1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275
|
.. _whatsnew_0250:
What's new in 0.25.0 (July 18, 2019)
------------------------------------
.. warning::
Starting with the 0.25.x series of releases, pandas only supports Python 3.5.3 and higher.
See `Dropping Python 2.7 <https://pandas.pydata.org/pandas-docs/version/0.24/install.html#install-dropping-27>`_ for more details.
.. warning::
The minimum supported Python version will be bumped to 3.6 in a future release.
.. warning::
``Panel`` has been fully removed. For N-D labeled data structures, please
use `xarray <https://xarray.pydata.org/en/stable/>`_
.. warning::
:func:`read_pickle` and :func:`read_msgpack` are only guaranteed backwards compatible back to
pandas version 0.20.3 (:issue:`27082`)
{{ header }}
These are the changes in pandas 0.25.0. See :ref:`release` for a full changelog
including other versions of pandas.
Enhancements
~~~~~~~~~~~~
.. _whatsnew_0250.enhancements.agg_relabel:
GroupBy aggregation with relabeling
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
pandas has added special groupby behavior, known as "named aggregation", for naming the
output columns when applying multiple aggregation functions to specific columns (:issue:`18366`, :issue:`26512`).
.. ipython:: python
animals = pd.DataFrame({'kind': ['cat', 'dog', 'cat', 'dog'],
'height': [9.1, 6.0, 9.5, 34.0],
'weight': [7.9, 7.5, 9.9, 198.0]})
animals
animals.groupby("kind").agg(
min_height=pd.NamedAgg(column='height', aggfunc='min'),
max_height=pd.NamedAgg(column='height', aggfunc='max'),
average_weight=pd.NamedAgg(column='weight', aggfunc="mean"),
)
Pass the desired columns names as the ``**kwargs`` to ``.agg``. The values of ``**kwargs``
should be tuples where the first element is the column selection, and the second element is the
aggregation function to apply. pandas provides the ``pandas.NamedAgg`` namedtuple to make it clearer
what the arguments to the function are, but plain tuples are accepted as well.
.. ipython:: python
animals.groupby("kind").agg(
min_height=('height', 'min'),
max_height=('height', 'max'),
average_weight=('weight', 'mean'),
)
Named aggregation is the recommended replacement for the deprecated "dict-of-dicts"
approach to naming the output of column-specific aggregations (:ref:`whatsnew_0200.api_breaking.deprecate_group_agg_dict`).
A similar approach is now available for Series groupby objects as well. Because there's no need for
column selection, the values can just be the functions to apply
.. ipython:: python
animals.groupby("kind").height.agg(
min_height="min",
max_height="max",
)
This type of aggregation is the recommended alternative to the deprecated behavior when passing
a dict to a Series groupby aggregation (:ref:`whatsnew_0200.api_breaking.deprecate_group_agg_dict`).
See :ref:`groupby.aggregate.named` for more.
.. _whatsnew_0250.enhancements.multiple_lambdas:
GroupBy aggregation with multiple lambdas
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
You can now provide multiple lambda functions to a list-like aggregation in
:class:`.GroupBy.agg` (:issue:`26430`).
.. ipython:: python
animals.groupby('kind').height.agg([
lambda x: x.iloc[0], lambda x: x.iloc[-1]
])
animals.groupby('kind').agg([
lambda x: x.iloc[0] - x.iloc[1],
lambda x: x.iloc[0] + x.iloc[1]
])
Previously, these raised a ``SpecificationError``.
.. _whatsnew_0250.enhancements.multi_index_repr:
Better repr for MultiIndex
^^^^^^^^^^^^^^^^^^^^^^^^^^
Printing of :class:`MultiIndex` instances now shows tuples of each row and ensures
that the tuple items are vertically aligned, so it's now easier to understand
the structure of the ``MultiIndex``. (:issue:`13480`):
The repr now looks like this:
.. ipython:: python
pd.MultiIndex.from_product([['a', 'abc'], range(500)])
Previously, outputting a :class:`MultiIndex` printed all the ``levels`` and
``codes`` of the ``MultiIndex``, which was visually unappealing and made
the output more difficult to navigate. For example (limiting the range to 5):
.. code-block:: ipython
In [1]: pd.MultiIndex.from_product([['a', 'abc'], range(5)])
Out[1]: MultiIndex(levels=[['a', 'abc'], [0, 1, 2, 3]],
...: codes=[[0, 0, 0, 0, 1, 1, 1, 1], [0, 1, 2, 3, 0, 1, 2, 3]])
In the new repr, all values will be shown, if the number of rows is smaller
than :attr:`options.display.max_seq_items` (default: 100 items). Horizontally,
the output will truncate, if it's wider than :attr:`options.display.width`
(default: 80 characters).
.. _whatsnew_0250.enhancements.shorter_truncated_repr:
Shorter truncated repr for Series and DataFrame
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Currently, the default display options of pandas ensure that when a Series
or DataFrame has more than 60 rows, its repr gets truncated to this maximum
of 60 rows (the ``display.max_rows`` option). However, this still gives
a repr that takes up a large part of the vertical screen estate. Therefore,
a new option ``display.min_rows`` is introduced with a default of 10 which
determines the number of rows showed in the truncated repr:
- For small Series or DataFrames, up to ``max_rows`` number of rows is shown
(default: 60).
- For larger Series of DataFrame with a length above ``max_rows``, only
``min_rows`` number of rows is shown (default: 10, i.e. the first and last
5 rows).
This dual option allows to still see the full content of relatively small
objects (e.g. ``df.head(20)`` shows all 20 rows), while giving a brief repr
for large objects.
To restore the previous behaviour of a single threshold, set
``pd.options.display.min_rows = None``.
.. _whatsnew_0250.enhancements.json_normalize_with_max_level:
JSON normalize with max_level param support
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
:func:`json_normalize` normalizes the provided input dict to all
nested levels. The new max_level parameter provides more control over
which level to end normalization (:issue:`23843`):
The repr now looks like this:
.. code-block:: ipython
from pandas.io.json import json_normalize
data = [{
'CreatedBy': {'Name': 'User001'},
'Lookup': {'TextField': 'Some text',
'UserField': {'Id': 'ID001', 'Name': 'Name001'}},
'Image': {'a': 'b'}
}]
json_normalize(data, max_level=1)
.. _whatsnew_0250.enhancements.explode:
Series.explode to split list-like values to rows
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
:class:`Series` and :class:`DataFrame` have gained the :meth:`DataFrame.explode` methods to transform list-likes to individual rows. See :ref:`section on Exploding list-like column <reshaping.explode>` in docs for more information (:issue:`16538`, :issue:`10511`)
Here is a typical usecase. You have comma separated string in a column.
