1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302
|
.. _whatsnew_100:
What's new in 1.0.0 (January 29, 2020)
--------------------------------------
These are the changes in pandas 1.0.0. See :ref:`release` for a full changelog
including other versions of pandas.
.. note::
The pandas 1.0 release removed a lot of functionality that was deprecated
in previous releases (see :ref:`below <whatsnew_100.prior_deprecations>`
for an overview). It is recommended to first upgrade to pandas 0.25 and to
ensure your code is working without warnings, before upgrading to pandas
1.0.
New deprecation policy
~~~~~~~~~~~~~~~~~~~~~~
Starting with pandas 1.0.0, pandas will adopt a variant of `SemVer`_ to
version releases. Briefly,
* Deprecations will be introduced in minor releases (e.g. 1.1.0, 1.2.0, 2.1.0, ...)
* Deprecations will be enforced in major releases (e.g. 1.0.0, 2.0.0, 3.0.0, ...)
* API-breaking changes will be made only in major releases (except for experimental features)
See :ref:`policies.version` for more.
.. _2019 Pandas User Survey: https://pandas.pydata.org/community/blog/2019-user-survey.html
.. _SemVer: https://semver.org
{{ header }}
.. ---------------------------------------------------------------------------
Enhancements
~~~~~~~~~~~~
.. _whatsnew_100.numba_rolling_apply:
Using Numba in ``rolling.apply`` and ``expanding.apply``
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
We've added an ``engine`` keyword to :meth:`~core.window.rolling.Rolling.apply` and :meth:`~core.window.expanding.Expanding.apply`
that allows the user to execute the routine using `Numba <https://numba.pydata.org/>`__ instead of Cython.
Using the Numba engine can yield significant performance gains if the apply function can operate on numpy arrays and
the data set is larger (1 million rows or greater). For more details, see
:ref:`rolling apply documentation <window.numba_engine>` (:issue:`28987`, :issue:`30936`)
.. _whatsnew_100.custom_window:
Defining custom windows for rolling operations
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
We've added a :func:`pandas.api.indexers.BaseIndexer` class that allows users to define how
window bounds are created during ``rolling`` operations. Users can define their own ``get_window_bounds``
method on a :func:`pandas.api.indexers.BaseIndexer` subclass that will generate the start and end
indices used for each window during the rolling aggregation. For more details and example usage, see
the :ref:`custom window rolling documentation <window.custom_rolling_window>`
.. _whatsnew_100.to_markdown:
Converting to markdown
^^^^^^^^^^^^^^^^^^^^^^
We've added :meth:`~DataFrame.to_markdown` for creating a markdown table (:issue:`11052`)
.. ipython:: python
df = pd.DataFrame({"A": [1, 2, 3], "B": [1, 2, 3]}, index=['a', 'a', 'b'])
print(df.to_markdown())
Experimental new features
~~~~~~~~~~~~~~~~~~~~~~~~~
.. _whatsnew_100.NA:
Experimental ``NA`` scalar to denote missing values
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
A new ``pd.NA`` value (singleton) is introduced to represent scalar missing
values. Up to now, pandas used several values to represent missing data: ``np.nan`` is used for this for float data, ``np.nan`` or
``None`` for object-dtype data and ``pd.NaT`` for datetime-like data. The
goal of ``pd.NA`` is to provide a "missing" indicator that can be used
consistently across data types. ``pd.NA`` is currently used by the nullable integer and boolean
data types and the new string data type (:issue:`28095`).
.. warning::
Experimental: the behaviour of ``pd.NA`` can still change without warning.
For example, creating a Series using the nullable integer dtype:
.. ipython:: python
s = pd.Series([1, 2, None], dtype="Int64")
s
s[2]
Compared to ``np.nan``, ``pd.NA`` behaves differently in certain operations.
In addition to arithmetic operations, ``pd.NA`` also propagates as "missing"
or "unknown" in comparison operations:
.. ipython:: python
np.nan > 1
pd.NA > 1
For logical operations, ``pd.NA`` follows the rules of the
`three-valued logic <https://en.wikipedia.org/wiki/Three-valued_logic>`__ (or
*Kleene logic*). For example:
.. ipython:: python
pd.NA | True
For more, see :ref:`NA section <missing_data.NA>` in the user guide on missing
data.
.. _whatsnew_100.string:
Dedicated string data type
^^^^^^^^^^^^^^^^^^^^^^^^^^
We've added :class:`StringDtype`, an extension type dedicated to string data.
Previously, strings were typically stored in object-dtype NumPy arrays. (:issue:`29975`)
.. warning::
``StringDtype`` is currently considered experimental. The implementation
and parts of the API may change without warning.
The ``'string'`` extension type solves several issues with object-dtype NumPy arrays:
1. You can accidentally store a *mixture* of strings and non-strings in an
``object`` dtype array. A ``StringArray`` can only store strings.
2. ``object`` dtype breaks dtype-specific operations like :meth:`DataFrame.select_dtypes`.
There isn't a clear way to select *just* text while excluding non-text,
but still object-dtype columns.
3. When reading code, the contents of an ``object`` dtype array is less clear
than ``string``.
.. ipython:: python
pd.Series(['abc', None, 'def'], dtype=pd.StringDtype())
You can use the alias ``"string"`` as well.
.. ipython:: python
s = pd.Series(['abc', None, 'def'], dtype="string")
s
The usual string accessor methods work. Where appropriate, the return type
of the Series or columns of a DataFrame will also have string dtype.
.. ipython:: python
s.str.upper()
s.str.split('b', expand=True).dtypes
String accessor methods returning integers will return a value with :class:`Int64Dtype`
.. ipython:: python
s.str.count("a")
We recommend explicitly using the ``string`` data type when working with strings.
See :ref:`text.types` for more.
.. _whatsnew_100.boolean:
Boolean data type with missing values support
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
We've added :class:`BooleanDtype` / :class:`~arrays.BooleanArray`, an extension
type dedicated to boolean data that can hold missing values. The default
``bool`` data type based on a bool-dtype NumPy array, the column can only hold
``True`` or ``False``, and not missing values. This new :class:`~arrays.BooleanArray`
can store missing values as well by keeping track of this in a separate mask.
(:issue:`29555`, :issue:`30095`, :issue:`31131`)
.. ipython:: python
pd.Series([True, False, None], dtype=pd.BooleanDtype())
You can use the alias ``"boolean"`` as well.
.. ipython:: python
s = pd.Series([True, False, None], dtype="boolean")
s
.. _whatsnew_100.convert_dtypes:
Method ``convert_dtypes`` to ease use of supported extension dtypes
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
In order to encourage use of the extension dtypes ``StringDtype``,
``BooleanDtype``, ``Int64Dtype``, ``Int32Dtype``, etc., that support ``pd.NA``, the
methods :meth:`DataFrame.convert_dtypes` and :meth:`Series.convert_dtypes`
have been introduced. (:issue:`29752`) (:issue:`30929`)
Example:
.. ipython:: python
df = pd.DataFrame({'x': ['abc', None, 'def'],
'y': [1, 2, np.nan],
'z': [True, False, True]})
df
df.dtypes
.. ipython:: python
converted = df.convert_dtypes()
converted
converted.dtypes
This is especially useful after reading in data using readers such as :func:`read_csv`
and :func:`read_excel`.
See :ref:`here <missing_data.NA.conversion>` for a description.
.. _whatsnew_100.enhancements.other:
Other enhancements
~~~~~~~~~~~~~~~~~~
- :meth:`DataFrame.to_string` added the ``max_colwidth`` parameter to control when wide columns are truncated (:issue:`9784`)
- Added the ``na_value`` argument to :meth:`Series.to_numpy`, :meth:`Index.to_numpy` and :meth:`DataFrame.to_numpy` to control the value used for missing data (:issue:`30322`)
- :meth:`MultiIndex.from_product` infers level names from inputs if not explicitly provided (:issue:`27292`)
- :meth:`DataFrame.to_latex` now accepts ``caption`` and ``label`` arguments (:issue:`25436`)
- DataFrames with :ref:`nullable integer <integer_na>`, the :ref:`new string dtype <text.types>`
and period data type can now be converted to ``pyarrow`` (>=0.15.0), which means that it is
supported in writing to the Parquet file format when using the ``pyarrow`` engine (:issue:`28368`).
Full roundtrip to parquet (writing and reading back in with :meth:`~DataFrame.to_parquet` / :func:`read_parquet`)
is supported starting with pyarrow >= 0.16 (:issue:`20612`).
- :func:`to_parquet` now appropriately handles the ``schema`` argument for user defined schemas in the pyarrow engine. (:issue:`30270`)
- :meth:`DataFrame.to_json` now accepts an ``indent`` integer argument to enable pretty printing of JSON output (:issue:`12004`)
- :meth:`read_stata` can read Stata 119 dta files. (:issue:`28250`)
- Implemented :meth:`.Window.var` and :meth:`.Window.std` functions (:issue:`26597`)
- Added ``encoding`` argument to :meth:`DataFrame.to_string` for non-ascii text (:issue:`28766`)
- Added ``encoding`` argument to :func:`DataFrame.to_html` for non-ascii text (:issue:`28663`)
- :meth:`Styler.background_gradient` now accepts ``vmin`` and ``vmax`` arguments (:issue:`12145`)
- :meth:`Styler.format` added the ``na_rep`` parameter to help format the missing values (:issue:`21527`, :issue:`28358`)
- :func:`read_excel` now can read binary Excel (``.xlsb``) files by passing ``engine='pyxlsb'``. For more details and example usage, see the :ref:`Binary Excel files documentation <io.xlsb>`. Closes :issue:`8540`.
