1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249
|
.. _whatsnew_130:
What's new in 1.3.0 (July 2, 2021)
----------------------------------
These are the changes in pandas 1.3.0. See :ref:`release` for a full changelog
including other versions of pandas.
{{ header }}
.. warning::
When reading new Excel 2007+ (``.xlsx``) files, the default argument
``engine=None`` to :func:`read_excel` will now result in using the
`openpyxl <https://openpyxl.readthedocs.io/en/stable/>`_ engine in all cases
when the option :attr:`io.excel.xlsx.reader` is set to ``"auto"``.
Previously, some cases would use the
`xlrd <https://xlrd.readthedocs.io/en/latest/>`_ engine instead. See
:ref:`What's new 1.2.0 <whatsnew_120>` for background on this change.
.. ---------------------------------------------------------------------------
.. _whatsnew_130.enhancements:
Enhancements
~~~~~~~~~~~~
.. _whatsnew_130.enhancements.read_csv_json_http_headers:
Custom HTTP(s) headers when reading csv or json files
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
When reading from a remote URL that is not handled by fsspec (e.g. HTTP and
HTTPS) the dictionary passed to ``storage_options`` will be used to create the
headers included in the request. This can be used to control the User-Agent
header or send other custom headers (:issue:`36688`).
For example:
.. code-block:: ipython
In [1]: headers = {"User-Agent": "pandas"}
In [2]: df = pd.read_csv(
...: "https://download.bls.gov/pub/time.series/cu/cu.item",
...: sep="\t",
...: storage_options=headers
...: )
.. _whatsnew_130.enhancements.read_to_xml:
Read and write XML documents
^^^^^^^^^^^^^^^^^^^^^^^^^^^^
We added I/O support to read and render shallow versions of `XML`_ documents with
:func:`read_xml` and :meth:`DataFrame.to_xml`. Using `lxml`_ as parser,
both XPath 1.0 and XSLT 1.0 are available. (:issue:`27554`)
.. _XML: https://www.w3.org/standards/xml/core
.. _lxml: https://lxml.de
.. code-block:: ipython
In [1]: xml = """<?xml version='1.0' encoding='utf-8'?>
...: <data>
...: <row>
...: <shape>square</shape>
...: <degrees>360</degrees>
...: <sides>4.0</sides>
...: </row>
...: <row>
...: <shape>circle</shape>
...: <degrees>360</degrees>
...: <sides/>
...: </row>
...: <row>
...: <shape>triangle</shape>
...: <degrees>180</degrees>
...: <sides>3.0</sides>
...: </row>
...: </data>"""
In [2]: df = pd.read_xml(xml)
In [3]: df
Out[3]:
shape degrees sides
0 square 360 4.0
1 circle 360 NaN
2 triangle 180 3.0
In [4]: df.to_xml()
Out[4]:
<?xml version='1.0' encoding='utf-8'?>
<data>
<row>
<index>0</index>
<shape>square</shape>
<degrees>360</degrees>
<sides>4.0</sides>
</row>
<row>
<index>1</index>
<shape>circle</shape>
<degrees>360</degrees>
<sides/>
</row>
<row>
<index>2</index>
<shape>triangle</shape>
<degrees>180</degrees>
<sides>3.0</sides>
</row>
</data>
For more, see :ref:`io.xml` in the user guide on IO tools.
.. _whatsnew_130.enhancements.styler:
Styler enhancements
^^^^^^^^^^^^^^^^^^^
We provided some focused development on :class:`.Styler`. See also the `Styler documentation <../user_guide/style.ipynb>`_
which has been revised and improved (:issue:`39720`, :issue:`39317`, :issue:`40493`).