.. ipython:: python
df = pd.DataFrame([{'var1': 'a,b,c', 'var2': 1},
{'var1': 'd,e,f', 'var2': 2}])
df
Creating a long form ``DataFrame`` is now straightforward using chained operations
.. ipython:: python
df.assign(var1=df.var1.str.split(',')).explode('var1')
.. _whatsnew_0250.enhancements.other:
Other enhancements
^^^^^^^^^^^^^^^^^^
- :func:`DataFrame.plot` keywords ``logy``, ``logx`` and ``loglog`` can now accept the value ``'sym'`` for symlog scaling. (:issue:`24867`)
- Added support for ISO week year format ('%G-%V-%u') when parsing datetimes using :meth:`to_datetime` (:issue:`16607`)
- Indexing of ``DataFrame`` and ``Series`` now accepts zerodim ``np.ndarray`` (:issue:`24919`)
- :meth:`Timestamp.replace` now supports the ``fold`` argument to disambiguate DST transition times (:issue:`25017`)
- :meth:`DataFrame.at_time` and :meth:`Series.at_time` now support :class:`datetime.time` objects with timezones (:issue:`24043`)
- :meth:`DataFrame.pivot_table` now accepts an ``observed`` parameter which is passed to underlying calls to :meth:`DataFrame.groupby` to speed up grouping categorical data. (:issue:`24923`)
- ``Series.str`` has gained :meth:`Series.str.casefold` method to removes all case distinctions present in a string (:issue:`25405`)
- :meth:`DataFrame.set_index` now works for instances of ``abc.Iterator``, provided their output is of the same length as the calling frame (:issue:`22484`, :issue:`24984`)
- :meth:`DatetimeIndex.union` now supports the ``sort`` argument. The behavior of the sort parameter matches that of :meth:`Index.union` (:issue:`24994`)
- :meth:`RangeIndex.union` now supports the ``sort`` argument. If ``sort=False`` an unsorted ``Int64Index`` is always returned. ``sort=None`` is the default and returns a monotonically increasing ``RangeIndex`` if possible or a sorted ``Int64Index`` if not (:issue:`24471`)
- :meth:`TimedeltaIndex.intersection` now also supports the ``sort`` keyword (:issue:`24471`)
- :meth:`DataFrame.rename` now supports the ``errors`` argument to raise errors when attempting to rename nonexistent keys (:issue:`13473`)
- Added :ref:`api.frame.sparse` for working with a ``DataFrame`` whose values are sparse (:issue:`25681`)
- :class:`RangeIndex` has gained :attr:`~RangeIndex.start`, :attr:`~RangeIndex.stop`, and :attr:`~RangeIndex.step` attributes (:issue:`25710`)
- :class:`datetime.timezone` objects are now supported as arguments to timezone methods and constructors (:issue:`25065`)
- :meth:`DataFrame.query` and :meth:`DataFrame.eval` now supports quoting column names with backticks to refer to names with spaces (:issue:`6508`)
- :func:`merge_asof` now gives a more clear error message when merge keys are categoricals that are not equal (:issue:`26136`)
- :meth:`.Rolling` supports exponential (or Poisson) window type (:issue:`21303`)
- Error message for missing required imports now includes the original import error's text (:issue:`23868`)
- :class:`DatetimeIndex` and :class:`TimedeltaIndex` now have a ``mean`` method (:issue:`24757`)
- :meth:`DataFrame.describe` now formats integer percentiles without decimal point (:issue:`26660`)
- Added support for reading SPSS .sav files using :func:`read_spss` (:issue:`26537`)
- Added new option ``plotting.backend`` to be able to select a plotting backend different than the existing ``matplotlib`` one. Use ``pandas.set_option('plotting.backend', '<backend-module>')`` where ``<backend-module`` is a library implementing the pandas plotting API (:issue:`14130`)
- :class:`pandas.offsets.BusinessHour` supports multiple opening hours intervals (:issue:`15481`)
- :func:`read_excel` can now use ``openpyxl`` to read Excel files via the ``engine='openpyxl'`` argument. This will become the default in a future release (:issue:`11499`)
- :func:`pandas.io.excel.read_excel` supports reading OpenDocument tables. Specify ``engine='odf'`` to enable. Consult the :ref:`IO User Guide <io.ods>` for more details (:issue:`9070`)
- :class:`Interval`, :class:`IntervalIndex`, and :class:`~arrays.IntervalArray` have gained an :attr:`~Interval.is_empty` attribute denoting if the given interval(s) are empty (:issue:`27219`)
.. _whatsnew_0250.api_breaking:
Backwards incompatible API changes
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. _whatsnew_0250.api_breaking.utc_offset_indexing:
Indexing with date strings with UTC offsets
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Indexing a :class:`DataFrame` or :class:`Series` with a :class:`DatetimeIndex` with a
date string with a UTC offset would previously ignore the UTC offset. Now, the UTC offset
is respected in indexing. (:issue:`24076`, :issue:`16785`)
.. ipython:: python
df = pd.DataFrame([0], index=pd.DatetimeIndex(['2019-01-01'], tz='US/Pacific'))
df
*Previous behavior*:
.. code-block:: ipython
In [3]: df['2019-01-01 00:00:00+04:00':'2019-01-01 01:00:00+04:00']
Out[3]:
0
2019-01-01 00:00:00-08:00 0
*New behavior*:
.. ipython:: python
df['2019-01-01 12:00:00+04:00':'2019-01-01 13:00:00+04:00']
.. _whatsnew_0250.api_breaking.multi_indexing:
``MultiIndex`` constructed from levels and codes
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Constructing a :class:`MultiIndex` with ``NaN`` levels or codes value < -1 was allowed previously.
Now, construction with codes value < -1 is not allowed and ``NaN`` levels' corresponding codes
would be reassigned as -1. (:issue:`19387`)
*Previous behavior*:
.. code-block:: ipython
In [1]: pd.MultiIndex(levels=[[np.nan, None, pd.NaT, 128, 2]],
...: codes=[[0, -1, 1, 2, 3, 4]])
...:
Out[1]: MultiIndex(levels=[[nan, None, NaT, 128, 2]],
codes=[[0, -1, 1, 2, 3, 4]])
In [2]: pd.MultiIndex(levels=[[1, 2]], codes=[[0, -2]])
Out[2]: MultiIndex(levels=[[1, 2]],
codes=[[0, -2]])
*New behavior*:
.. ipython:: python
:okexcept:
pd.MultiIndex(levels=[[np.nan, None, pd.NaT, 128, 2]],
codes=[[0, -1, 1, 2, 3, 4]])
pd.MultiIndex(levels=[[1, 2]], codes=[[0, -2]])
.. _whatsnew_0250.api_breaking.groupby_apply_first_group_once:
``GroupBy.apply`` on ``DataFrame`` evaluates first group only once
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
The implementation of :meth:`.DataFrameGroupBy.apply`
previously evaluated the supplied function consistently twice on the first group
to infer if it is safe to use a fast code path. Particularly for functions with
side effects, this was an undesired behavior and may have led to surprises. (:issue:`2936`, :issue:`2656`, :issue:`7739`, :issue:`10519`, :issue:`12155`, :issue:`20084`, :issue:`21417`)
Now every group is evaluated only a single time.
.. ipython:: python
df = pd.DataFrame({"a": ["x", "y"], "b": [1, 2]})
df
def func(group):
print(group.name)
return group
*Previous behavior*:
.. code-block:: python
In [3]: df.groupby('a').apply(func)
x
x
y
Out[3]:
a b
0 x 1
1 y 2
*New behavior*:
.. code-block:: python
In [3]: df.groupby('a').apply(func)
x
y
Out[3]:
a b
0 x 1
1 y 2
Concatenating sparse values
^^^^^^^^^^^^^^^^^^^^^^^^^^^
When passed DataFrames whose values are sparse, :func:`concat` will now return a
:class:`Series` or :class:`DataFrame` with sparse values, rather than a :class:`SparseDataFrame` (:issue:`25702`).
.. ipython:: python
df = pd.DataFrame({"A": pd.arrays.SparseArray([0, 1])})
*Previous behavior*:
.. code-block:: ipython
In [2]: type(pd.concat([df, df]))
pandas.core.sparse.frame.SparseDataFrame
*New behavior*:
.. ipython:: python
type(pd.concat([df, df]))
This now matches the existing behavior of :class:`concat` on ``Series`` with sparse values.
:func:`concat` will continue to return a ``SparseDataFrame`` when all the values
are instances of ``SparseDataFrame``.
This change also affects routines using :func:`concat` internally, like :func:`get_dummies`,
which now returns a :class:`DataFrame` in all cases (previously a ``SparseDataFrame`` was
returned if all the columns were dummy encoded, and a :class:`DataFrame` otherwise).
Providing any ``SparseSeries`` or ``SparseDataFrame`` to :func:`concat` will
cause a ``SparseSeries`` or ``SparseDataFrame`` to be returned, as before.
The ``.str``-accessor performs stricter type checks
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Due to the lack of more fine-grained dtypes, :attr:`Series.str` so far only checked whether the data was
of ``object`` dtype. :attr:`Series.str` will now infer the dtype data *within* the Series; in particular,
``'bytes'``-only data will raise an exception (except for :meth:`Series.str.decode`, :meth:`Series.str.get`,
:meth:`Series.str.len`, :meth:`Series.str.slice`), see :issue:`23163`, :issue:`23011`, :issue:`23551`.
*Previous behavior*:
.. code-block:: python
In [1]: s = pd.Series(np.array(['a', 'ba', 'cba'], 'S'), dtype=object)
In [2]: s
Out[2]:
0 b'a'
1 b'ba'
2 b'cba'
dtype: object
In [3]: s.str.startswith(b'a')
Out[3]:
0 True
1 False
2 False
dtype: bool
*New behavior*:
.. ipython:: python
:okexcept:
s = pd.Series(np.array(['a', 'ba', 'cba'], 'S'), dtype=object)
s
s.str.startswith(b'a')
.. _whatsnew_0250.api_breaking.groupby_categorical:
Categorical dtypes are preserved during GroupBy
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Previously, columns that were categorical, but not the groupby key(s) would be converted to ``object`` dtype during groupby operations. pandas now will preserve these dtypes. (:issue:`18502`)
.. ipython:: python
cat = pd.Categorical(["foo", "bar", "bar", "qux"], ordered=True)
df = pd.DataFrame({'payload': [-1, -2, -1, -2], 'col': cat})
df
df.dtypes
*Previous Behavior*:
.. code-block:: python
In [5]: df.groupby('payload').first().col.dtype
Out[5]: dtype('O')
*New Behavior*:
.. ipython:: python
df.groupby('payload').first().col.dtype
.. _whatsnew_0250.api_breaking.incompatible_index_unions:
Incompatible Index type unions
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
When performing :func:`Index.union` operations between objects of incompatible dtypes,
the result will be a base :class:`Index` of dtype ``object``. This behavior holds true for
unions between :class:`Index` objects that previously would have been prohibited. The dtype
of empty :class:`Index` objects will now be evaluated before performing union operations
rather than simply returning the other :class:`Index` object. :func:`Index.union` can now be
considered commutative, such that ``A.union(B) == B.union(A)`` (:issue:`23525`).