- The ``partition_cols`` argument in :meth:`DataFrame.to_parquet` now accepts a string (:issue:`27117`)
- :func:`pandas.read_json` now parses ``NaN``, ``Infinity`` and ``-Infinity`` (:issue:`12213`)
- DataFrame constructor preserve ``ExtensionArray`` dtype with ``ExtensionArray`` (:issue:`11363`)
- :meth:`DataFrame.sort_values` and :meth:`Series.sort_values` have gained ``ignore_index`` keyword to be able to reset index after sorting (:issue:`30114`)
- :meth:`DataFrame.sort_index` and :meth:`Series.sort_index` have gained ``ignore_index`` keyword to reset index (:issue:`30114`)
- :meth:`DataFrame.drop_duplicates` has gained ``ignore_index`` keyword to reset index (:issue:`30114`)
- Added new writer for exporting Stata dta files in versions 118 and 119, ``StataWriterUTF8``. These files formats support exporting strings containing Unicode characters. Format 119 supports data sets with more than 32,767 variables (:issue:`23573`, :issue:`30959`)
- :meth:`Series.map` now accepts ``collections.abc.Mapping`` subclasses as a mapper (:issue:`29733`)
- Added an experimental :attr:`~DataFrame.attrs` for storing global metadata about a dataset (:issue:`29062`)
- :meth:`Timestamp.fromisocalendar` is now compatible with python 3.8 and above (:issue:`28115`)
- :meth:`DataFrame.to_pickle` and :func:`read_pickle` now accept URL (:issue:`30163`)
.. ---------------------------------------------------------------------------
.. _whatsnew_100.api_breaking:
Backwards incompatible API changes
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. _whatsnew_100.api_breaking.MultiIndex._names:
Avoid using names from ``MultiIndex.levels``
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
As part of a larger refactor to :class:`MultiIndex` the level names are now
stored separately from the levels (:issue:`27242`). We recommend using
:attr:`MultiIndex.names` to access the names, and :meth:`Index.set_names`
to update the names.
For backwards compatibility, you can still *access* the names via the levels.
.. ipython:: python
mi = pd.MultiIndex.from_product([[1, 2], ['a', 'b']], names=['x', 'y'])
mi.levels[0].name
However, it is no longer possible to *update* the names of the ``MultiIndex``
via the level.
.. ipython:: python
:okexcept:
mi.levels[0].name = "new name"
mi.names
To update, use ``MultiIndex.set_names``, which returns a new ``MultiIndex``.
.. ipython:: python
mi2 = mi.set_names("new name", level=0)
mi2.names
New repr for :class:`~pandas.arrays.IntervalArray`
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
:class:`pandas.arrays.IntervalArray` adopts a new ``__repr__`` in accordance with other array classes (:issue:`25022`)
*pandas 0.25.x*
.. code-block:: ipython
In [1]: pd.arrays.IntervalArray.from_tuples([(0, 1), (2, 3)])
Out[2]:
IntervalArray([(0, 1], (2, 3]],
closed='right',
dtype='interval[int64]')
*pandas 1.0.0*
.. ipython:: python
pd.arrays.IntervalArray.from_tuples([(0, 1), (2, 3)])
``DataFrame.rename`` now only accepts one positional argument
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
:meth:`DataFrame.rename` would previously accept positional arguments that would lead
to ambiguous or undefined behavior. From pandas 1.0, only the very first argument, which
maps labels to their new names along the default axis, is allowed to be passed by position
(:issue:`29136`).
.. ipython:: python
:suppress:
df = pd.DataFrame([[1]])
*pandas 0.25.x*
.. code-block:: ipython
In [1]: df = pd.DataFrame([[1]])
In [2]: df.rename({0: 1}, {0: 2})
Out[2]:
FutureWarning: ...Use named arguments to resolve ambiguity...
2
1 1
*pandas 1.0.0*
.. code-block:: ipython
In [3]: df.rename({0: 1}, {0: 2})
Traceback (most recent call last):
...
TypeError: rename() takes from 1 to 2 positional arguments but 3 were given
Note that errors will now be raised when conflicting or potentially ambiguous arguments are provided.
*pandas 0.25.x*
.. code-block:: ipython
In [4]: df.rename({0: 1}, index={0: 2})
Out[4]:
0
1 1
In [5]: df.rename(mapper={0: 1}, index={0: 2})
Out[5]:
0
2 1
*pandas 1.0.0*
.. code-block:: ipython
In [6]: df.rename({0: 1}, index={0: 2})
Traceback (most recent call last):
...
TypeError: Cannot specify both 'mapper' and any of 'index' or 'columns'
In [7]: df.rename(mapper={0: 1}, index={0: 2})
Traceback (most recent call last):
...
TypeError: Cannot specify both 'mapper' and any of 'index' or 'columns'
You can still change the axis along which the first positional argument is applied by
supplying the ``axis`` keyword argument.
.. ipython:: python
df.rename({0: 1})
df.rename({0: 1}, axis=1)
If you would like to update both the index and column labels, be sure to use the respective
keywords.
.. ipython:: python
df.rename(index={0: 1}, columns={0: 2})
Extended verbose info output for :class:`~pandas.DataFrame`
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
:meth:`DataFrame.info` now shows line numbers for the columns summary (:issue:`17304`)
*pandas 0.25.x*
.. code-block:: ipython
In [1]: df = pd.DataFrame({"int_col": [1, 2, 3],
... "text_col": ["a", "b", "c"],
... "float_col": [0.0, 0.1, 0.2]})
In [2]: df.info(verbose=True)
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 3 entries, 0 to 2
Data columns (total 3 columns):
int_col 3 non-null int64
text_col 3 non-null object
float_col 3 non-null float64
dtypes: float64(1), int64(1), object(1)
memory usage: 152.0+ bytes
*pandas 1.0.0*
.. ipython:: python
df = pd.DataFrame({"int_col": [1, 2, 3],
"text_col": ["a", "b", "c"],
"float_col": [0.0, 0.1, 0.2]})
df.info(verbose=True)
:meth:`pandas.array` inference changes
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
:meth:`pandas.array` now infers pandas' new extension types in several cases (:issue:`29791`):
1. String data (including missing values) now returns a :class:`arrays.StringArray`.
2. Integer data (including missing values) now returns a :class:`arrays.IntegerArray`.
3. Boolean data (including missing values) now returns the new :class:`arrays.BooleanArray`
*pandas 0.25.x*
.. code-block:: ipython
In [1]: pd.array(["a", None])
Out[1]:
<PandasArray>
['a', None]
Length: 2, dtype: object
In [2]: pd.array([1, None])
Out[2]:
<PandasArray>
[1, None]
Length: 2, dtype: object
*pandas 1.0.0*
.. ipython:: python
pd.array(["a", None])
pd.array([1, None])
As a reminder, you can specify the ``dtype`` to disable all inference.
:class:`arrays.IntegerArray` now uses :attr:`pandas.NA`
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
:class:`arrays.IntegerArray` now uses :attr:`pandas.NA` rather than
:attr:`numpy.nan` as its missing value marker (:issue:`29964`).
*pandas 0.25.x*
.. code-block:: ipython
In [1]: a = pd.array([1, 2, None], dtype="Int64")
In [2]: a
Out[2]:
<IntegerArray>
[1, 2, NaN]
Length: 3, dtype: Int64
In [3]: a[2]
Out[3]:
nan
*pandas 1.0.0*
.. ipython:: python
a = pd.array([1, 2, None], dtype="Int64")
a
a[2]
This has a few API-breaking consequences.
**Converting to a NumPy ndarray**
When converting to a NumPy array missing values will be ``pd.NA``, which cannot
be converted to a float. So calling ``np.asarray(integer_array, dtype="float")``
will now raise.
*pandas 0.25.x*
.. code-block:: ipython
In [1]: np.asarray(a, dtype="float")
Out[1]:
array([ 1., 2., nan])
*pandas 1.0.0*
.. ipython:: python
:okexcept:
np.asarray(a, dtype="float")
Use :meth:`arrays.IntegerArray.to_numpy` with an explicit ``na_value`` instead.
.. ipython:: python
a.to_numpy(dtype="float", na_value=np.nan)
**Reductions can return** ``pd.NA``
When performing a reduction such as a sum with ``skipna=False``, the result
will now be ``pd.NA`` instead of ``np.nan`` in presence of missing values
(:issue:`30958`).
*pandas 0.25.x*
.. code-block:: ipython
In [1]: pd.Series(a).sum(skipna=False)
Out[1]:
nan
*pandas 1.0.0*
.. ipython:: python
pd.Series(a).sum(skipna=False)
**value_counts returns a nullable integer dtype**
:meth:`Series.value_counts` with a nullable integer dtype now returns a nullable
integer dtype for the values.
*pandas 0.25.x*
.. code-block:: ipython
In [1]: pd.Series([2, 1, 1, None], dtype="Int64").value_counts().dtype
Out[1]:
dtype('int64')
*pandas 1.0.0*
.. ipython:: python
pd.Series([2, 1, 1, None], dtype="Int64").value_counts().dtype
See :ref:`missing_data.NA` for more on the differences between :attr:`pandas.NA`
and :attr:`numpy.nan`.
:class:`arrays.IntegerArray` comparisons return :class:`arrays.BooleanArray`
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Comparison operations on a :class:`arrays.IntegerArray` now returns a
:class:`arrays.BooleanArray` rather than a NumPy array (:issue:`29964`).
*pandas 0.25.x*
.. code-block:: ipython
In [1]: a = pd.array([1, 2, None], dtype="Int64")
In [2]: a
Out[2]:
<IntegerArray>
[1, 2, NaN]
Length: 3, dtype: Int64
In [3]: a > 1
Out[3]:
array([False, True, False])
*pandas 1.0.0*
.. ipython:: python
a = pd.array([1, 2, None], dtype="Int64")
a > 1
Note that missing values now propagate, rather than always comparing unequal
like :attr:`numpy.nan`. See :ref:`missing_data.NA` for more.