- The method :meth:`.Styler.set_table_styles` can now accept more natural CSS language for arguments, such as ``'color:red;'`` instead of ``[('color', 'red')]`` (:issue:`39563`)
- The methods :meth:`.Styler.highlight_null`, :meth:`.Styler.highlight_min`, and :meth:`.Styler.highlight_max` now allow custom CSS highlighting instead of the default background coloring (:issue:`40242`)
- :meth:`.Styler.apply` now accepts functions that return an ``ndarray`` when ``axis=None``, making it now consistent with the ``axis=0`` and ``axis=1`` behavior (:issue:`39359`)
- When incorrectly formatted CSS is given via :meth:`.Styler.apply` or :meth:`.Styler.applymap`, an error is now raised upon rendering (:issue:`39660`)
- :meth:`.Styler.format` now accepts the keyword argument ``escape`` for optional HTML and LaTeX escaping (:issue:`40388`, :issue:`41619`)
- :meth:`.Styler.background_gradient` has gained the argument ``gmap`` to supply a specific gradient map for shading (:issue:`22727`)
- :meth:`.Styler.clear` now clears :attr:`Styler.hidden_index` and :attr:`Styler.hidden_columns` as well (:issue:`40484`)
- Added the method :meth:`.Styler.highlight_between` (:issue:`39821`)
- Added the method :meth:`.Styler.highlight_quantile` (:issue:`40926`)
- Added the method :meth:`.Styler.text_gradient` (:issue:`41098`)
- Added the method :meth:`.Styler.set_tooltips` to allow hover tooltips; this can be used enhance interactive displays (:issue:`21266`, :issue:`40284`)
- Added the parameter ``precision`` to the method :meth:`.Styler.format` to control the display of floating point numbers (:issue:`40134`)
- :class:`.Styler` rendered HTML output now follows the `w3 HTML Style Guide <https://www.w3schools.com/html/html5_syntax.asp>`_ (:issue:`39626`)
- Many features of the :class:`.Styler` class are now either partially or fully usable on a DataFrame with a non-unique indexes or columns (:issue:`41143`)
- One has greater control of the display through separate sparsification of the index or columns using the :ref:`new styler options <options.available>`, which are also usable via :func:`option_context` (:issue:`41142`)
- Added the option ``styler.render.max_elements`` to avoid browser overload when styling large DataFrames (:issue:`40712`)
- Added the method :meth:`.Styler.to_latex` (:issue:`21673`, :issue:`42320`), which also allows some limited CSS conversion (:issue:`40731`)
- Added the method :meth:`.Styler.to_html` (:issue:`13379`)
- Added the method :meth:`.Styler.set_sticky` to make index and column headers permanently visible in scrolling HTML frames (:issue:`29072`)
.. _whatsnew_130.enhancements.dataframe_honors_copy_with_dict:
DataFrame constructor honors ``copy=False`` with dict
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
When passing a dictionary to :class:`DataFrame` with ``copy=False``,
a copy will no longer be made (:issue:`32960`).
.. ipython:: python
arr = np.array([1, 2, 3])
df = pd.DataFrame({"A": arr, "B": arr.copy()}, copy=False)
df
``df["A"]`` remains a view on ``arr``:
.. ipython:: python
arr[0] = 0
assert df.iloc[0, 0] == 0
The default behavior when not passing ``copy`` will remain unchanged, i.e.
a copy will be made.
.. _whatsnew_130.enhancements.arrow_string:
PyArrow backed string data type
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
We've enhanced the :class:`StringDtype`, an extension type dedicated to string data.
(:issue:`39908`)
It is now possible to specify a ``storage`` keyword option to :class:`StringDtype`. Use
pandas options or specify the dtype using ``dtype='string[pyarrow]'`` to allow the
StringArray to be backed by a PyArrow array instead of a NumPy array of Python objects.
The PyArrow backed StringArray requires pyarrow 1.0.0 or greater to be installed.
.. warning::
``string[pyarrow]`` is currently considered experimental. The implementation
and parts of the API may change without warning.
.. ipython:: python
pd.Series(['abc', None, 'def'], dtype=pd.StringDtype(storage="pyarrow"))
You can use the alias ``"string[pyarrow]"`` as well.
.. ipython:: python
s = pd.Series(['abc', None, 'def'], dtype="string[pyarrow]")
s
You can also create a PyArrow backed string array using pandas options.
.. ipython:: python
with pd.option_context("string_storage", "pyarrow"):
s = pd.Series(['abc', None, 'def'], dtype="string")
s
The usual string accessor methods work. Where appropriate, the return type of the Series
or columns of a DataFrame will also have string dtype.