*Previous behavior*:
.. code-block:: python
In [1]: pd.period_range('19910905', periods=2).union(pd.Int64Index([1, 2, 3]))
...
ValueError: can only call with other PeriodIndex-ed objects
In [2]: pd.Index([], dtype=object).union(pd.Index([1, 2, 3]))
Out[2]: Int64Index([1, 2, 3], dtype='int64')
*New behavior*:
.. code-block:: python
In [3]: pd.period_range('19910905', periods=2).union(pd.Int64Index([1, 2, 3]))
Out[3]: Index([1991-09-05, 1991-09-06, 1, 2, 3], dtype='object')
In [4]: pd.Index([], dtype=object).union(pd.Index([1, 2, 3]))
Out[4]: Index([1, 2, 3], dtype='object')
Note that integer- and floating-dtype indexes are considered "compatible". The integer
values are coerced to floating point, which may result in loss of precision. See
:ref:`indexing.set_ops` for more.
``DataFrame`` GroupBy ffill/bfill no longer return group labels
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
The methods ``ffill``, ``bfill``, ``pad`` and ``backfill`` of
:class:`.DataFrameGroupBy`
previously included the group labels in the return value, which was
inconsistent with other groupby transforms. Now only the filled values
are returned. (:issue:`21521`)
.. ipython:: python
df = pd.DataFrame({"a": ["x", "y"], "b": [1, 2]})
df
*Previous behavior*:
.. code-block:: python
In [3]: df.groupby("a").ffill()
Out[3]:
a b
0 x 1
1 y 2
*New behavior*:
.. ipython:: python
df.groupby("a").ffill()
``DataFrame`` describe on an empty Categorical / object column will return top and freq
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
When calling :meth:`DataFrame.describe` with an empty categorical / object
column, the 'top' and 'freq' columns were previously omitted, which was inconsistent with
the output for non-empty columns. Now the 'top' and 'freq' columns will always be included,
with :attr:`numpy.nan` in the case of an empty :class:`DataFrame` (:issue:`26397`)
.. ipython:: python
df = pd.DataFrame({"empty_col": pd.Categorical([])})
df
*Previous behavior*:
.. code-block:: python
In [3]: df.describe()
Out[3]:
empty_col
count 0
unique 0
*New behavior*:
.. ipython:: python
df.describe()
``__str__`` methods now call ``__repr__`` rather than vice versa
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
pandas has until now mostly defined string representations in a pandas objects'
``__str__``/``__unicode__``/``__bytes__`` methods, and called ``__str__`` from the ``__repr__``
method, if a specific ``__repr__`` method is not found. This is not needed for Python3.
In pandas 0.25, the string representations of pandas objects are now generally
defined in ``__repr__``, and calls to ``__str__`` in general now pass the call on to
the ``__repr__``, if a specific ``__str__`` method doesn't exist, as is standard for Python.
This change is backward compatible for direct usage of pandas, but if you subclass
pandas objects *and* give your subclasses specific ``__str__``/``__repr__`` methods,
you may have to adjust your ``__str__``/``__repr__`` methods (:issue:`26495`).
.. _whatsnew_0250.api_breaking.interval_indexing:
Indexing an ``IntervalIndex`` with ``Interval`` objects
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Indexing methods for :class:`IntervalIndex` have been modified to require exact matches only for :class:`Interval` queries.
``IntervalIndex`` methods previously matched on any overlapping ``Interval``. Behavior with scalar points, e.g. querying
with an integer, is unchanged (:issue:`16316`).
.. ipython:: python
ii = pd.IntervalIndex.from_tuples([(0, 4), (1, 5), (5, 8)])
ii
The ``in`` operator (``__contains__``) now only returns ``True`` for exact matches to ``Intervals`` in the ``IntervalIndex``, whereas
this would previously return ``True`` for any ``Interval`` overlapping an ``Interval`` in the ``IntervalIndex``.
*Previous behavior*:
.. code-block:: python
In [4]: pd.Interval(1, 2, closed='neither') in ii
Out[4]: True
In [5]: pd.Interval(-10, 10, closed='both') in ii
Out[5]: True
*New behavior*:
.. ipython:: python
pd.Interval(1, 2, closed='neither') in ii
pd.Interval(-10, 10, closed='both') in ii
The :meth:`~IntervalIndex.get_loc` method now only returns locations for exact matches to ``Interval`` queries, as opposed to the previous behavior of
returning locations for overlapping matches. A ``KeyError`` will be raised if an exact match is not found.
*Previous behavior*:
.. code-block:: python
In [6]: ii.get_loc(pd.Interval(1, 5))
Out[6]: array([0, 1])
In [7]: ii.get_loc(pd.Interval(2, 6))
Out[7]: array([0, 1, 2])
*New behavior*:
.. code-block:: python
In [6]: ii.get_loc(pd.Interval(1, 5))
Out[6]: 1
In [7]: ii.get_loc(pd.Interval(2, 6))
---------------------------------------------------------------------------
KeyError: Interval(2, 6, closed='right')
Likewise, :meth:`~IntervalIndex.get_indexer` and :meth:`~IntervalIndex.get_indexer_non_unique` will also only return locations for exact matches
to ``Interval`` queries, with ``-1`` denoting that an exact match was not found.
These indexing changes extend to querying a :class:`Series` or :class:`DataFrame` with an ``IntervalIndex`` index.
.. ipython:: python
s = pd.Series(list('abc'), index=ii)
s
Selecting from a ``Series`` or ``DataFrame`` using ``[]`` (``__getitem__``) or ``loc`` now only returns exact matches for ``Interval`` queries.
*Previous behavior*:
.. code-block:: python
In [8]: s[pd.Interval(1, 5)]
Out[8]:
(0, 4] a
(1, 5] b
dtype: object
In [9]: s.loc[pd.Interval(1, 5)]
Out[9]:
(0, 4] a
(1, 5] b
dtype: object
*New behavior*:
.. ipython:: python
s[pd.Interval(1, 5)]
s.loc[pd.Interval(1, 5)]
Similarly, a ``KeyError`` will be raised for non-exact matches instead of returning overlapping matches.
*Previous behavior*:
.. code-block:: python
In [9]: s[pd.Interval(2, 3)]
Out[9]:
(0, 4] a
(1, 5] b
dtype: object
In [10]: s.loc[pd.Interval(2, 3)]
Out[10]:
(0, 4] a
(1, 5] b
dtype: object
*New behavior*:
.. code-block:: python
In [6]: s[pd.Interval(2, 3)]
---------------------------------------------------------------------------
KeyError: Interval(2, 3, closed='right')
In [7]: s.loc[pd.Interval(2, 3)]
---------------------------------------------------------------------------
KeyError: Interval(2, 3, closed='right')
The :meth:`~IntervalIndex.overlaps` method can be used to create a boolean indexer that replicates the
previous behavior of returning overlapping matches.
*New behavior*:
.. ipython:: python
idxr = s.index.overlaps(pd.Interval(2, 3))
idxr
s[idxr]
s.loc[idxr]
.. _whatsnew_0250.api_breaking.ufunc:
Binary ufuncs on Series now align
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Applying a binary ufunc like :func:`numpy.power` now aligns the inputs
when both are :class:`Series` (:issue:`23293`).
.. ipython:: python
s1 = pd.Series([1, 2, 3], index=['a', 'b', 'c'])
s2 = pd.Series([3, 4, 5], index=['d', 'c', 'b'])
s1
s2
*Previous behavior*
.. code-block:: ipython
In [5]: np.power(s1, s2)
Out[5]:
a 1
b 16
c 243
dtype: int64
*New behavior*
.. ipython:: python
np.power(s1, s2)
This matches the behavior of other binary operations in pandas, like :meth:`Series.add`.
To retain the previous behavior, convert the other ``Series`` to an array before
applying the ufunc.