By default :meth:`Categorical.min` now returns the minimum instead of np.nan
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
When :class:`Categorical` contains ``np.nan``,
:meth:`Categorical.min` no longer return ``np.nan`` by default (skipna=True) (:issue:`25303`)
*pandas 0.25.x*
.. code-block:: ipython
In [1]: pd.Categorical([1, 2, np.nan], ordered=True).min()
Out[1]: nan
*pandas 1.0.0*
.. ipython:: python
pd.Categorical([1, 2, np.nan], ordered=True).min()
Default dtype of empty :class:`pandas.Series`
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Initialising an empty :class:`pandas.Series` without specifying a dtype will raise a ``DeprecationWarning`` now
(:issue:`17261`). The default dtype will change from ``float64`` to ``object`` in future releases so that it is
consistent with the behaviour of :class:`DataFrame` and :class:`Index`.
*pandas 1.0.0*
.. code-block:: ipython
In [1]: pd.Series()
Out[2]:
DeprecationWarning: The default dtype for empty Series will be 'object' instead of 'float64' in a future version. Specify a dtype explicitly to silence this warning.
Series([], dtype: float64)
Result dtype inference changes for resample operations
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
The rules for the result dtype in :meth:`DataFrame.resample` aggregations have changed for extension types (:issue:`31359`).
Previously, pandas would attempt to convert the result back to the original dtype, falling back to the usual
inference rules if that was not possible. Now, pandas will only return a result of the original dtype if the
scalar values in the result are instances of the extension dtype's scalar type.
.. ipython:: python
df = pd.DataFrame({"A": ['a', 'b']}, dtype='category',
index=pd.date_range('2000', periods=2))
df
*pandas 0.25.x*
.. code-block:: ipython
In [1]> df.resample("2D").agg(lambda x: 'a').A.dtype
Out[1]:
CategoricalDtype(categories=['a', 'b'], ordered=False)
*pandas 1.0.0*
.. ipython:: python
df.resample("2D").agg(lambda x: 'a').A.dtype
This fixes an inconsistency between ``resample`` and ``groupby``.
This also fixes a potential bug, where the **values** of the result might change
depending on how the results are cast back to the original dtype.
*pandas 0.25.x*
.. code-block:: ipython
In [1] df.resample("2D").agg(lambda x: 'c')
Out[1]:
A
0 NaN
*pandas 1.0.0*
.. ipython:: python
df.resample("2D").agg(lambda x: 'c')
.. _whatsnew_100.api_breaking.python:
Increased minimum version for Python
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
pandas 1.0.0 supports Python 3.6.1 and higher (:issue:`29212`).
.. _whatsnew_100.api_breaking.deps:
Increased minimum versions for dependencies
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Some minimum supported versions of dependencies were updated (:issue:`29766`, :issue:`29723`).
If installed, we now require:
+-----------------+-----------------+----------+---------+
| Package | Minimum Version | Required | Changed |
+=================+=================+==========+=========+
| numpy | 1.13.3 | X | |
+-----------------+-----------------+----------+---------+
| pytz | 2015.4 | X | |
+-----------------+-----------------+----------+---------+
| python-dateutil | 2.6.1 | X | |
+-----------------+-----------------+----------+---------+
| bottleneck | 1.2.1 | | |
+-----------------+-----------------+----------+---------+
| numexpr | 2.6.2 | | |
+-----------------+-----------------+----------+---------+
| pytest (dev) | 4.0.2 | | |
+-----------------+-----------------+----------+---------+
For `optional libraries <https://pandas.pydata.org/docs/getting_started/install.html>`_ the general recommendation is to use the latest version.
The following table lists the lowest version per library that is currently being tested throughout the development of pandas.
Optional libraries below the lowest tested version may still work, but are not considered supported.
+-----------------+-----------------+---------+
| Package | Minimum Version | Changed |
+=================+=================+=========+
| beautifulsoup4 | 4.6.0 | |
+-----------------+-----------------+---------+
| fastparquet | 0.3.2 | X |
+-----------------+-----------------+---------+
| gcsfs | 0.2.2 | |
+-----------------+-----------------+---------+
| lxml | 3.8.0 | |
+-----------------+-----------------+---------+
| matplotlib | 2.2.2 | |
+-----------------+-----------------+---------+
| numba | 0.46.0 | X |
+-----------------+-----------------+---------+
| openpyxl | 2.5.7 | X |
+-----------------+-----------------+---------+
| pyarrow | 0.13.0 | X |
+-----------------+-----------------+---------+
| pymysql | 0.7.1 | |
+-----------------+-----------------+---------+
| pytables | 3.4.2 | |
+-----------------+-----------------+---------+
| s3fs | 0.3.0 | X |
+-----------------+-----------------+---------+
| scipy | 0.19.0 | |
+-----------------+-----------------+---------+
| sqlalchemy | 1.1.4 | |
+-----------------+-----------------+---------+
| xarray | 0.8.2 | |
+-----------------+-----------------+---------+
| xlrd | 1.1.0 | |
+-----------------+-----------------+---------+
| xlsxwriter | 0.9.8 | |
+-----------------+-----------------+---------+
| xlwt | 1.2.0 | |
+-----------------+-----------------+---------+
See :ref:`install.dependencies` and :ref:`install.optional_dependencies` for more.
Build changes
^^^^^^^^^^^^^
pandas has added a `pyproject.toml <https://www.python.org/dev/peps/pep-0517/>`_ file and will no longer include
cythonized files in the source distribution uploaded to PyPI (:issue:`28341`, :issue:`20775`). If you're installing
a built distribution (wheel) or via conda, this shouldn't have any effect on you. If you're building pandas from
source, you should no longer need to install Cython into your build environment before calling ``pip install pandas``.
.. _whatsnew_100.api.other:
Other API changes
^^^^^^^^^^^^^^^^^
- :meth:`.DataFrameGroupBy.transform` and :meth:`.SeriesGroupBy.transform` now raises on invalid operation names (:issue:`27489`)
- :meth:`pandas.api.types.infer_dtype` will now return "integer-na" for integer and ``np.nan`` mix (:issue:`27283`)
- :meth:`MultiIndex.from_arrays` will no longer infer names from arrays if ``names=None`` is explicitly provided (:issue:`27292`)
- In order to improve tab-completion, pandas does not include most deprecated attributes when introspecting a pandas object using ``dir`` (e.g. ``dir(df)``).
To see which attributes are excluded, see an object's ``_deprecations`` attribute, for example ``pd.DataFrame._deprecations`` (:issue:`28805`).
- The returned dtype of :func:`unique` now matches the input dtype. (:issue:`27874`)
- Changed the default configuration value for ``options.matplotlib.register_converters`` from ``True`` to ``"auto"`` (:issue:`18720`).
Now, pandas custom formatters will only be applied to plots created by pandas, through :meth:`~DataFrame.plot`.
Previously, pandas' formatters would be applied to all plots created *after* a :meth:`~DataFrame.plot`.
See :ref:`units registration <whatsnew_100.matplotlib_units>` for more.
- :meth:`Series.dropna` has dropped its ``**kwargs`` argument in favor of a single ``how`` parameter.
Supplying anything else than ``how`` to ``**kwargs`` raised a ``TypeError`` previously (:issue:`29388`)
- When testing pandas, the new minimum required version of pytest is 5.0.1 (:issue:`29664`)
- :meth:`Series.str.__iter__` was deprecated and will be removed in future releases (:issue:`28277`).
- Added ``<NA>`` to the list of default NA values for :meth:`read_csv` (:issue:`30821`)
.. _whatsnew_100.api.documentation:
Documentation improvements
^^^^^^^^^^^^^^^^^^^^^^^^^^
- Added new section on :ref:`scale` (:issue:`28315`).
- Added sub-section on :ref:`io.query_multi` for HDF5 datasets (:issue:`28791`).
.. ---------------------------------------------------------------------------
.. _whatsnew_100.deprecations:
Deprecations
~~~~~~~~~~~~
- :meth:`Series.item` and :meth:`Index.item` have been _undeprecated_ (:issue:`29250`)
- ``Index.set_value`` has been deprecated. For a given index ``idx``, array ``arr``,
value in ``idx`` of ``idx_val`` and a new value of ``val``, ``idx.set_value(arr, idx_val, val)``
is equivalent to ``arr[idx.get_loc(idx_val)] = val``, which should be used instead (:issue:`28621`).
- :func:`is_extension_type` is deprecated, :func:`is_extension_array_dtype` should be used instead (:issue:`29457`)
- :func:`eval` keyword argument "truediv" is deprecated and will be removed in a future version (:issue:`29812`)
- :meth:`DateOffset.isAnchored` and :meth:`DatetOffset.onOffset` are deprecated and will be removed in a future version, use :meth:`DateOffset.is_anchored` and :meth:`DateOffset.is_on_offset` instead (:issue:`30340`)
- ``pandas.tseries.frequencies.get_offset`` is deprecated and will be removed in a future version, use ``pandas.tseries.frequencies.to_offset`` instead (:issue:`4205`)
- :meth:`Categorical.take_nd` and :meth:`CategoricalIndex.take_nd` are deprecated, use :meth:`Categorical.take` and :meth:`CategoricalIndex.take` instead (:issue:`27745`)
- The parameter ``numeric_only`` of :meth:`Categorical.min` and :meth:`Categorical.max` is deprecated and replaced with ``skipna`` (:issue:`25303`)
- The parameter ``label`` in :func:`lreshape` has been deprecated and will be removed in a future version (:issue:`29742`)
- ``pandas.core.index`` has been deprecated and will be removed in a future version, the public classes are available in the top-level namespace (:issue:`19711`)
- :func:`pandas.json_normalize` is now exposed in the top-level namespace.