.. ipython:: python
s.str.upper()
s.str.split('b', expand=True).dtypes
String accessor methods returning integers will return a value with :class:`Int64Dtype`
.. ipython:: python
s.str.count("a")
.. _whatsnew_130.enhancements.centered_datetimelike_rolling_window:
Centered datetime-like rolling windows
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
When performing rolling calculations on DataFrame and Series
objects with a datetime-like index, a centered datetime-like window can now be
used (:issue:`38780`).
For example:
.. ipython:: python
df = pd.DataFrame(
{"A": [0, 1, 2, 3, 4]}, index=pd.date_range("2020", periods=5, freq="1D")
)
df
df.rolling("2D", center=True).mean()
.. _whatsnew_130.enhancements.other:
Other enhancements
^^^^^^^^^^^^^^^^^^
- :meth:`DataFrame.rolling`, :meth:`Series.rolling`, :meth:`DataFrame.expanding`, and :meth:`Series.expanding` now support a ``method`` argument with a ``'table'`` option that performs the windowing operation over an entire :class:`DataFrame`. See :ref:`Window Overview <window.overview>` for performance and functional benefits (:issue:`15095`, :issue:`38995`)
- :class:`.ExponentialMovingWindow` now support a ``online`` method that can perform ``mean`` calculations in an online fashion. See :ref:`Window Overview <window.overview>` (:issue:`41673`)
- Added :meth:`MultiIndex.dtypes` (:issue:`37062`)
- Added ``end`` and ``end_day`` options for the ``origin`` argument in :meth:`DataFrame.resample` (:issue:`37804`)
- Improved error message when ``usecols`` and ``names`` do not match for :func:`read_csv` and ``engine="c"`` (:issue:`29042`)
- Improved consistency of error messages when passing an invalid ``win_type`` argument in :ref:`Window methods <api.window>` (:issue:`15969`)
- :func:`read_sql_query` now accepts a ``dtype`` argument to cast the columnar data from the SQL database based on user input (:issue:`10285`)
- :func:`read_csv` now raising ``ParserWarning`` if length of header or given names does not match length of data when ``usecols`` is not specified (:issue:`21768`)
- Improved integer type mapping from pandas to SQLAlchemy when using :meth:`DataFrame.to_sql` (:issue:`35076`)
- :func:`to_numeric` now supports downcasting of nullable ``ExtensionDtype`` objects (:issue:`33013`)
- Added support for dict-like names in :class:`MultiIndex.set_names` and :class:`MultiIndex.rename` (:issue:`20421`)
- :func:`read_excel` can now auto-detect .xlsb files and older .xls files (:issue:`35416`, :issue:`41225`)
- :class:`ExcelWriter` now accepts an ``if_sheet_exists`` parameter to control the behavior of append mode when writing to existing sheets (:issue:`40230`)
- :meth:`.Rolling.sum`, :meth:`.Expanding.sum`, :meth:`.Rolling.mean`, :meth:`.Expanding.mean`, :meth:`.ExponentialMovingWindow.mean`, :meth:`.Rolling.median`, :meth:`.Expanding.median`, :meth:`.Rolling.max`, :meth:`.Expanding.max`, :meth:`.Rolling.min`, and :meth:`.Expanding.min` now support `Numba <http://numba.pydata.org/>`_ execution with the ``engine`` keyword (:issue:`38895`, :issue:`41267`)
- :meth:`DataFrame.apply` can now accept NumPy unary operators as strings, e.g. ``df.apply("sqrt")``, which was already the case for :meth:`Series.apply` (:issue:`39116`)
- :meth:`DataFrame.apply` can now accept non-callable DataFrame properties as strings, e.g. ``df.apply("size")``, which was already the case for :meth:`Series.apply` (:issue:`39116`)
- :meth:`DataFrame.applymap` can now accept kwargs to pass on to the user-provided ``func`` (:issue:`39987`)
- Passing a :class:`DataFrame` indexer to ``iloc`` is now disallowed for :meth:`Series.__getitem__` and :meth:`DataFrame.__getitem__` (:issue:`39004`)