.. ipython:: python
np.power(s1, s2.array)
Categorical.argsort now places missing values at the end
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
:meth:`Categorical.argsort` now places missing values at the end of the array, making it
consistent with NumPy and the rest of pandas (:issue:`21801`).
.. ipython:: python
cat = pd.Categorical(['b', None, 'a'], categories=['a', 'b'], ordered=True)
*Previous behavior*
.. code-block:: ipython
In [2]: cat = pd.Categorical(['b', None, 'a'], categories=['a', 'b'], ordered=True)
In [3]: cat.argsort()
Out[3]: array([1, 2, 0])
In [4]: cat[cat.argsort()]
Out[4]:
[NaN, a, b]
categories (2, object): [a < b]
*New behavior*
.. ipython:: python
cat.argsort()
cat[cat.argsort()]
.. _whatsnew_0250.api_breaking.list_of_dict:
Column order is preserved when passing a list of dicts to DataFrame
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Starting with Python 3.7 the key-order of ``dict`` is `guaranteed <https://mail.python.org/pipermail/python-dev/2017-December/151283.html>`_. In practice, this has been true since
Python 3.6. The :class:`DataFrame` constructor now treats a list of dicts in the same way as
it does a list of ``OrderedDict``, i.e. preserving the order of the dicts.
This change applies only when pandas is running on Python>=3.6 (:issue:`27309`).
.. ipython:: python
data = [
{'name': 'Joe', 'state': 'NY', 'age': 18},
{'name': 'Jane', 'state': 'KY', 'age': 19, 'hobby': 'Minecraft'},
{'name': 'Jean', 'state': 'OK', 'age': 20, 'finances': 'good'}
]
*Previous Behavior*:
The columns were lexicographically sorted previously,
.. code-block:: python
In [1]: pd.DataFrame(data)
Out[1]:
age finances hobby name state
0 18 NaN NaN Joe NY
1 19 NaN Minecraft Jane KY
2 20 good NaN Jean OK
*New Behavior*:
The column order now matches the insertion-order of the keys in the ``dict``,
considering all the records from top to bottom. As a consequence, the column
order of the resulting DataFrame has changed compared to previous pandas versions.
.. ipython:: python
pd.DataFrame(data)
.. _whatsnew_0250.api_breaking.deps:
Increased minimum versions for dependencies
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Due to dropping support for Python 2.7, a number of optional dependencies have updated minimum versions (:issue:`25725`, :issue:`24942`, :issue:`25752`).
Independently, some minimum supported versions of dependencies were updated (:issue:`23519`, :issue:`25554`).
If installed, we now require:
+-----------------+-----------------+----------+
| Package | Minimum Version | Required |
+=================+=================+==========+
| numpy | 1.13.3 | X |
+-----------------+-----------------+----------+
| pytz | 2015.4 | X |
+-----------------+-----------------+----------+
| python-dateutil | 2.6.1 | X |
+-----------------+-----------------+----------+
| bottleneck | 1.2.1 | |
+-----------------+-----------------+----------+
| numexpr | 2.6.2 | |
+-----------------+-----------------+----------+
| pytest (dev) | 4.0.2 | |
+-----------------+-----------------+----------+
For `optional libraries <https://pandas.pydata.org/docs/getting_started/install.html>`_ the general recommendation is to use the latest version.
The following table lists the lowest version per library that is currently being tested throughout the development of pandas.
Optional libraries below the lowest tested version may still work, but are not considered supported.
+-----------------+-----------------+
| Package | Minimum Version |
+=================+=================+
| beautifulsoup4 | 4.6.0 |
+-----------------+-----------------+
| fastparquet | 0.2.1 |
+-----------------+-----------------+
| gcsfs | 0.2.2 |
+-----------------+-----------------+
| lxml | 3.8.0 |
+-----------------+-----------------+
| matplotlib | 2.2.2 |
+-----------------+-----------------+
| openpyxl | 2.4.8 |
+-----------------+-----------------+
| pyarrow | 0.9.0 |
+-----------------+-----------------+
| pymysql | 0.7.1 |
+-----------------+-----------------+
| pytables | 3.4.2 |
+-----------------+-----------------+
| scipy | 0.19.0 |
+-----------------+-----------------+
| sqlalchemy | 1.1.4 |
+-----------------+-----------------+
| xarray | 0.8.2 |
+-----------------+-----------------+
| xlrd | 1.1.0 |
+-----------------+-----------------+
| xlsxwriter | 0.9.8 |
+-----------------+-----------------+
| xlwt | 1.2.0 |
+-----------------+-----------------+
See :ref:`install.dependencies` and :ref:`install.optional_dependencies` for more.
.. _whatsnew_0250.api.other:
Other API changes
^^^^^^^^^^^^^^^^^
- :class:`DatetimeTZDtype` will now standardize pytz timezones to a common timezone instance (:issue:`24713`)
- :class:`Timestamp` and :class:`Timedelta` scalars now implement the :meth:`to_numpy` method as aliases to :meth:`Timestamp.to_datetime64` and :meth:`Timedelta.to_timedelta64`, respectively. (:issue:`24653`)
- :meth:`Timestamp.strptime` will now rise a ``NotImplementedError`` (:issue:`25016`)
- Comparing :class:`Timestamp` with unsupported objects now returns :py:obj:`NotImplemented` instead of raising ``TypeError``. This implies that unsupported rich comparisons are delegated to the other object, and are now consistent with Python 3 behavior for ``datetime`` objects (:issue:`24011`)
- Bug in :meth:`DatetimeIndex.snap` which didn't preserving the ``name`` of the input :class:`Index` (:issue:`25575`)
- The ``arg`` argument in :meth:`.DataFrameGroupBy.agg` has been renamed to ``func`` (:issue:`26089`)
- The ``arg`` argument in :meth:`.Window.aggregate` has been renamed to ``func`` (:issue:`26372`)
- Most pandas classes had a ``__bytes__`` method, which was used for getting a python2-style bytestring representation of the object. This method has been removed as a part of dropping Python2 (:issue:`26447`)
- The ``.str``-accessor has been disabled for 1-level :class:`MultiIndex`, use :meth:`MultiIndex.to_flat_index` if necessary (:issue:`23679`)
- Removed support of gtk package for clipboards (:issue:`26563`)
- Using an unsupported version of Beautiful Soup 4 will now raise an ``ImportError`` instead of a ``ValueError`` (:issue:`27063`)
- :meth:`Series.to_excel` and :meth:`DataFrame.to_excel` will now raise a ``ValueError`` when saving timezone aware data. (:issue:`27008`, :issue:`7056`)
- :meth:`ExtensionArray.argsort` places NA values at the end of the sorted array. (:issue:`21801`)
- :meth:`DataFrame.to_hdf` and :meth:`Series.to_hdf` will now raise a ``NotImplementedError`` when saving a :class:`MultiIndex` with extension data types for a ``fixed`` format. (:issue:`7775`)
- Passing duplicate ``names`` in :meth:`read_csv` will now raise a ``ValueError`` (:issue:`17346`)
.. _whatsnew_0250.deprecations:
Deprecations
~~~~~~~~~~~~
Sparse subclasses
^^^^^^^^^^^^^^^^^
The ``SparseSeries`` and ``SparseDataFrame`` subclasses are deprecated. Their functionality is better-provided
by a ``Series`` or ``DataFrame`` with sparse values.
**Previous way**
.. code-block:: python
df = pd.SparseDataFrame({"A": [0, 0, 1, 2]})
df.dtypes
**New way**
.. ipython:: python
df = pd.DataFrame({"A": pd.arrays.SparseArray([0, 0, 1, 2])})
df.dtypes
The memory usage of the two approaches is identical (:issue:`19239`).
msgpack format
^^^^^^^^^^^^^^
The msgpack format is deprecated as of 0.25 and will be removed in a future version. It is recommended to use pyarrow for on-the-wire transmission of pandas objects. (:issue:`27084`)
Other deprecations
^^^^^^^^^^^^^^^^^^
- The deprecated ``.ix[]`` indexer now raises a more visible ``FutureWarning`` instead of ``DeprecationWarning`` (:issue:`26438`).
- Deprecated the ``units=M`` (months) and ``units=Y`` (year) parameters for ``units`` of :func:`pandas.to_timedelta`, :func:`pandas.Timedelta` and :func:`pandas.TimedeltaIndex` (:issue:`16344`)
- :meth:`pandas.concat` has deprecated the ``join_axes``-keyword. Instead, use :meth:`DataFrame.reindex` or :meth:`DataFrame.reindex_like` on the result or on the inputs (:issue:`21951`)
- The :attr:`SparseArray.values` attribute is deprecated. You can use ``np.asarray(...)`` or
the :meth:`SparseArray.to_dense` method instead (:issue:`26421`).