Usage of ``json_normalize`` as ``pandas.io.json.json_normalize`` is now deprecated and
it is recommended to use ``json_normalize`` as :func:`pandas.json_normalize` instead (:issue:`27586`).
- The ``numpy`` argument of :meth:`pandas.read_json` is deprecated (:issue:`28512`).
- :meth:`DataFrame.to_stata`, :meth:`DataFrame.to_feather`, and :meth:`DataFrame.to_parquet` argument "fname" is deprecated, use "path" instead (:issue:`23574`)
- The deprecated internal attributes ``_start``, ``_stop`` and ``_step`` of :class:`RangeIndex` now raise a ``FutureWarning`` instead of a ``DeprecationWarning`` (:issue:`26581`)
- The ``pandas.util.testing`` module has been deprecated. Use the public API in ``pandas.testing`` documented at :ref:`api.general.testing` (:issue:`16232`).
- ``pandas.SparseArray`` has been deprecated. Use ``pandas.arrays.SparseArray`` (:class:`arrays.SparseArray`) instead. (:issue:`30642`)
- The parameter ``is_copy`` of :meth:`Series.take` and :meth:`DataFrame.take` has been deprecated and will be removed in a future version. (:issue:`27357`)
- Support for multi-dimensional indexing (e.g. ``index[:, None]``) on a :class:`Index` is deprecated and will be removed in a future version, convert to a numpy array before indexing instead (:issue:`30588`)
- The ``pandas.np`` submodule is now deprecated. Import numpy directly instead (:issue:`30296`)
- The ``pandas.datetime`` class is now deprecated. Import from ``datetime`` instead (:issue:`30610`)
- :class:`~DataFrame.diff` will raise a ``TypeError`` rather than implicitly losing the dtype of extension types in the future. Convert to the correct dtype before calling ``diff`` instead (:issue:`31025`)
**Selecting Columns from a Grouped DataFrame**
When selecting columns from a :class:`DataFrameGroupBy` object, passing individual keys (or a tuple of keys) inside single brackets is deprecated,
a list of items should be used instead. (:issue:`23566`) For example:
.. code-block:: ipython
df = pd.DataFrame({
"A": ["foo", "bar", "foo", "bar", "foo", "bar", "foo", "foo"],
"B": np.random.randn(8),
"C": np.random.randn(8),
})
g = df.groupby('A')
# single key, returns SeriesGroupBy
g['B']
# tuple of single key, returns SeriesGroupBy
g[('B',)]
# tuple of multiple keys, returns DataFrameGroupBy, raises FutureWarning
g[('B', 'C')]
# multiple keys passed directly, returns DataFrameGroupBy, raises FutureWarning
# (implicitly converts the passed strings into a single tuple)
g['B', 'C']
# proper way, returns DataFrameGroupBy
g[['B', 'C']]
.. ---------------------------------------------------------------------------
.. _whatsnew_100.prior_deprecations:
Removal of prior version deprecations/changes
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
**Removed SparseSeries and SparseDataFrame**
``SparseSeries``, ``SparseDataFrame`` and the ``DataFrame.to_sparse`` method
have been removed (:issue:`28425`). We recommend using a ``Series`` or
``DataFrame`` with sparse values instead.
.. _whatsnew_100.matplotlib_units:
**Matplotlib unit registration**
Previously, pandas would register converters with matplotlib as a side effect of importing pandas (:issue:`18720`).
This changed the output of plots made via matplotlib plots after pandas was imported, even if you were using
matplotlib directly rather than :meth:`~DataFrame.plot`.
To use pandas formatters with a matplotlib plot, specify
.. code-block:: ipython
In [1]: import pandas as pd
In [2]: pd.options.plotting.matplotlib.register_converters = True
Note that plots created by :meth:`DataFrame.plot` and :meth:`Series.plot` *do* register the converters
automatically. The only behavior change is when plotting a date-like object via ``matplotlib.pyplot.plot``
or ``matplotlib.Axes.plot``. See :ref:`plotting.formatters` for more.
**Other removals**
- Removed the previously deprecated keyword "index" from :func:`read_stata`, :class:`StataReader`, and :meth:`StataReader.read`, use "index_col" instead (:issue:`17328`)
- Removed ``StataReader.data`` method, use :meth:`StataReader.read` instead (:issue:`9493`)
- Removed ``pandas.plotting._matplotlib.tsplot``, use :meth:`Series.plot` instead (:issue:`19980`)
- ``pandas.tseries.converter.register`` has been moved to :func:`pandas.plotting.register_matplotlib_converters` (:issue:`18307`)
- :meth:`Series.plot` no longer accepts positional arguments, pass keyword arguments instead (:issue:`30003`)
- :meth:`DataFrame.hist` and :meth:`Series.hist` no longer allows ``figsize="default"``, specify figure size by passinig a tuple instead (:issue:`30003`)
- Floordiv of integer-dtyped array by :class:`Timedelta` now raises ``TypeError`` (:issue:`21036`)
- :class:`TimedeltaIndex` and :class:`DatetimeIndex` no longer accept non-nanosecond dtype strings like "timedelta64" or "datetime64", use "timedelta64[ns]" and "datetime64[ns]" instead (:issue:`24806`)
- Changed the default "skipna" argument in :func:`pandas.api.types.infer_dtype` from ``False`` to ``True`` (:issue:`24050`)
- Removed ``Series.ix`` and ``DataFrame.ix`` (:issue:`26438`)
- Removed ``Index.summary`` (:issue:`18217`)
- Removed the previously deprecated keyword "fastpath" from the :class:`Index` constructor (:issue:`23110`)
- Removed ``Series.get_value``, ``Series.set_value``, ``DataFrame.get_value``, ``DataFrame.set_value`` (:issue:`17739`)
- Removed ``Series.compound`` and ``DataFrame.compound`` (:issue:`26405`)
- Changed the default "inplace" argument in :meth:`DataFrame.set_index` and :meth:`Series.set_axis` from ``None`` to ``False`` (:issue:`27600`)
- Removed ``Series.cat.categorical``, ``Series.cat.index``, ``Series.cat.name`` (:issue:`24751`)
- Removed the previously deprecated keyword "box" from :func:`to_datetime` and :func:`to_timedelta`; in addition these now always returns :class:`DatetimeIndex`, :class:`TimedeltaIndex`, :class:`Index`, :class:`Series`, or :class:`DataFrame` (:issue:`24486`)
- :func:`to_timedelta`, :class:`Timedelta`, and :class:`TimedeltaIndex` no longer allow "M", "y", or "Y" for the "unit" argument (:issue:`23264`)
- Removed the previously deprecated keyword "time_rule" from (non-public) ``offsets.generate_range``, which has been moved to :func:`core.arrays._ranges.generate_range` (:issue:`24157`)
- :meth:`DataFrame.loc` or :meth:`Series.loc` with listlike indexers and missing labels will no longer reindex (:issue:`17295`)
- :meth:`DataFrame.to_excel` and :meth:`Series.to_excel` with non-existent columns will no longer reindex (:issue:`17295`)
- Removed the previously deprecated keyword "join_axes" from :func:`concat`; use ``reindex_like`` on the result instead (:issue:`22318`)
- Removed the previously deprecated keyword "by" from :meth:`DataFrame.sort_index`, use :meth:`DataFrame.sort_values` instead (:issue:`10726`)
- Removed support for nested renaming in :meth:`DataFrame.aggregate`, :meth:`Series.aggregate`, :meth:`core.groupby.DataFrameGroupBy.aggregate`, :meth:`core.groupby.SeriesGroupBy.aggregate`, :meth:`core.window.rolling.Rolling.aggregate` (:issue:`18529`)
- Passing ``datetime64`` data to :class:`TimedeltaIndex` or ``timedelta64`` data to ``DatetimeIndex`` now raises ``TypeError`` (:issue:`23539`, :issue:`23937`)
- Passing ``int64`` values to :class:`DatetimeIndex` and a timezone now interprets the values as nanosecond timestamps in UTC, not wall times in the given timezone (:issue:`24559`)
- A tuple passed to :meth:`DataFrame.groupby` is now exclusively treated as a single key (:issue:`18314`)
- Removed ``Index.contains``, use ``key in index`` instead (:issue:`30103`)
- Addition and subtraction of ``int`` or integer-arrays is no longer allowed in :class:`Timestamp`, :class:`DatetimeIndex`, :class:`TimedeltaIndex`, use ``obj + n * obj.freq`` instead of ``obj + n`` (:issue:`22535`)
- Removed ``Series.ptp`` (:issue:`21614`)
- Removed ``Series.from_array`` (:issue:`18258`)
- Removed ``DataFrame.from_items`` (:issue:`18458`)
- Removed ``DataFrame.as_matrix``, ``Series.as_matrix`` (:issue:`18458`)
- Removed ``Series.asobject`` (:issue:`18477`)
- Removed ``DataFrame.as_blocks``, ``Series.as_blocks``, ``DataFrame.blocks``, ``Series.blocks`` (:issue:`17656`)
- :meth:`pandas.Series.str.cat` now defaults to aligning ``others``, using ``join='left'`` (:issue:`27611`)
- :meth:`pandas.Series.str.cat` does not accept list-likes *within* list-likes anymore (:issue:`27611`)
- :meth:`Series.where` with ``Categorical`` dtype (or :meth:`DataFrame.where` with ``Categorical`` column) no longer allows setting new categories (:issue:`24114`)
- Removed the previously deprecated keywords "start", "end", and "periods" from the :class:`DatetimeIndex`, :class:`TimedeltaIndex`, and :class:`PeriodIndex` constructors; use :func:`date_range`, :func:`timedelta_range`, and :func:`period_range` instead (:issue:`23919`)
- Removed the previously deprecated keyword "verify_integrity" from the :class:`DatetimeIndex` and :class:`TimedeltaIndex` constructors (:issue:`23919`)
- Removed the previously deprecated keyword "fastpath" from ``pandas.core.internals.blocks.make_block`` (:issue:`19265`)
- Removed the previously deprecated keyword "dtype" from :meth:`Block.make_block_same_class` (:issue:`19434`)
- Removed ``ExtensionArray._formatting_values``. Use :attr:`ExtensionArray._formatter` instead. (:issue:`23601`)
- Removed ``MultiIndex.to_hierarchical`` (:issue:`21613`)
- Removed ``MultiIndex.labels``, use :attr:`MultiIndex.codes` instead (:issue:`23752`)
