` did not respect the ``observed`` argument when selecting a column and instead always used ``observed=False`` (:issue:`23970`)
- Bug in :func:`.SeriesGroupBy.pct_change` or :func:`.DataFrameGroupBy.pct_change` would previously work across groups when calculating the percent change, where it now correctly works per group (:issue:`21200`, :issue:`21235`).
- Bug preventing hash table creation with very large number (2^32) of rows (:issue:`22805`)
- Bug in groupby when grouping on categorical causes ``ValueError`` and incorrect grouping if ``observed=True`` and ``nan`` is present in categorical column (:issue:`24740`, :issue:`21151`).

Reshaping
^^^^^^^^^

- Bug in :func:`pandas.concat` when joining resampled DataFrames with timezone aware index (:issue:`13783`)
- Bug in :func:`pandas.concat` when joining only ``Series`` the ``names`` argument of ``concat`` is no longer ignored (:issue:`23490`)
- Bug in :meth:`Series.combine_first` with ``datetime64[ns, tz]`` dtype which would return tz-naive result (:issue:`21469`)
- Bug in :meth:`Series.where` and :meth:`DataFrame.where` with ``datetime64[ns, tz]`` dtype (:issue:`21546`)
- Bug in :meth:`DataFrame.where` with an empty DataFrame and empty ``cond`` having non-bool dtype (:issue:`21947`)
- Bug in :meth:`Series.mask` and :meth:`DataFrame.mask` with ``list`` conditionals (:issue:`21891`)
- Bug in :meth:`DataFrame.replace` raises RecursionError when converting OutOfBounds ``datetime64[ns, tz]`` (:issue:`20380`)
- :func:`.GroupBy.rank` now raises a ``ValueError`` when an invalid value is passed for argument ``na_option`` (:issue:`22124`)
- Bug in :func:`get_dummies` with Unicode attributes in Python 2 (:issue:`22084`)
- Bug in :meth:`DataFrame.replace` raises ``RecursionError`` when replacing empty lists (:issue:`22083`)
- Bug in :meth:`Series.replace` and :meth:`DataFrame.replace` when dict is used as the ``to_replace`` value and one key in the dict is another key's value, the results were inconsistent between using integer key and using string key (:issue:`20656`)
- Bug in :meth:`DataFrame.drop_duplicates` for empty ``DataFrame`` which incorrectly raises an error (:issue:`20516`)
- Bug in :func:`pandas.wide_to_long` when a string is passed to the stubnames argument and a column name is a substring of that stubname (:issue:`22468`)
- Bug in :func:`merge` when merging ``datetime64[ns, tz]`` data that contained a DST transition (:issue:`18885`)
- Bug in :func:`merge_asof` when merging on float values within defined tolerance (:issue:`22981`)
- Bug in :func:`pandas.concat` when concatenating a multicolumn DataFrame with tz-aware data against a DataFrame with a different number of columns (:issue:`22796`)
- Bug in :func:`merge_asof` where confusing error message raised when attempting to merge with missing values (:issue:`23189`)
- Bug in :meth:`DataFrame.nsmallest` and :meth:`DataFrame.nlargest` for dataframes that have a :class:`MultiIndex` for columns (:issue:`23033`).
- Bug in :func:`pandas.melt` when passing column names that are not present in ``DataFrame`` (:issue:`23575`)
- Bug in :meth:`DataFrame.append` with a :class:`Series` with a dateutil timezone would raise a ``TypeError`` (:issue:`23682`)
- Bug in :class:`Series` construction when passing no data and ``dtype=str`` (:issue:`22477`)
- Bug in :func:`cut` with ``bins`` as an overlapping ``IntervalIndex`` where multiple bins were returned per item instead of raising a ``ValueError`` (:issue:`23980`)
- Bug in :func:`pandas.concat` when joining ``Series`` datetimetz with ``Series`` category would lose timezone (:issue:`23816`)
- Bug in :meth:`DataFrame.join` when joining on partial MultiIndex would drop names (:issue:`20452`).
- :meth:`DataFrame.nlargest` and :meth:`DataFrame.nsmallest` now returns the correct n values when keep != 'all' also when tied on the first columns (:issue:`22752`)
- Constructing a DataFrame with an index argument that wasn't already an instance of :class:`.Index` was broken (:issue:`22227`).
- Bug in :class:`DataFrame` prevented list subclasses to be used to construction (:issue:`21226`)
- Bug in :func:`DataFrame.unstack` and :func:`DataFrame.pivot_table` returning a misleading error message when the resulting DataFrame has more elements than int32 can handle. Now, the error message is improved, pointing towards the actual problem (:issue:`20601`)
- Bug in :func:`DataFrame.unstack` where a ``ValueError`` was raised when unstacking timezone aware values (:issue:`18338`)
- Bug in :func:`DataFrame.stack` where timezone aware values were converted to timezone naive values (:issue:`19420`)
- Bug in :func:`merge_asof` where a ``TypeError`` was raised when ``by_col`` were timezone aware values (:issue:`21184`)
- Bug showing an incorrect shape when throwing error during ``DataFrame`` construction. (:issue:`20742`)