- The functions :func:`pandas.to_datetime` and :func:`pandas.to_timedelta` have deprecated the ``box`` keyword. Instead, use :meth:`to_numpy` or :meth:`Timestamp.to_datetime64` or :meth:`Timedelta.to_timedelta64`. (:issue:`24416`)
- The :meth:`DataFrame.compound` and :meth:`Series.compound` methods are deprecated and will be removed in a future version (:issue:`26405`).
- The internal attributes ``_start``, ``_stop`` and ``_step`` attributes of :class:`RangeIndex` have been deprecated.
Use the public attributes :attr:`~RangeIndex.start`, :attr:`~RangeIndex.stop` and :attr:`~RangeIndex.step` instead (:issue:`26581`).
- The :meth:`Series.ftype`, :meth:`Series.ftypes` and :meth:`DataFrame.ftypes` methods are deprecated and will be removed in a future version.
Instead, use :meth:`Series.dtype` and :meth:`DataFrame.dtypes` (:issue:`26705`).
- The :meth:`Series.get_values`, :meth:`DataFrame.get_values`, :meth:`Index.get_values`,
:meth:`SparseArray.get_values` and :meth:`Categorical.get_values` methods are deprecated.
One of ``np.asarray(..)`` or :meth:`~Series.to_numpy` can be used instead (:issue:`19617`).
- The 'outer' method on NumPy ufuncs, e.g. ``np.subtract.outer`` has been deprecated on :class:`Series` objects. Convert the input to an array with :attr:`Series.array` first (:issue:`27186`)
- :meth:`Timedelta.resolution` is deprecated and replaced with :meth:`Timedelta.resolution_string`. In a future version, :meth:`Timedelta.resolution` will be changed to behave like the standard library :attr:`datetime.timedelta.resolution` (:issue:`21344`)
- :func:`read_table` has been undeprecated. (:issue:`25220`)
- :attr:`Index.dtype_str` is deprecated. (:issue:`18262`)
- :attr:`Series.imag` and :attr:`Series.real` are deprecated. (:issue:`18262`)
- :meth:`Series.put` is deprecated. (:issue:`18262`)
- :meth:`Index.item` and :meth:`Series.item` is deprecated. (:issue:`18262`)
- The default value ``ordered=None`` in :class:`~pandas.api.types.CategoricalDtype` has been deprecated in favor of ``ordered=False``. When converting between categorical types ``ordered=True`` must be explicitly passed in order to be preserved. (:issue:`26336`)
- :meth:`Index.contains` is deprecated. Use ``key in index`` (``__contains__``) instead (:issue:`17753`).
- :meth:`DataFrame.get_dtype_counts` is deprecated. (:issue:`18262`)
- :meth:`Categorical.ravel` will return a :class:`Categorical` instead of a ``np.ndarray`` (:issue:`27199`)
.. _whatsnew_0250.prior_deprecations:
Removal of prior version deprecations/changes
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
- Removed ``Panel`` (:issue:`25047`, :issue:`25191`, :issue:`25231`)
- Removed the previously deprecated ``sheetname`` keyword in :func:`read_excel` (:issue:`16442`, :issue:`20938`)
- Removed the previously deprecated ``TimeGrouper`` (:issue:`16942`)
- Removed the previously deprecated ``parse_cols`` keyword in :func:`read_excel` (:issue:`16488`)
- Removed the previously deprecated ``pd.options.html.border`` (:issue:`16970`)
- Removed the previously deprecated ``convert_objects`` (:issue:`11221`)
- Removed the previously deprecated ``select`` method of ``DataFrame`` and ``Series`` (:issue:`17633`)
- Removed the previously deprecated behavior of :class:`Series` treated as list-like in :meth:`~Series.cat.rename_categories` (:issue:`17982`)
- Removed the previously deprecated ``DataFrame.reindex_axis`` and ``Series.reindex_axis`` (:issue:`17842`)
- Removed the previously deprecated behavior of altering column or index labels with :meth:`Series.rename_axis` or :meth:`DataFrame.rename_axis` (:issue:`17842`)
- Removed the previously deprecated ``tupleize_cols`` keyword argument in :meth:`read_html`, :meth:`read_csv`, and :meth:`DataFrame.to_csv` (:issue:`17877`, :issue:`17820`)
- Removed the previously deprecated ``DataFrame.from.csv`` and ``Series.from_csv`` (:issue:`17812`)
- Removed the previously deprecated ``raise_on_error`` keyword argument in :meth:`DataFrame.where` and :meth:`DataFrame.mask` (:issue:`17744`)
- Removed the previously deprecated ``ordered`` and ``categories`` keyword arguments in ``astype`` (:issue:`17742`)
- Removed the previously deprecated ``cdate_range`` (:issue:`17691`)
- Removed the previously deprecated ``True`` option for the ``dropna`` keyword argument in :func:`SeriesGroupBy.nth` (:issue:`17493`)
- Removed the previously deprecated ``convert`` keyword argument in :meth:`Series.take` and :meth:`DataFrame.take` (:issue:`17352`)
- Removed the previously deprecated behavior of arithmetic operations with ``datetime.date`` objects (:issue:`21152`)
.. _whatsnew_0250.performance:
Performance improvements
~~~~~~~~~~~~~~~~~~~~~~~~
- Significant speedup in :class:`SparseArray` initialization that benefits most operations, fixing performance regression introduced in v0.20.0 (:issue:`24985`)
- :meth:`DataFrame.to_stata()` is now faster when outputting data with any string or non-native endian columns (:issue:`25045`)
- Improved performance of :meth:`Series.searchsorted`. The speedup is especially large when the dtype is
int8/int16/int32 and the searched key is within the integer bounds for the dtype (:issue:`22034`)
- Improved performance of :meth:`.GroupBy.quantile` (:issue:`20405`)
- Improved performance of slicing and other selected operation on a :class:`RangeIndex` (:issue:`26565`, :issue:`26617`, :issue:`26722`)
- :class:`RangeIndex` now performs standard lookup without instantiating an actual hashtable, hence saving memory (:issue:`16685`)
- Improved performance of :meth:`read_csv` by faster tokenizing and faster parsing of small float numbers (:issue:`25784`)
- Improved performance of :meth:`read_csv` by faster parsing of N/A and boolean values (:issue:`25804`)
- Improved performance of :attr:`IntervalIndex.is_monotonic`, :attr:`IntervalIndex.is_monotonic_increasing` and :attr:`IntervalIndex.is_monotonic_decreasing` by removing conversion to :class:`MultiIndex` (:issue:`24813`)
- Improved performance of :meth:`DataFrame.to_csv` when writing datetime dtypes (:issue:`25708`)
- Improved performance of :meth:`read_csv` by much faster parsing of ``MM/YYYY`` and ``DD/MM/YYYY`` datetime formats (:issue:`25922`)
- Improved performance of nanops for dtypes that cannot store NaNs. Speedup is particularly prominent for :meth:`Series.all` and :meth:`Series.any` (:issue:`25070`)
- Improved performance of :meth:`Series.map` for dictionary mappers on categorical series by mapping the categories instead of mapping all values (:issue:`23785`)
- Improved performance of :meth:`IntervalIndex.intersection` (:issue:`24813`)
- Improved performance of :meth:`read_csv` by faster concatenating date columns without extra conversion to string for integer/float zero and float ``NaN``; by faster checking the string for the possibility of being a date (:issue:`25754`)
- Improved performance of :attr:`IntervalIndex.is_unique` by removing conversion to ``MultiIndex`` (:issue:`24813`)
- Restored performance of :meth:`DatetimeIndex.__iter__` by re-enabling specialized code path (:issue:`26702`)
- Improved performance when building :class:`MultiIndex` with at least one :class:`CategoricalIndex` level (:issue:`22044`)
- Improved performance by removing the need for a garbage collect when checking for ``SettingWithCopyWarning`` (:issue:`27031`)
- For :meth:`to_datetime` changed default value of cache parameter to ``True`` (:issue:`26043`)
- Improved performance of :class:`DatetimeIndex` and :class:`PeriodIndex` slicing given non-unique, monotonic data (:issue:`27136`).
- Improved performance of :meth:`pd.read_json` for index-oriented data. (:issue:`26773`)
- Improved performance of :meth:`MultiIndex.shape` (:issue:`27384`).