- Removed the previously deprecated keyword "labels" from the :class:`MultiIndex` constructor, use "codes" instead (:issue:`23752`)
- Removed ``MultiIndex.set_labels``, use :meth:`MultiIndex.set_codes` instead (:issue:`23752`)
- Removed the previously deprecated keyword "labels" from :meth:`MultiIndex.set_codes`, :meth:`MultiIndex.copy`, :meth:`MultiIndex.drop`, use "codes" instead (:issue:`23752`)
- Removed support for legacy HDF5 formats (:issue:`29787`)
- Passing a dtype alias (e.g. 'datetime64[ns, UTC]') to :class:`DatetimeTZDtype` is no longer allowed, use :meth:`DatetimeTZDtype.construct_from_string` instead (:issue:`23990`)
- Removed the previously deprecated keyword "skip_footer" from :func:`read_excel`; use "skipfooter" instead (:issue:`18836`)
- :func:`read_excel` no longer allows an integer value for the parameter ``usecols``, instead pass a list of integers from 0 to ``usecols`` inclusive (:issue:`23635`)
- Removed the previously deprecated keyword "convert_datetime64" from :meth:`DataFrame.to_records` (:issue:`18902`)
- Removed ``IntervalIndex.from_intervals`` in favor of the :class:`IntervalIndex` constructor (:issue:`19263`)
- Changed the default "keep_tz" argument in :meth:`DatetimeIndex.to_series` from ``None`` to ``True`` (:issue:`23739`)
- Removed ``api.types.is_period`` and ``api.types.is_datetimetz`` (:issue:`23917`)
- Ability to read pickles containing :class:`Categorical` instances created with pre-0.16 version of pandas has been removed (:issue:`27538`)
- Removed ``pandas.tseries.plotting.tsplot`` (:issue:`18627`)
- Removed the previously deprecated keywords "reduce" and "broadcast" from :meth:`DataFrame.apply` (:issue:`18577`)
- Removed the previously deprecated ``assert_raises_regex`` function in ``pandas._testing`` (:issue:`29174`)
- Removed the previously deprecated ``FrozenNDArray`` class in ``pandas.core.indexes.frozen`` (:issue:`29335`)
- Removed the previously deprecated keyword "nthreads" from :func:`read_feather`, use "use_threads" instead (:issue:`23053`)
- Removed ``Index.is_lexsorted_for_tuple`` (:issue:`29305`)
- Removed support for nested renaming in :meth:`DataFrame.aggregate`, :meth:`Series.aggregate`, :meth:`core.groupby.DataFrameGroupBy.aggregate`, :meth:`core.groupby.SeriesGroupBy.aggregate`, :meth:`core.window.rolling.Rolling.aggregate` (:issue:`29608`)
- Removed ``Series.valid``; use :meth:`Series.dropna` instead (:issue:`18800`)
- Removed ``DataFrame.is_copy``, ``Series.is_copy`` (:issue:`18812`)
- Removed ``DataFrame.get_ftype_counts``, ``Series.get_ftype_counts`` (:issue:`18243`)
- Removed ``DataFrame.ftypes``, ``Series.ftypes``, ``Series.ftype`` (:issue:`26744`)
- Removed ``Index.get_duplicates``, use ``idx[idx.duplicated()].unique()`` instead (:issue:`20239`)
- Removed ``Series.clip_upper``, ``Series.clip_lower``, ``DataFrame.clip_upper``, ``DataFrame.clip_lower`` (:issue:`24203`)
- Removed the ability to alter :attr:`DatetimeIndex.freq`, :attr:`TimedeltaIndex.freq`, or :attr:`PeriodIndex.freq` (:issue:`20772`)
- Removed ``DatetimeIndex.offset`` (:issue:`20730`)
- Removed ``DatetimeIndex.asobject``, ``TimedeltaIndex.asobject``, ``PeriodIndex.asobject``, use ``astype(object)`` instead (:issue:`29801`)
- Removed the previously deprecated keyword "order" from :func:`factorize` (:issue:`19751`)
- Removed the previously deprecated keyword "encoding" from :func:`read_stata` and :meth:`DataFrame.to_stata` (:issue:`21400`)
- Changed the default "sort" argument in :func:`concat` from ``None`` to ``False`` (:issue:`20613`)
- Removed the previously deprecated keyword "raise_conflict" from :meth:`DataFrame.update`, use "errors" instead (:issue:`23585`)
- Removed the previously deprecated keyword "n" from :meth:`DatetimeIndex.shift`, :meth:`TimedeltaIndex.shift`, :meth:`PeriodIndex.shift`, use "periods" instead (:issue:`22458`)
- Removed the previously deprecated keywords "how", "fill_method", and "limit" from :meth:`DataFrame.resample` (:issue:`30139`)
- Passing an integer to :meth:`Series.fillna` or :meth:`DataFrame.fillna` with ``timedelta64[ns]`` dtype now raises ``TypeError`` (:issue:`24694`)
- Passing multiple axes to :meth:`DataFrame.dropna` is no longer supported (:issue:`20995`)
- Removed ``Series.nonzero``, use ``to_numpy().nonzero()`` instead (:issue:`24048`)
- Passing floating dtype ``codes`` to :meth:`Categorical.from_codes` is no longer supported, pass ``codes.astype(np.int64)`` instead (:issue:`21775`)
- Removed the previously deprecated keyword "pat" from :meth:`Series.str.partition` and :meth:`Series.str.rpartition`, use "sep" instead (:issue:`23767`)
- Removed ``Series.put`` (:issue:`27106`)
- Removed ``Series.real``, ``Series.imag`` (:issue:`27106`)
- Removed ``Series.to_dense``, ``DataFrame.to_dense`` (:issue:`26684`)
- Removed ``Index.dtype_str``, use ``str(index.dtype)`` instead (:issue:`27106`)
- :meth:`Categorical.ravel` returns a :class:`Categorical` instead of a ``ndarray`` (:issue:`27199`)
- The 'outer' method on Numpy ufuncs, e.g. ``np.subtract.outer`` operating on :class:`Series` objects is no longer supported, and will raise ``NotImplementedError`` (:issue:`27198`)
- Removed ``Series.get_dtype_counts`` and ``DataFrame.get_dtype_counts`` (:issue:`27145`)
- Changed the default "fill_value" argument in :meth:`Categorical.take` from ``True`` to ``False`` (:issue:`20841`)
- Changed the default value for the ``raw`` argument in :func:`Series.rolling().apply() <.Rolling.apply>`, :func:`DataFrame.rolling().apply() <.Rolling.apply>`, :func:`Series.expanding().apply() <.Expanding.apply>`, and :func:`DataFrame.expanding().apply() <.Expanding.apply>` from ``None`` to ``False`` (:issue:`20584`)
- Removed deprecated behavior of :meth:`Series.argmin` and :meth:`Series.argmax`, use :meth:`Series.idxmin` and :meth:`Series.idxmax` for the old behavior (:issue:`16955`)
- Passing a tz-aware ``datetime.datetime`` or :class:`Timestamp` into the :class:`Timestamp` constructor with the ``tz`` argument now raises a ``ValueError`` (:issue:`23621`)
- Removed ``Series.base``, ``Index.base``, ``Categorical.base``, ``Series.flags``, ``Index.flags``, ``PeriodArray.flags``, ``Series.strides``, ``Index.strides``, ``Series.itemsize``, ``Index.itemsize``, ``Series.data``, ``Index.data`` (:issue:`20721`)
- Changed :meth:`Timedelta.resolution` to match the behavior of the standard library ``datetime.timedelta.resolution``, for the old behavior, use :meth:`Timedelta.resolution_string` (:issue:`26839`)
- Removed ``Timestamp.weekday_name``, ``DatetimeIndex.weekday_name``, and ``Series.dt.weekday_name`` (:issue:`18164`)
- Removed the previously deprecated keyword "errors" in :meth:`Timestamp.tz_localize`, :meth:`DatetimeIndex.tz_localize`, and :meth:`Series.tz_localize` (:issue:`22644`)
- Changed the default "ordered" argument in :class:`CategoricalDtype` from ``None`` to ``False`` (:issue:`26336`)
- :meth:`Series.set_axis` and :meth:`DataFrame.set_axis` now require "labels" as the first argument and "axis" as an optional named parameter (:issue:`30089`)
- Removed ``to_msgpack``, ``read_msgpack``, ``DataFrame.to_msgpack``, ``Series.to_msgpack`` (:issue:`27103`)
- Removed ``Series.compress`` (:issue:`21930`)
- Removed the previously deprecated keyword "fill_value" from :meth:`Categorical.fillna`, use "value" instead (:issue:`19269`)
- Removed the previously deprecated keyword "data" from :func:`andrews_curves`, use "frame" instead (:issue:`6956`)
- Removed the previously deprecated keyword "data" from :func:`parallel_coordinates`, use "frame" instead (:issue:`6956`)
- Removed the previously deprecated keyword "colors" from :func:`parallel_coordinates`, use "color" instead (:issue:`6956`)
- Removed the previously deprecated keywords "verbose" and "private_key" from :func:`read_gbq` (:issue:`30200`)
- Calling ``np.array`` and ``np.asarray`` on tz-aware :class:`Series` and :class:`DatetimeIndex` will now return an object array of tz-aware :class:`Timestamp` (:issue:`24596`)
-
.. ---------------------------------------------------------------------------
.. _whatsnew_100.performance:
Performance improvements
~~~~~~~~~~~~~~~~~~~~~~~~
- Performance improvement in :class:`DataFrame` arithmetic and comparison operations with scalars (:issue:`24990`, :issue:`29853`)
- Performance improvement in indexing with a non-unique :class:`IntervalIndex` (:issue:`27489`)
- Performance improvement in :attr:`MultiIndex.is_monotonic` (:issue:`27495`)
- Performance improvement in :func:`cut` when ``bins`` is an :class:`IntervalIndex` (:issue:`27668`)
- Performance improvement when initializing a :class:`DataFrame` using a ``range`` (:issue:`30171`)
- Performance improvement in :meth:`DataFrame.corr` when ``method`` is ``"spearman"`` (:issue:`28139`)
- Performance improvement in :meth:`DataFrame.replace` when provided a list of values to replace (:issue:`28099`)
- Performance improvement in :meth:`DataFrame.select_dtypes` by using vectorization instead of iterating over a loop (:issue:`28317`)
- Performance improvement in :meth:`Categorical.searchsorted` and :meth:`CategoricalIndex.searchsorted` (:issue:`28795`)
- Performance improvement when comparing a :class:`Categorical` with a scalar and the scalar is not found in the categories (:issue:`29750`)
- Performance improvement when checking if values in a :class:`Categorical` are equal, equal or larger or larger than a given scalar.