- :meth:`Series.apply` can now accept list-like or dictionary-like arguments that aren't lists or dictionaries, e.g. ``ser.apply(np.array(["sum", "mean"]))``, which was already the case for :meth:`DataFrame.apply` (:issue:`39140`)
- :meth:`DataFrame.plot.scatter` can now accept a categorical column for the argument ``c`` (:issue:`12380`, :issue:`31357`)
- :meth:`Series.loc` now raises a helpful error message when the Series has a :class:`MultiIndex` and the indexer has too many dimensions (:issue:`35349`)
- :func:`read_stata` now supports reading data from compressed files (:issue:`26599`)
- Added support for parsing ``ISO 8601``-like timestamps with negative signs to :class:`Timedelta` (:issue:`37172`)
- Added support for unary operators in :class:`FloatingArray` (:issue:`38749`)
- :class:`RangeIndex` can now be constructed by passing a ``range`` object directly e.g. ``pd.RangeIndex(range(3))`` (:issue:`12067`)
- :meth:`Series.round` and :meth:`DataFrame.round` now work with nullable integer and floating dtypes (:issue:`38844`)
- :meth:`read_csv` and :meth:`read_json` expose the argument ``encoding_errors`` to control how encoding errors are handled (:issue:`39450`)
- :meth:`.DataFrameGroupBy.any`, :meth:`.SeriesGroupBy.any`, :meth:`.DataFrameGroupBy.all`, and :meth:`.SeriesGroupBy.all` use Kleene logic with nullable data types (:issue:`37506`)
- :meth:`.DataFrameGroupBy.any`, :meth:`.SeriesGroupBy.any`, :meth:`.DataFrameGroupBy.all`, and :meth:`.SeriesGroupBy.all` return a ``BooleanDtype`` for columns with nullable data types (:issue:`33449`)
- :meth:`.DataFrameGroupBy.any`, :meth:`.SeriesGroupBy.any`, :meth:`.DataFrameGroupBy.all`, and :meth:`.SeriesGroupBy.all` raising with ``object`` data containing ``pd.NA`` even when ``skipna=True`` (:issue:`37501`)
- :meth:`.DataFrameGroupBy.rank` and :meth:`.SeriesGroupBy.rank` now supports object-dtype data (:issue:`38278`)
- Constructing a :class:`DataFrame` or :class:`Series` with the ``data`` argument being a Python iterable that is *not* a NumPy ``ndarray`` consisting of NumPy scalars will now result in a dtype with a precision the maximum of the NumPy scalars; this was already the case when ``data`` is a NumPy ``ndarray`` (:issue:`40908`)
- Add keyword ``sort`` to :func:`pivot_table` to allow non-sorting of the result (:issue:`39143`)
- Add keyword ``dropna`` to :meth:`DataFrame.value_counts` to allow counting rows that include ``NA`` values (:issue:`41325`)
- :meth:`Series.replace` will now cast results to ``PeriodDtype`` where possible instead of ``object`` dtype (:issue:`41526`)
- Improved error message in ``corr`` and ``cov`` methods on :class:`.Rolling`, :class:`.Expanding`, and :class:`.ExponentialMovingWindow` when ``other`` is not a :class:`DataFrame` or :class:`Series` (:issue:`41741`)
- :meth:`Series.between` can now accept ``left`` or ``right`` as arguments to ``inclusive`` to include only the left or right boundary (:issue:`40245`)
- :meth:`DataFrame.explode` now supports exploding multiple columns. Its ``column`` argument now also accepts a list of str or tuples for exploding on multiple columns at the same time (:issue:`39240`)
- :meth:`DataFrame.sample` now accepts the ``ignore_index`` argument to reset the index after sampling, similar to :meth:`DataFrame.drop_duplicates` and :meth:`DataFrame.sort_values` (:issue:`38581`)
.. ---------------------------------------------------------------------------
.. _whatsnew_130.notable_bug_fixes:
Notable bug fixes
~~~~~~~~~~~~~~~~~
These are bug fixes that might have notable behavior changes.