.. _whatsnew_0250.bug_fixes:
Bug fixes
~~~~~~~~~
Categorical
^^^^^^^^^^^
- Bug in :func:`DataFrame.at` and :func:`Series.at` that would raise exception if the index was a :class:`CategoricalIndex` (:issue:`20629`)
- Fixed bug in comparison of ordered :class:`Categorical` that contained missing values with a scalar which sometimes incorrectly resulted in ``True`` (:issue:`26504`)
- Bug in :meth:`DataFrame.dropna` when the :class:`DataFrame` has a :class:`CategoricalIndex` containing :class:`Interval` objects incorrectly raised a ``TypeError`` (:issue:`25087`)
Datetimelike
^^^^^^^^^^^^
- Bug in :func:`to_datetime` which would raise an (incorrect) ``ValueError`` when called with a date far into the future and the ``format`` argument specified instead of raising ``OutOfBoundsDatetime`` (:issue:`23830`)
- Bug in :func:`to_datetime` which would raise ``InvalidIndexError: Reindexing only valid with uniquely valued Index objects`` when called with ``cache=True``, with ``arg`` including at least two different elements from the set ``{None, numpy.nan, pandas.NaT}`` (:issue:`22305`)
- Bug in :class:`DataFrame` and :class:`Series` where timezone aware data with ``dtype='datetime64[ns]`` was not cast to naive (:issue:`25843`)
- Improved :class:`Timestamp` type checking in various datetime functions to prevent exceptions when using a subclassed ``datetime`` (:issue:`25851`)
- Bug in :class:`Series` and :class:`DataFrame` repr where ``np.datetime64('NaT')`` and ``np.timedelta64('NaT')`` with ``dtype=object`` would be represented as ``NaN`` (:issue:`25445`)
- Bug in :func:`to_datetime` which does not replace the invalid argument with ``NaT`` when error is set to coerce (:issue:`26122`)
- Bug in adding :class:`DateOffset` with nonzero month to :class:`DatetimeIndex` would raise ``ValueError`` (:issue:`26258`)
- Bug in :func:`to_datetime` which raises unhandled ``OverflowError`` when called with mix of invalid dates and ``NaN`` values with ``format='%Y%m%d'`` and ``error='coerce'`` (:issue:`25512`)
- Bug in :meth:`isin` for datetimelike indexes; :class:`DatetimeIndex`, :class:`TimedeltaIndex` and :class:`PeriodIndex` where the ``levels`` parameter was ignored. (:issue:`26675`)
- Bug in :func:`to_datetime` which raises ``TypeError`` for ``format='%Y%m%d'`` when called for invalid integer dates with length >= 6 digits with ``errors='ignore'``
- Bug when comparing a :class:`PeriodIndex` against a zero-dimensional numpy array (:issue:`26689`)
- Bug in constructing a ``Series`` or ``DataFrame`` from a numpy ``datetime64`` array with a non-ns unit and out-of-bound timestamps generating rubbish data, which will now correctly raise an ``OutOfBoundsDatetime`` error (:issue:`26206`).
- Bug in :func:`date_range` with unnecessary ``OverflowError`` being raised for very large or very small dates (:issue:`26651`)
- Bug where adding :class:`Timestamp` to a ``np.timedelta64`` object would raise instead of returning a :class:`Timestamp` (:issue:`24775`)
- Bug where comparing a zero-dimensional numpy array containing a ``np.datetime64`` object to a :class:`Timestamp` would incorrect raise ``TypeError`` (:issue:`26916`)
- Bug in :func:`to_datetime` which would raise ``ValueError: Tz-aware datetime.datetime cannot be converted to datetime64 unless utc=True`` when called with ``cache=True``, with ``arg`` including datetime strings with different offset (:issue:`26097`)
-
Timedelta
^^^^^^^^^
- Bug in :func:`TimedeltaIndex.intersection` where for non-monotonic indices in some cases an empty ``Index`` was returned when in fact an intersection existed (:issue:`25913`)
- Bug with comparisons between :class:`Timedelta` and ``NaT`` raising ``TypeError`` (:issue:`26039`)
- Bug when adding or subtracting a :class:`BusinessHour` to a :class:`Timestamp` with the resulting time landing in a following or prior day respectively (:issue:`26381`)
- Bug when comparing a :class:`TimedeltaIndex` against a zero-dimensional numpy array (:issue:`26689`)
Timezones
^^^^^^^^^
- Bug in :func:`DatetimeIndex.to_frame` where timezone aware data would be converted to timezone naive data (:issue:`25809`)
- Bug in :func:`to_datetime` with ``utc=True`` and datetime strings that would apply previously parsed UTC offsets to subsequent arguments (:issue:`24992`)
- Bug in :func:`Timestamp.tz_localize` and :func:`Timestamp.tz_convert` does not propagate ``freq`` (:issue:`25241`)
- Bug in :func:`Series.at` where setting :class:`Timestamp` with timezone raises ``TypeError`` (:issue:`25506`)
- Bug in :func:`DataFrame.update` when updating with timezone aware data would return timezone naive data (:issue:`25807`)
- Bug in :func:`to_datetime` where an uninformative ``RuntimeError`` was raised when passing a naive :class:`Timestamp` with datetime strings with mixed UTC offsets (:issue:`25978`)
- Bug in :func:`to_datetime` with ``unit='ns'`` would drop timezone information from the parsed argument (:issue:`26168`)
- Bug in :func:`DataFrame.join` where joining a timezone aware index with a timezone aware column would result in a column of ``NaN`` (:issue:`26335`)
- Bug in :func:`date_range` where ambiguous or nonexistent start or end times were not handled by the ``ambiguous`` or ``nonexistent`` keywords respectively (:issue:`27088`)
- Bug in :meth:`DatetimeIndex.union` when combining a timezone aware and timezone unaware :class:`DatetimeIndex` (:issue:`21671`)
- Bug when applying a numpy reduction function (e.g. :meth:`numpy.minimum`) to a timezone aware :class:`Series` (:issue:`15552`)
Numeric
^^^^^^^
- Bug in :meth:`to_numeric` in which large negative numbers were being improperly handled (:issue:`24910`)
- Bug in :meth:`to_numeric` in which numbers were being coerced to float, even though ``errors`` was not ``coerce`` (:issue:`24910`)
- Bug in :meth:`to_numeric` in which invalid values for ``errors`` were being allowed (:issue:`26466`)
- Bug in :class:`format` in which floating point complex numbers were not being formatted to proper display precision and trimming (:issue:`25514`)
- Bug in error messages in :meth:`DataFrame.corr` and :meth:`Series.corr`. Added the possibility of using a callable. (:issue:`25729`)
- Bug in :meth:`Series.divmod` and :meth:`Series.rdivmod` which would raise an (incorrect) ``ValueError`` rather than return a pair of :class:`Series` objects as result (:issue:`25557`)
- Raises a helpful exception when a non-numeric index is sent to :meth:`interpolate` with methods which require numeric index. (:issue:`21662`)
- Bug in :meth:`~pandas.eval` when comparing floats with scalar operators, for example: ``x < -0.1`` (:issue:`25928`)
- Fixed bug where casting all-boolean array to integer extension array failed (:issue:`25211`)
- Bug in ``divmod`` with a :class:`Series` object containing zeros incorrectly raising ``AttributeError`` (:issue:`26987`)
- Inconsistency in :class:`Series` floor-division (`//`) and ``divmod`` filling positive//zero with ``NaN`` instead of ``Inf`` (:issue:`27321`)
-
Conversion
^^^^^^^^^^
- Bug in :func:`DataFrame.astype()` when passing a dict of columns and types the ``errors`` parameter was ignored. (:issue:`25905`)
-
Strings
^^^^^^^
- Bug in the ``__name__`` attribute of several methods of :class:`Series.str`, which were set incorrectly (:issue:`23551`)
- Improved error message when passing :class:`Series` of wrong dtype to :meth:`Series.str.cat` (:issue:`22722`)
-
Interval
^^^^^^^^
- Construction of :class:`Interval` is restricted to numeric, :class:`Timestamp` and :class:`Timedelta` endpoints (:issue:`23013`)
- Fixed bug in :class:`Series`/:class:`DataFrame` not displaying ``NaN`` in :class:`IntervalIndex` with missing values (:issue:`25984`)
- Bug in :meth:`IntervalIndex.get_loc` where a ``KeyError`` would be incorrectly raised for a decreasing :class:`IntervalIndex` (:issue:`25860`)
- Bug in :class:`Index` constructor where passing mixed closed :class:`Interval` objects would result in a ``ValueError`` instead of an ``object`` dtype ``Index`` (:issue:`27172`)
Indexing
^^^^^^^^
- Improved exception message when calling :meth:`DataFrame.iloc` with a list of non-numeric objects (:issue:`25753`).