The improvement is not present if checking if the :class:`Categorical` is less than or less than or equal than the scalar (:issue:`29820`)
- Performance improvement in :meth:`Index.equals` and :meth:`MultiIndex.equals` (:issue:`29134`)
- Performance improvement in :func:`~pandas.api.types.infer_dtype` when ``skipna`` is ``True`` (:issue:`28814`)
.. ---------------------------------------------------------------------------
.. _whatsnew_100.bug_fixes:
Bug fixes
~~~~~~~~~
Categorical
^^^^^^^^^^^
- Added test to assert the :func:`fillna` raises the correct ``ValueError`` message when the value isn't a value from categories (:issue:`13628`)
- Bug in :meth:`Categorical.astype` where ``NaN`` values were handled incorrectly when casting to int (:issue:`28406`)
- :meth:`DataFrame.reindex` with a :class:`CategoricalIndex` would fail when the targets contained duplicates, and wouldn't fail if the source contained duplicates (:issue:`28107`)
- Bug in :meth:`Categorical.astype` not allowing for casting to extension dtypes (:issue:`28668`)
- Bug where :func:`merge` was unable to join on categorical and extension dtype columns (:issue:`28668`)
- :meth:`Categorical.searchsorted` and :meth:`CategoricalIndex.searchsorted` now work on unordered categoricals also (:issue:`21667`)
- Added test to assert roundtripping to parquet with :func:`DataFrame.to_parquet` or :func:`read_parquet` will preserve Categorical dtypes for string types (:issue:`27955`)
- Changed the error message in :meth:`Categorical.remove_categories` to always show the invalid removals as a set (:issue:`28669`)
- Using date accessors on a categorical dtyped :class:`Series` of datetimes was not returning an object of the
same type as if one used the :meth:`.str.` / :meth:`.dt.` on a :class:`Series` of that type. E.g. when accessing :meth:`Series.dt.tz_localize` on a
:class:`Categorical` with duplicate entries, the accessor was skipping duplicates (:issue:`27952`)
- Bug in :meth:`DataFrame.replace` and :meth:`Series.replace` that would give incorrect results on categorical data (:issue:`26988`)
- Bug where calling :meth:`Categorical.min` or :meth:`Categorical.max` on an empty Categorical would raise a numpy exception (:issue:`30227`)
- The following methods now also correctly output values for unobserved categories when called through ``groupby(..., observed=False)`` (:issue:`17605`)
* :meth:`core.groupby.SeriesGroupBy.count`
* :meth:`core.groupby.SeriesGroupBy.size`
* :meth:`core.groupby.SeriesGroupBy.nunique`
* :meth:`core.groupby.SeriesGroupBy.nth`
Datetimelike
^^^^^^^^^^^^
- Bug in :meth:`Series.__setitem__` incorrectly casting ``np.timedelta64("NaT")`` to ``np.datetime64("NaT")`` when inserting into a :class:`Series` with datetime64 dtype (:issue:`27311`)
- Bug in :meth:`Series.dt` property lookups when the underlying data is read-only (:issue:`27529`)
- Bug in ``HDFStore.__getitem__`` incorrectly reading tz attribute created in Python 2 (:issue:`26443`)
- Bug in :func:`to_datetime` where passing arrays of malformed ``str`` with errors="coerce" could incorrectly lead to raising ``ValueError`` (:issue:`28299`)
- Bug in :meth:`core.groupby.SeriesGroupBy.nunique` where ``NaT`` values were interfering with the count of unique values (:issue:`27951`)
- Bug in :class:`Timestamp` subtraction when subtracting a :class:`Timestamp` from a ``np.datetime64`` object incorrectly raising ``TypeError`` (:issue:`28286`)
- Addition and subtraction of integer or integer-dtype arrays with :class:`Timestamp` will now raise ``NullFrequencyError`` instead of ``ValueError`` (:issue:`28268`)
- Bug in :class:`Series` and :class:`DataFrame` with integer dtype failing to raise ``TypeError`` when adding or subtracting a ``np.datetime64`` object (:issue:`28080`)
- Bug in :meth:`Series.astype`, :meth:`Index.astype`, and :meth:`DataFrame.astype` failing to handle ``NaT`` when casting to an integer dtype (:issue:`28492`)
- Bug in :class:`Week` with ``weekday`` incorrectly raising ``AttributeError`` instead of ``TypeError`` when adding or subtracting an invalid type (:issue:`28530`)
- Bug in :class:`DataFrame` arithmetic operations when operating with a :class:`Series` with dtype ``'timedelta64[ns]'`` (:issue:`28049`)
- Bug in :func:`core.groupby.generic.SeriesGroupBy.apply` raising ``ValueError`` when a column in the original DataFrame is a datetime and the column labels are not standard integers (:issue:`28247`)
- Bug in :func:`pandas._config.localization.get_locales` where the ``locales -a`` encodes the locales list as windows-1252 (:issue:`23638`, :issue:`24760`, :issue:`27368`)
- Bug in :meth:`Series.var` failing to raise ``TypeError`` when called with ``timedelta64[ns]`` dtype (:issue:`28289`)
- Bug in :meth:`DatetimeIndex.strftime` and :meth:`Series.dt.strftime` where ``NaT`` was converted to the string ``'NaT'`` instead of ``np.nan`` (:issue:`29578`)
- Bug in masking datetime-like arrays with a boolean mask of an incorrect length not raising an ``IndexError`` (:issue:`30308`)
- Bug in :attr:`Timestamp.resolution` being a property instead of a class attribute (:issue:`29910`)
- Bug in :func:`pandas.to_datetime` when called with ``None`` raising ``TypeError`` instead of returning ``NaT`` (:issue:`30011`)
- Bug in :func:`pandas.to_datetime` failing for ``deque`` objects when using ``cache=True`` (the default) (:issue:`29403`)
- Bug in :meth:`Series.item` with ``datetime64`` or ``timedelta64`` dtype, :meth:`DatetimeIndex.item`, and :meth:`TimedeltaIndex.item` returning an integer instead of a :class:`Timestamp` or :class:`Timedelta` (:issue:`30175`)
- Bug in :class:`DatetimeIndex` addition when adding a non-optimized :class:`DateOffset` incorrectly dropping timezone information (:issue:`30336`)
- Bug in :meth:`DataFrame.drop` where attempting to drop non-existent values from a DatetimeIndex would yield a confusing error message (:issue:`30399`)
- Bug in :meth:`DataFrame.append` would remove the timezone-awareness of new data (:issue:`30238`)
- Bug in :meth:`Series.cummin` and :meth:`Series.cummax` with timezone-aware dtype incorrectly dropping its timezone (:issue:`15553`)
- Bug in :class:`DatetimeArray`, :class:`TimedeltaArray`, and :class:`PeriodArray` where inplace addition and subtraction did not actually operate inplace (:issue:`24115`)
- Bug in :func:`pandas.to_datetime` when called with ``Series`` storing ``IntegerArray`` raising ``TypeError`` instead of returning ``Series`` (:issue:`30050`)
- Bug in :func:`date_range` with custom business hours as ``freq`` and given number of ``periods`` (:issue:`30593`)
- Bug in :class:`PeriodIndex` comparisons with incorrectly casting integers to :class:`Period` objects, inconsistent with the :class:`Period` comparison behavior (:issue:`30722`)
- Bug in :meth:`DatetimeIndex.insert` raising a ``ValueError`` instead of a ``TypeError`` when trying to insert a timezone-aware :class:`Timestamp` into a timezone-naive :class:`DatetimeIndex`, or vice-versa (:issue:`30806`)
Timedelta
^^^^^^^^^
- Bug in subtracting a :class:`TimedeltaIndex` or :class:`TimedeltaArray` from a ``np.datetime64`` object (:issue:`29558`)
-
Timezones
^^^^^^^^^
-
Numeric
^^^^^^^
- Bug in :meth:`DataFrame.quantile` with zero-column :class:`DataFrame` incorrectly raising (:issue:`23925`)
- :class:`DataFrame` flex inequality comparisons methods (:meth:`DataFrame.lt`, :meth:`DataFrame.le`, :meth:`DataFrame.gt`, :meth:`DataFrame.ge`) with object-dtype and ``complex`` entries failing to raise ``TypeError`` like their :class:`Series` counterparts (:issue:`28079`)
- Bug in :class:`DataFrame` logical operations (``&``, ``|``, ``^``) not matching :class:`Series` behavior by filling NA values (:issue:`28741`)
- Bug in :meth:`DataFrame.interpolate` where specifying axis by name references variable before it is assigned (:issue:`29142`)
- Bug in :meth:`Series.var` not computing the right value with a nullable integer dtype series not passing through ddof argument (:issue:`29128`)
- Improved error message when using ``frac`` > 1 and ``replace`` = False (:issue:`27451`)
- Bug in numeric indexes resulted in it being possible to instantiate an :class:`Int64Index`, :class:`UInt64Index`, or :class:`Float64Index` with an invalid dtype (e.g. datetime-like) (:issue:`29539`)