.. _whatsnew_0240.bug_fixes.sparse:

Sparse
^^^^^^

- Updating a boolean, datetime, or timedelta column to be Sparse now works (:issue:`22367`)
- Bug in :meth:`Series.to_sparse` with Series already holding sparse data not constructing properly (:issue:`22389`)
- Providing a ``sparse_index`` to the SparseArray constructor no longer defaults the na-value to ``np.nan`` for all dtypes. The correct na_value for ``data.dtype`` is now used.
- Bug in ``SparseArray.nbytes`` under-reporting its memory usage by not including the size of its sparse index.
- Improved performance of :meth:`Series.shift` for non-NA ``fill_value``, as values are no longer converted to a dense array.
- Bug in ``DataFrame.groupby`` not including ``fill_value`` in the groups for non-NA ``fill_value`` when grouping by a sparse column (:issue:`5078`)
- Bug in unary inversion operator (``~``) on a ``SparseSeries`` with boolean values. The performance of this has also been improved (:issue:`22835`)
- Bug in :meth:`SparseArary.unique` not returning the unique values (:issue:`19595`)
- Bug in :meth:`SparseArray.nonzero` and :meth:`SparseDataFrame.dropna` returning shifted/incorrect results (:issue:`21172`)
- Bug in :meth:`DataFrame.apply` where dtypes would lose sparseness (:issue:`23744`)
- Bug in :func:`concat` when concatenating a list of :class:`Series` with all-sparse values changing the ``fill_value`` and converting to a dense Series (:issue:`24371`)

Style
^^^^^

- :meth:`~pandas.io.formats.style.Styler.background_gradient` now takes a ``text_color_threshold`` parameter to automatically lighten the text color based on the luminance of the background color. This improves readability with dark background colors without the need to limit the background colormap range. (:issue:`21258`)
- :meth:`~pandas.io.formats.style.Styler.background_gradient` now also supports tablewise application (in addition to rowwise and columnwise) with ``axis=None`` (:issue:`15204`)
- :meth:`~pandas.io.formats.style.Styler.bar` now also supports tablewise application (in addition to rowwise and columnwise) with ``axis=None`` and setting clipping range with ``vmin`` and ``vmax`` (:issue:`21548` and :issue:`21526`). ``NaN`` values are also handled properly.

Build changes
^^^^^^^^^^^^^

- Building pandas for development now requires ``cython >= 0.28.2`` (:issue:`21688`)
- Testing pandas now requires ``hypothesis>=3.58``.  You can find `the Hypothesis docs here <https://hypothesis.readthedocs.io/en/latest/index.html>`_, and a pandas-specific introduction :ref:`in the contributing guide <using-hypothesis>`. (:issue:`22280`)
- Building pandas on macOS now targets minimum macOS 10.9 if run on macOS 10.9 or above (:issue:`23424`)

Other
^^^^^

- Bug where C variables were declared with external linkage causing import errors if certain other C libraries were imported before pandas. (:issue:`24113`)


.. _whatsnew_0.24.0.contributors:

Contributors
~~~~~~~~~~~~

.. contributors:: v0.23.4..v0.24.0