- Improved exception message when calling ``.iloc`` or ``.loc`` with a boolean indexer with different length (:issue:`26658`).
- Bug in ``KeyError`` exception message when indexing a :class:`MultiIndex` with a non-existent key not displaying the original key (:issue:`27250`).
- Bug in ``.iloc`` and ``.loc`` with a boolean indexer not raising an ``IndexError`` when too few items are passed (:issue:`26658`).
- Bug in :meth:`DataFrame.loc` and :meth:`Series.loc` where ``KeyError`` was not raised for a ``MultiIndex`` when the key was less than or equal to the number of levels in the :class:`MultiIndex` (:issue:`14885`).
- Bug in which :meth:`DataFrame.append` produced an erroneous warning indicating that a ``KeyError`` will be thrown in the future when the data to be appended contains new columns (:issue:`22252`).
- Bug in which :meth:`DataFrame.to_csv` caused a segfault for a reindexed data frame, when the indices were single-level :class:`MultiIndex` (:issue:`26303`).
- Fixed bug where assigning a :class:`arrays.PandasArray` to a :class:`.DataFrame` would raise error (:issue:`26390`)
- Allow keyword arguments for callable local reference used in the :meth:`DataFrame.query` string (:issue:`26426`)
- Fixed a ``KeyError`` when indexing a :class:`MultiIndex` level with a list containing exactly one label, which is missing (:issue:`27148`)
- Bug which produced ``AttributeError`` on partial matching :class:`Timestamp` in a :class:`MultiIndex` (:issue:`26944`)
- Bug in :class:`Categorical` and :class:`CategoricalIndex` with :class:`Interval` values when using the ``in`` operator (``__contains``) with objects that are not comparable to the values in the ``Interval`` (:issue:`23705`)
- Bug in :meth:`DataFrame.loc` and :meth:`DataFrame.iloc` on a :class:`DataFrame` with a single timezone-aware datetime64[ns] column incorrectly returning a scalar instead of a :class:`Series` (:issue:`27110`)
- Bug in :class:`CategoricalIndex` and :class:`Categorical` incorrectly raising ``ValueError`` instead of ``TypeError`` when a list is passed using the ``in`` operator (``__contains__``) (:issue:`21729`)
- Bug in setting a new value in a :class:`Series` with a :class:`Timedelta` object incorrectly casting the value to an integer (:issue:`22717`)
- Bug in :class:`Series` setting a new key (``__setitem__``) with a timezone-aware datetime incorrectly raising ``ValueError`` (:issue:`12862`)
- Bug in :meth:`DataFrame.iloc` when indexing with a read-only indexer (:issue:`17192`)
- Bug in :class:`Series` setting an existing tuple key (``__setitem__``) with timezone-aware datetime values incorrectly raising ``TypeError`` (:issue:`20441`)
Missing
^^^^^^^
- Fixed misleading exception message in :meth:`Series.interpolate` if argument ``order`` is required, but omitted (:issue:`10633`, :issue:`24014`).
- Fixed class type displayed in exception message in :meth:`DataFrame.dropna` if invalid ``axis`` parameter passed (:issue:`25555`)
- A ``ValueError`` will now be thrown by :meth:`DataFrame.fillna` when ``limit`` is not a positive integer (:issue:`27042`)
-
MultiIndex
^^^^^^^^^^
- Bug in which incorrect exception raised by :class:`Timedelta` when testing the membership of :class:`MultiIndex` (:issue:`24570`)
-
IO
^^
- Bug in :func:`DataFrame.to_html()` where values were truncated using display options instead of outputting the full content (:issue:`17004`)
- Fixed bug in missing text when using :meth:`to_clipboard` if copying utf-16 characters in Python 3 on Windows (:issue:`25040`)
- Bug in :func:`read_json` for ``orient='table'`` when it tries to infer dtypes by default, which is not applicable as dtypes are already defined in the JSON schema (:issue:`21345`)
- Bug in :func:`read_json` for ``orient='table'`` and float index, as it infers index dtype by default, which is not applicable because index dtype is already defined in the JSON schema (:issue:`25433`)
- Bug in :func:`read_json` for ``orient='table'`` and string of float column names, as it makes a column name type conversion to :class:`Timestamp`, which is not applicable because column names are already defined in the JSON schema (:issue:`25435`)
- Bug in :func:`json_normalize` for ``errors='ignore'`` where missing values in the input data, were filled in resulting ``DataFrame`` with the string ``"nan"`` instead of ``numpy.nan`` (:issue:`25468`)
- :meth:`DataFrame.to_html` now raises ``TypeError`` when using an invalid type for the ``classes`` parameter instead of ``AssertionError`` (:issue:`25608`)
- Bug in :meth:`DataFrame.to_string` and :meth:`DataFrame.to_latex` that would lead to incorrect output when the ``header`` keyword is used (:issue:`16718`)
- Bug in :func:`read_csv` not properly interpreting the UTF8 encoded filenames on Windows on Python 3.6+ (:issue:`15086`)
- Improved performance in :meth:`pandas.read_stata` and :class:`pandas.io.stata.StataReader` when converting columns that have missing values (:issue:`25772`)
- Bug in :meth:`DataFrame.to_html` where header numbers would ignore display options when rounding (:issue:`17280`)
- Bug in :func:`read_hdf` where reading a table from an HDF5 file written directly with PyTables fails with a ``ValueError`` when using a sub-selection via the ``start`` or ``stop`` arguments (:issue:`11188`)
- Bug in :func:`read_hdf` not properly closing store after a ``KeyError`` is raised (:issue:`25766`)
- Improved the explanation for the failure when value labels are repeated in Stata dta files and suggested work-arounds (:issue:`25772`)
- Improved :meth:`pandas.read_stata` and :class:`pandas.io.stata.StataReader` to read incorrectly formatted 118 format files saved by Stata (:issue:`25960`)
- Improved the ``col_space`` parameter in :meth:`DataFrame.to_html` to accept a string so CSS length values can be set correctly (:issue:`25941`)
- Fixed bug in loading objects from S3 that contain ``#`` characters in the URL (:issue:`25945`)
- Adds ``use_bqstorage_api`` parameter to :func:`read_gbq` to speed up downloads of large data frames. This feature requires version 0.10.0 of the ``pandas-gbq`` library as well as the ``google-cloud-bigquery-storage`` and ``fastavro`` libraries. (:issue:`26104`)
- Fixed memory leak in :meth:`DataFrame.to_json` when dealing with numeric data (:issue:`24889`)
- Bug in :func:`read_json` where date strings with ``Z`` were not converted to a UTC timezone (:issue:`26168`)
- Added ``cache_dates=True`` parameter to :meth:`read_csv`, which allows to cache unique dates when they are parsed (:issue:`25990`)
- :meth:`DataFrame.to_excel` now raises a ``ValueError`` when the caller's dimensions exceed the limitations of Excel (:issue:`26051`)
- Fixed bug in :func:`pandas.read_csv` where a BOM would result in incorrect parsing using engine='python' (:issue:`26545`)
- :func:`read_excel` now raises a ``ValueError`` when input is of type :class:`pandas.io.excel.ExcelFile` and ``engine`` param is passed since :class:`pandas.io.excel.ExcelFile` has an engine defined (:issue:`26566`)
- Bug while selecting from :class:`HDFStore` with ``where=''`` specified (:issue:`26610`).