- Bug in :class:`UInt64Index` precision loss while constructing from a list with values in the ``np.uint64`` range (:issue:`29526`)
- Bug in :class:`NumericIndex` construction that caused indexing to fail when integers in the ``np.uint64`` range were used (:issue:`28023`)
- Bug in :class:`NumericIndex` construction that caused :class:`UInt64Index` to be casted to :class:`Float64Index` when integers in the ``np.uint64`` range were used to index a :class:`DataFrame` (:issue:`28279`)
- Bug in :meth:`Series.interpolate` when using method=`index` with an unsorted index, would previously return incorrect results. (:issue:`21037`)
- Bug in :meth:`DataFrame.round` where a :class:`DataFrame` with a :class:`CategoricalIndex` of :class:`IntervalIndex` columns would incorrectly raise a ``TypeError`` (:issue:`30063`)
- Bug in :meth:`Series.pct_change` and :meth:`DataFrame.pct_change` when there are duplicated indices (:issue:`30463`)
- Bug in :class:`DataFrame` cumulative operations (e.g. cumsum, cummax) incorrect casting to object-dtype (:issue:`19296`)
- Bug in :class:`~DataFrame.diff` losing the dtype for extension types (:issue:`30889`)
- Bug in :class:`DataFrame.diff` raising an ``IndexError`` when one of the columns was a nullable integer dtype (:issue:`30967`)
Conversion
^^^^^^^^^^
-
Strings
^^^^^^^
- Calling :meth:`Series.str.isalnum` (and other "ismethods") on an empty ``Series`` would return an ``object`` dtype instead of ``bool`` (:issue:`29624`)
-
Interval
^^^^^^^^
- Bug in :meth:`IntervalIndex.get_indexer` where a :class:`Categorical` or :class:`CategoricalIndex` ``target`` would incorrectly raise a ``TypeError`` (:issue:`30063`)
- Bug in ``pandas.core.dtypes.cast.infer_dtype_from_scalar`` where passing ``pandas_dtype=True`` did not infer :class:`IntervalDtype` (:issue:`30337`)
- Bug in :class:`Series` constructor where constructing a ``Series`` from a ``list`` of :class:`Interval` objects resulted in ``object`` dtype instead of :class:`IntervalDtype` (:issue:`23563`)
- Bug in :class:`IntervalDtype` where the ``kind`` attribute was incorrectly set as ``None`` instead of ``"O"`` (:issue:`30568`)
- Bug in :class:`IntervalIndex`, :class:`~arrays.IntervalArray`, and :class:`Series` with interval data where equality comparisons were incorrect (:issue:`24112`)
Indexing
^^^^^^^^
- Bug in assignment using a reverse slicer (:issue:`26939`)
- Bug in :meth:`DataFrame.explode` would duplicate frame in the presence of duplicates in the index (:issue:`28010`)
- Bug in reindexing a :meth:`PeriodIndex` with another type of index that contained a ``Period`` (:issue:`28323`) (:issue:`28337`)
- Fix assignment of column via ``.loc`` with numpy non-ns datetime type (:issue:`27395`)
- Bug in :meth:`Float64Index.astype` where ``np.inf`` was not handled properly when casting to an integer dtype (:issue:`28475`)
- :meth:`Index.union` could fail when the left contained duplicates (:issue:`28257`)
- Bug when indexing with ``.loc`` where the index was a :class:`CategoricalIndex` with non-string categories didn't work (:issue:`17569`, :issue:`30225`)
- :meth:`Index.get_indexer_non_unique` could fail with ``TypeError`` in some cases, such as when searching for ints in a string index (:issue:`28257`)
- Bug in :meth:`Float64Index.get_loc` incorrectly raising ``TypeError`` instead of ``KeyError`` (:issue:`29189`)
- Bug in :meth:`DataFrame.loc` with incorrect dtype when setting Categorical value in 1-row DataFrame (:issue:`25495`)
- :meth:`MultiIndex.get_loc` can't find missing values when input includes missing values (:issue:`19132`)
- Bug in :meth:`Series.__setitem__` incorrectly assigning values with boolean indexer when the length of new data matches the number of ``True`` values and new data is not a ``Series`` or an ``np.array`` (:issue:`30567`)
- Bug in indexing with a :class:`PeriodIndex` incorrectly accepting integers representing years, use e.g. ``ser.loc["2007"]`` instead of ``ser.loc[2007]`` (:issue:`30763`)
Missing
^^^^^^^
-
MultiIndex
^^^^^^^^^^
- Constructor for :class:`MultiIndex` verifies that the given ``sortorder`` is compatible with the actual ``lexsort_depth`` if ``verify_integrity`` parameter is ``True`` (the default) (:issue:`28735`)
- Series and MultiIndex ``.drop`` with ``MultiIndex`` raise exception if labels not in given in level (:issue:`8594`)
-
IO
^^
- :meth:`read_csv` now accepts binary mode file buffers when using the Python csv engine (:issue:`23779`)
- Bug in :meth:`DataFrame.to_json` where using a Tuple as a column or index value and using ``orient="columns"`` or ``orient="index"`` would produce invalid JSON (:issue:`20500`)
- Improve infinity parsing. :meth:`read_csv` now interprets ``Infinity``, ``+Infinity``, ``-Infinity`` as floating point values (:issue:`10065`)
- Bug in :meth:`DataFrame.to_csv` where values were truncated when the length of ``na_rep`` was shorter than the text input data. (:issue:`25099`)
- Bug in :func:`DataFrame.to_string` where values were truncated using display options instead of outputting the full content (:issue:`9784`)
- Bug in :meth:`DataFrame.to_json` where a datetime column label would not be written out in ISO format with ``orient="table"`` (:issue:`28130`)
- Bug in :func:`DataFrame.to_parquet` where writing to GCS would fail with ``engine='fastparquet'`` if the file did not already exist (:issue:`28326`)
- Bug in :func:`read_hdf` closing stores that it didn't open when Exceptions are raised (:issue:`28699`)
- Bug in :meth:`DataFrame.read_json` where using ``orient="index"`` would not maintain the order (:issue:`28557`)
- Bug in :meth:`DataFrame.to_html` where the length of the ``formatters`` argument was not verified (:issue:`28469`)
- Bug in :meth:`DataFrame.read_excel` with ``engine='ods'`` when ``sheet_name`` argument references a non-existent sheet (:issue:`27676`)
- Bug in :meth:`pandas.io.formats.style.Styler` formatting for floating values not displaying decimals correctly (:issue:`13257`)
- Bug in :meth:`DataFrame.to_html` when using ``formatters=<list>`` and ``max_cols`` together. (:issue:`25955`)
- Bug in :meth:`Styler.background_gradient` not able to work with dtype ``Int64`` (:issue:`28869`)
- Bug in :meth:`DataFrame.to_clipboard` which did not work reliably in ipython (:issue:`22707`)
- Bug in :func:`read_json` where default encoding was not set to ``utf-8`` (:issue:`29565`)
- Bug in :class:`PythonParser` where str and bytes were being mixed when dealing with the decimal field (:issue:`29650`)
- :meth:`read_gbq` now accepts ``progress_bar_type`` to display progress bar while the data downloads. (:issue:`29857`)
- Bug in :func:`pandas.io.json.json_normalize` where a missing value in the location specified by ``record_path`` would raise a ``TypeError`` (:issue:`30148`)
- :func:`read_excel` now accepts binary data (:issue:`15914`)
- Bug in :meth:`read_csv` in which encoding handling was limited to just the string ``utf-16`` for the C engine (:issue:`24130`)
Plotting
^^^^^^^^
- Bug in :meth:`Series.plot` not able to plot boolean values (:issue:`23719`)
- Bug in :meth:`DataFrame.plot` not able to plot when no rows (:issue:`27758`)
- Bug in :meth:`DataFrame.plot` producing incorrect legend markers when plotting multiple series on the same axis (:issue:`18222`)
- Bug in :meth:`DataFrame.plot` when ``kind='box'`` and data contains datetime or timedelta data. These types are now automatically dropped (:issue:`22799`)
- Bug in :meth:`DataFrame.plot.line` and :meth:`DataFrame.plot.area` produce wrong xlim in x-axis (:issue:`27686`, :issue:`25160`, :issue:`24784`)
- Bug where :meth:`DataFrame.boxplot` would not accept a ``color`` parameter like :meth:`DataFrame.plot.box` (:issue:`26214`)
- Bug in the ``xticks`` argument being ignored for :meth:`DataFrame.plot.bar` (:issue:`14119`)
- :func:`set_option` now validates that the plot backend provided to ``'plotting.backend'`` implements the backend when the option is set, rather than when a plot is created (:issue:`28163`)
- :meth:`DataFrame.plot` now allow a ``backend`` keyword argument to allow changing between backends in one session (:issue:`28619`).