- Fixed bug in :func:`DataFrame.to_excel()` where custom objects (i.e. ``PeriodIndex``) inside merged cells were not being converted into types safe for the Excel writer (:issue:`27006`)
- Bug in :meth:`read_hdf` where reading a timezone aware :class:`DatetimeIndex` would raise a ``TypeError`` (:issue:`11926`)
- Bug in :meth:`to_msgpack` and :meth:`read_msgpack` which would raise a ``ValueError`` rather than a ``FileNotFoundError`` for an invalid path (:issue:`27160`)
- Fixed bug in :meth:`DataFrame.to_parquet` which would raise a ``ValueError`` when the dataframe had no columns (:issue:`27339`)
- Allow parsing of :class:`PeriodDtype` columns when using :func:`read_csv` (:issue:`26934`)
Plotting
^^^^^^^^
- Fixed bug where :class:`api.extensions.ExtensionArray` could not be used in matplotlib plotting (:issue:`25587`)
- Bug in an error message in :meth:`DataFrame.plot`. Improved the error message if non-numerics are passed to :meth:`DataFrame.plot` (:issue:`25481`)
- Bug in incorrect ticklabel positions when plotting an index that are non-numeric / non-datetime (:issue:`7612`, :issue:`15912`, :issue:`22334`)
- Fixed bug causing plots of :class:`PeriodIndex` timeseries to fail if the frequency is a multiple of the frequency rule code (:issue:`14763`)
- Fixed bug when plotting a :class:`DatetimeIndex` with ``datetime.timezone.utc`` timezone (:issue:`17173`)
-
GroupBy/resample/rolling
^^^^^^^^^^^^^^^^^^^^^^^^
- Bug in :meth:`.Resampler.agg` with a timezone aware index where ``OverflowError`` would raise when passing a list of functions (:issue:`22660`)
- Bug in :meth:`.DataFrameGroupBy.nunique` in which the names of column levels were lost (:issue:`23222`)
- Bug in :func:`.GroupBy.agg` when applying an aggregation function to timezone aware data (:issue:`23683`)
- Bug in :func:`.GroupBy.first` and :func:`.GroupBy.last` where timezone information would be dropped (:issue:`21603`)
- Bug in :func:`.GroupBy.size` when grouping only NA values (:issue:`23050`)
- Bug in :func:`Series.groupby` where ``observed`` kwarg was previously ignored (:issue:`24880`)
- Bug in :func:`Series.groupby` where using ``groupby`` with a :class:`MultiIndex` Series with a list of labels equal to the length of the series caused incorrect grouping (:issue:`25704`)
- Ensured that ordering of outputs in ``groupby`` aggregation functions is consistent across all versions of Python (:issue:`25692`)
- Ensured that result group order is correct when grouping on an ordered ``Categorical`` and specifying ``observed=True`` (:issue:`25871`, :issue:`25167`)
- Bug in :meth:`.Rolling.min` and :meth:`.Rolling.max` that caused a memory leak (:issue:`25893`)
- Bug in :meth:`.Rolling.count` and ``.Expanding.count`` was previously ignoring the ``axis`` keyword (:issue:`13503`)
- Bug in :meth:`.GroupBy.idxmax` and :meth:`.GroupBy.idxmin` with datetime column would return incorrect dtype (:issue:`25444`, :issue:`15306`)
- Bug in :meth:`.GroupBy.cumsum`, :meth:`.GroupBy.cumprod`, :meth:`.GroupBy.cummin` and :meth:`.GroupBy.cummax` with categorical column having absent categories, would return incorrect result or segfault (:issue:`16771`)
- Bug in :meth:`.GroupBy.nth` where NA values in the grouping would return incorrect results (:issue:`26011`)
- Bug in :meth:`.SeriesGroupBy.transform` where transforming an empty group would raise a ``ValueError`` (:issue:`26208`)
- Bug in :meth:`.DataFrame.groupby` where passing a :class:`.Grouper` would return incorrect groups when using the ``.groups`` accessor (:issue:`26326`)
- Bug in :meth:`.GroupBy.agg` where incorrect results are returned for uint64 columns. (:issue:`26310`)
- Bug in :meth:`.Rolling.median` and :meth:`.Rolling.quantile` where MemoryError is raised with empty window (:issue:`26005`)
- Bug in :meth:`.Rolling.median` and :meth:`.Rolling.quantile` where incorrect results are returned with ``closed='left'`` and ``closed='neither'`` (:issue:`26005`)
- Improved :class:`.Rolling`, :class:`.Window` and :class:`.ExponentialMovingWindow` functions to exclude nuisance columns from results instead of raising errors and raise a ``DataError`` only if all columns are nuisance (:issue:`12537`)
- Bug in :meth:`.Rolling.max` and :meth:`.Rolling.min` where incorrect results are returned with an empty variable window (:issue:`26005`)
- Raise a helpful exception when an unsupported weighted window function is used as an argument of :meth:`.Window.aggregate` (:issue:`26597`)
Reshaping
^^^^^^^^^
- Bug in :func:`pandas.merge` adds a string of ``None``, if ``None`` is assigned in suffixes instead of remain the column name as-is (:issue:`24782`).
- Bug in :func:`merge` when merging by index name would sometimes result in an incorrectly numbered index (missing index values are now assigned NA) (:issue:`24212`, :issue:`25009`)
- :func:`to_records` now accepts dtypes to its ``column_dtypes`` parameter (:issue:`24895`)
- Bug in :func:`concat` where order of ``OrderedDict`` (and ``dict`` in Python 3.6+) is not respected, when passed in as ``objs`` argument (:issue:`21510`)
- Bug in :func:`pivot_table` where columns with ``NaN`` values are dropped even if ``dropna`` argument is ``False``, when the ``aggfunc`` argument contains a ``list`` (:issue:`22159`)
- Bug in :func:`concat` where the resulting ``freq`` of two :class:`DatetimeIndex` with the same ``freq`` would be dropped (:issue:`3232`).
- Bug in :func:`merge` where merging with equivalent Categorical dtypes was raising an error (:issue:`22501`)
- bug in :class:`DataFrame` instantiating with a dict of iterators or generators (e.g. ``pd.DataFrame({'A': reversed(range(3))})``) raised an error (:issue:`26349`).
- Bug in :class:`DataFrame` instantiating with a ``range`` (e.g. ``pd.DataFrame(range(3))``) raised an error (:issue:`26342`).
- Bug in :class:`DataFrame` constructor when passing non-empty tuples would cause a segmentation fault (:issue:`25691`)
- Bug in :func:`Series.apply` failed when the series is a timezone aware :class:`DatetimeIndex` (:issue:`25959`)
- Bug in :func:`pandas.cut` where large bins could incorrectly raise an error due to an integer overflow (:issue:`26045`)
- Bug in :func:`DataFrame.sort_index` where an error is thrown when a multi-indexed ``DataFrame`` is sorted on all levels with the initial level sorted last (:issue:`26053`)
- Bug in :meth:`Series.nlargest` treats ``True`` as smaller than ``False`` (:issue:`26154`)
- Bug in :func:`DataFrame.pivot_table` with a :class:`IntervalIndex` as pivot index would raise ``TypeError`` (:issue:`25814`)
- Bug in which :meth:`DataFrame.from_dict` ignored order of ``OrderedDict`` when ``orient='index'`` (:issue:`8425`).
- Bug in :meth:`DataFrame.transpose` where transposing a DataFrame with a timezone-aware datetime column would incorrectly raise ``ValueError`` (:issue:`26825`)
- Bug in :func:`pivot_table` when pivoting a timezone aware column as the ``values`` would remove timezone information (:issue:`14948`)
- Bug in :func:`merge_asof` when specifying multiple ``by`` columns where one is ``datetime64[ns, tz]`` dtype (:issue:`26649`)
Sparse
^^^^^^
- Significant speedup in :class:`SparseArray` initialization that benefits most operations, fixing performance regression introduced in v0.20.0 (:issue:`24985`)
- Bug in :class:`SparseFrame` constructor where passing ``None`` as the data would cause ``default_fill_value`` to be ignored (:issue:`16807`)
- Bug in :class:`SparseDataFrame` when adding a column in which the length of values does not match length of index, ``AssertionError`` is raised instead of raising ``ValueError`` (:issue:`25484`)
- Introduce a better error message in :meth:`Series.sparse.from_coo` so it returns a ``TypeError`` for inputs that are not coo matrices (:issue:`26554`)
- Bug in :func:`numpy.modf` on a :class:`SparseArray`. Now a tuple of :class:`SparseArray` is returned (:issue:`26946`).
Build changes
^^^^^^^^^^^^^
- Fix install error with PyPy on macOS (:issue:`26536`)
ExtensionArray
^^^^^^^^^^^^^^
- Bug in :func:`factorize` when passing an ``ExtensionArray`` with a custom ``na_sentinel`` (:issue:`25696`).
- :meth:`Series.count` miscounts NA values in ExtensionArrays (:issue:`26835`)
- Added ``Series.__array_ufunc__`` to better handle NumPy ufuncs applied to Series backed by extension arrays (:issue:`23293`).
- Keyword argument ``deep`` has been removed from :meth:`ExtensionArray.copy` (:issue:`27083`)
Other
^^^^^
- Removed unused C functions from vendored UltraJSON implementation (:issue:`26198`)
- Allow :class:`Index` and :class:`RangeIndex` to be passed to numpy ``min`` and ``max`` functions (:issue:`26125`)
- Use actual class name in repr of empty objects of a ``Series`` subclass (:issue:`27001`).
- Bug in :class:`DataFrame` where passing an object array of timezone-aware ``datetime`` objects would incorrectly raise ``ValueError`` (:issue:`13287`)
.. _whatsnew_0.250.contributors:
Contributors
~~~~~~~~~~~~
.. contributors:: v0.24.2..v0.25.0
|