- Bug in color validation incorrectly raising for non-color styles (:issue:`29122`).
- Allow :meth:`DataFrame.plot.scatter` to plot ``objects`` and ``datetime`` type data (:issue:`18755`, :issue:`30391`)
- Bug in :meth:`DataFrame.hist`, ``xrot=0`` does not work with ``by`` and subplots (:issue:`30288`).
GroupBy/resample/rolling
^^^^^^^^^^^^^^^^^^^^^^^^
- Bug in :meth:`core.groupby.DataFrameGroupBy.apply` only showing output from a single group when function returns an :class:`Index` (:issue:`28652`)
- Bug in :meth:`DataFrame.groupby` with multiple groups where an ``IndexError`` would be raised if any group contained all NA values (:issue:`20519`)
- Bug in :meth:`.Resampler.size` and :meth:`.Resampler.count` returning wrong dtype when used with an empty :class:`Series` or :class:`DataFrame` (:issue:`28427`)
- Bug in :meth:`DataFrame.rolling` not allowing for rolling over datetimes when ``axis=1`` (:issue:`28192`)
- Bug in :meth:`DataFrame.rolling` not allowing rolling over multi-index levels (:issue:`15584`).
- Bug in :meth:`DataFrame.rolling` not allowing rolling on monotonic decreasing time indexes (:issue:`19248`).
- Bug in :meth:`DataFrame.groupby` not offering selection by column name when ``axis=1`` (:issue:`27614`)
- Bug in :meth:`core.groupby.DataFrameGroupby.agg` not able to use lambda function with named aggregation (:issue:`27519`)
- Bug in :meth:`DataFrame.groupby` losing column name information when grouping by a categorical column (:issue:`28787`)
- Remove error raised due to duplicated input functions in named aggregation in :meth:`DataFrame.groupby` and :meth:`Series.groupby`. Previously error will be raised if the same function is applied on the same column and now it is allowed if new assigned names are different. (:issue:`28426`)
- :meth:`core.groupby.SeriesGroupBy.value_counts` will be able to handle the case even when the :class:`Grouper` makes empty groups (:issue:`28479`)
- Bug in :meth:`core.window.rolling.Rolling.quantile` ignoring ``interpolation`` keyword argument when used within a groupby (:issue:`28779`)
- Bug in :meth:`DataFrame.groupby` where ``any``, ``all``, ``nunique`` and transform functions would incorrectly handle duplicate column labels (:issue:`21668`)
- Bug in :meth:`core.groupby.DataFrameGroupBy.agg` with timezone-aware datetime64 column incorrectly casting results to the original dtype (:issue:`29641`)
- Bug in :meth:`DataFrame.groupby` when using axis=1 and having a single level columns index (:issue:`30208`)
- Bug in :meth:`DataFrame.groupby` when using nunique on axis=1 (:issue:`30253`)
- Bug in :meth:`.DataFrameGroupBy.quantile` and :meth:`.SeriesGroupBy.quantile` with multiple list-like q value and integer column names (:issue:`30289`)
- Bug in :meth:`.DataFrameGroupBy.pct_change` and :meth:`.SeriesGroupBy.pct_change` causes ``TypeError`` when ``fill_method`` is ``None`` (:issue:`30463`)
- Bug in :meth:`Rolling.count` and :meth:`Expanding.count` argument where ``min_periods`` was ignored (:issue:`26996`)
Reshaping
^^^^^^^^^
- Bug in :meth:`DataFrame.apply` that caused incorrect output with empty :class:`DataFrame` (:issue:`28202`, :issue:`21959`)
- Bug in :meth:`DataFrame.stack` not handling non-unique indexes correctly when creating MultiIndex (:issue:`28301`)
- Bug in :meth:`pivot_table` not returning correct type ``float`` when ``margins=True`` and ``aggfunc='mean'`` (:issue:`24893`)
- Bug :func:`merge_asof` could not use :class:`datetime.timedelta` for ``tolerance`` kwarg (:issue:`28098`)
- Bug in :func:`merge`, did not append suffixes correctly with MultiIndex (:issue:`28518`)
- :func:`qcut` and :func:`cut` now handle boolean input (:issue:`20303`)
- Fix to ensure all int dtypes can be used in :func:`merge_asof` when using a tolerance value. Previously every non-int64 type would raise an erroneous ``MergeError`` (:issue:`28870`).
- Better error message in :func:`get_dummies` when ``columns`` isn't a list-like value (:issue:`28383`)
- Bug in :meth:`Index.join` that caused infinite recursion error for mismatched ``MultiIndex`` name orders. (:issue:`25760`, :issue:`28956`)
- Bug :meth:`Series.pct_change` where supplying an anchored frequency would throw a ``ValueError`` (:issue:`28664`)
- Bug where :meth:`DataFrame.equals` returned True incorrectly in some cases when two DataFrames had the same columns in different orders (:issue:`28839`)
- Bug in :meth:`DataFrame.replace` that caused non-numeric replacer's dtype not respected (:issue:`26632`)
- Bug in :func:`melt` where supplying mixed strings and numeric values for ``id_vars`` or ``value_vars`` would incorrectly raise a ``ValueError`` (:issue:`29718`)
- Dtypes are now preserved when transposing a ``DataFrame`` where each column is the same extension dtype (:issue:`30091`)
- Bug in :func:`merge_asof` merging on a tz-aware ``left_index`` and ``right_on`` a tz-aware column (:issue:`29864`)
- Improved error message and docstring in :func:`cut` and :func:`qcut` when ``labels=True`` (:issue:`13318`)
- Bug in missing ``fill_na`` parameter to :meth:`DataFrame.unstack` with list of levels (:issue:`30740`)
Sparse
^^^^^^
- Bug in :class:`SparseDataFrame` arithmetic operations incorrectly casting inputs to float (:issue:`28107`)
- Bug in ``DataFrame.sparse`` returning a ``Series`` when there was a column named ``sparse`` rather than the accessor (:issue:`30758`)
- Fixed :meth:`operator.xor` with a boolean-dtype ``SparseArray``. Now returns a sparse result, rather than object dtype (:issue:`31025`)
ExtensionArray
^^^^^^^^^^^^^^
- Bug in :class:`arrays.PandasArray` when setting a scalar string (:issue:`28118`, :issue:`28150`).
- Bug where nullable integers could not be compared to strings (:issue:`28930`)
- Bug where :class:`DataFrame` constructor raised ``ValueError`` with list-like data and ``dtype`` specified (:issue:`30280`)
Other
^^^^^
- Trying to set the ``display.precision``, ``display.max_rows`` or ``display.max_columns`` using :meth:`set_option` to anything but a ``None`` or a positive int will raise a ``ValueError`` (:issue:`23348`)
- Using :meth:`DataFrame.replace` with overlapping keys in a nested dictionary will no longer raise, now matching the behavior of a flat dictionary (:issue:`27660`)
- :meth:`DataFrame.to_csv` and :meth:`Series.to_csv` now support dicts as ``compression`` argument with key ``'method'`` being the compression method and others as additional compression options when the compression method is ``'zip'``. (:issue:`26023`)
- Bug in :meth:`Series.diff` where a boolean series would incorrectly raise a ``TypeError`` (:issue:`17294`)
- :meth:`Series.append` will no longer raise a ``TypeError`` when passed a tuple of ``Series`` (:issue:`28410`)
- Fix corrupted error message when calling ``pandas.libs._json.encode()`` on a 0d array (:issue:`18878`)
- Backtick quoting in :meth:`DataFrame.query` and :meth:`DataFrame.eval` can now also be used to use invalid identifiers like names that start with a digit, are python keywords, or are using single character operators. (:issue:`27017`)
- Bug in ``pd.core.util.hashing.hash_pandas_object`` where arrays containing tuples were incorrectly treated as non-hashable (:issue:`28969`)
- Bug in :meth:`DataFrame.append` that raised ``IndexError`` when appending with empty list (:issue:`28769`)
- Fix :class:`AbstractHolidayCalendar` to return correct results for
years after 2030 (now goes up to 2200) (:issue:`27790`)
- Fixed :class:`~arrays.IntegerArray` returning ``inf`` rather than ``NaN`` for operations dividing by ``0`` (:issue:`27398`)
- Fixed ``pow`` operations for :class:`~arrays.IntegerArray` when the other value is ``0`` or ``1`` (:issue:`29997`)
- Bug in :meth:`Series.count` raises if use_inf_as_na is enabled (:issue:`29478`)
- Bug in :class:`Index` where a non-hashable name could be set without raising ``TypeError`` (:issue:`29069`)
- Bug in :class:`DataFrame` constructor when passing a 2D ``ndarray`` and an extension dtype (:issue:`12513`)
- Bug in :meth:`DataFrame.to_csv` when supplied a series with a ``dtype="string"`` and a ``na_rep``, the ``na_rep`` was being truncated to 2 characters. (:issue:`29975`)
- Bug where :meth:`DataFrame.itertuples` would incorrectly determine whether or not namedtuples could be used for dataframes of 255 columns (:issue:`28282`)
- Handle nested NumPy ``object`` arrays in :func:`testing.assert_series_equal` for ExtensionArray implementations (:issue:`30841`)
- Bug in :class:`Index` constructor incorrectly allowing 2-dimensional input arrays (:issue:`13601`, :issue:`27125`)
.. ---------------------------------------------------------------------------
.. _whatsnew_100.contributors:
Contributors
~~~~~~~~~~~~
.. contributors:: v0.25.3..v1.0.0
|