.. _whatsnew_130.notable_bug_fixes.categorical_unique_maintains_dtype:
``Categorical.unique`` now always maintains same dtype as original
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Previously, when calling :meth:`Categorical.unique` with categorical data, unused categories in the new array
would be removed, making the dtype of the new array different than the
original (:issue:`18291`)
As an example of this, given:
.. ipython:: python
dtype = pd.CategoricalDtype(['bad', 'neutral', 'good'], ordered=True)
cat = pd.Categorical(['good', 'good', 'bad', 'bad'], dtype=dtype)
original = pd.Series(cat)
unique = original.unique()
*Previous behavior*:
.. code-block:: ipython
In [1]: unique
['good', 'bad']
Categories (2, object): ['bad' < 'good']
In [2]: original.dtype == unique.dtype
False
*New behavior*:
.. ipython:: python
unique
original.dtype == unique.dtype
.. _whatsnew_130.notable_bug_fixes.combine_first_preserves_dtype:
Preserve dtypes in :meth:`DataFrame.combine_first`
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
:meth:`DataFrame.combine_first` will now preserve dtypes (:issue:`7509`)
.. ipython:: python
df1 = pd.DataFrame({"A": [1, 2, 3], "B": [1, 2, 3]}, index=[0, 1, 2])
df1
df2 = pd.DataFrame({"B": [4, 5, 6], "C": [1, 2, 3]}, index=[2, 3, 4])
df2
combined = df1.combine_first(df2)
*Previous behavior*:
.. code-block:: ipython
In [1]: combined.dtypes
Out[2]:
A float64
B float64
C float64
dtype: object
*New behavior*:
.. ipython:: python
combined.dtypes
.. _whatsnew_130.notable_bug_fixes.groupby_preserves_dtype:
Groupby methods agg and transform no longer changes return dtype for callables
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Previously the methods :meth:`.DataFrameGroupBy.aggregate`,
:meth:`.SeriesGroupBy.aggregate`, :meth:`.DataFrameGroupBy.transform`, and
:meth:`.SeriesGroupBy.transform` might cast the result dtype when the argument ``func``
is callable, possibly leading to undesirable results (:issue:`21240`). The cast would
occur if the result is numeric and casting back to the input dtype does not change any
values as measured by ``np.allclose``. Now no such casting occurs.
.. ipython:: python
df = pd.DataFrame({'key': [1, 1], 'a': [True, False], 'b': [True, True]})
df
*Previous behavior*:
.. code-block:: ipython
In [5]: df.groupby('key').agg(lambda x: x.sum())
Out[5]:
a b
key
1 True 2
*New behavior*:
.. ipython:: python
df.groupby('key').agg(lambda x: x.sum())
.. _whatsnew_130.notable_bug_fixes.groupby_reductions_float_result:
``float`` result for :meth:`.DataFrameGroupBy.mean`, :meth:`.DataFrameGroupBy.median`, and :meth:`.GDataFrameGroupBy.var`, :meth:`.SeriesGroupBy.mean`, :meth:`.SeriesGroupBy.median`, and :meth:`.SeriesGroupBy.var`
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Previously, these methods could result in different dtypes depending on the input values.
Now, these methods will always return a float dtype. (:issue:`41137`)
.. ipython:: python
df = pd.DataFrame({'a': [True], 'b': [1], 'c': [1.0]})
*Previous behavior*:
.. code-block:: ipython
In [5]: df.groupby(df.index).mean()
Out[5]:
a b c
0 True 1 1.0
*New behavior*:
.. ipython:: python
df.groupby(df.index).mean()
.. _whatsnew_130.notable_bug_fixes.setitem_column_try_inplace:
Try operating inplace when setting values with ``loc`` and ``iloc``
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
When setting an entire column using ``loc`` or ``iloc``, pandas will try to
insert the values into the existing data rather than create an entirely new array.
.. ipython:: python
df = pd.DataFrame(range(3), columns=["A"], dtype="float64")
values = df.values
new = np.array([5, 6, 7], dtype="int64")
df.loc[[0, 1, 2], "A"] = new
In both the new and old behavior, the data in ``values`` is overwritten, but in
the old behavior the dtype of ``df["A"]`` changed to ``int64``.
*Previous behavior*:
.. code-block:: ipython
In [1]: df.dtypes
Out[1]:
A int64
dtype: object
In [2]: np.shares_memory(df["A"].values, new)
Out[2]: False
In [3]: np.shares_memory(df["A"].values, values)
Out[3]: False
In pandas 1.3.0, ``df`` continues to share data with ``values``
*New behavior*:
.. ipython:: python
df.dtypes
np.shares_memory(df["A"], new)
np.shares_memory(df["A"], values)
.. _whatsnew_130.notable_bug_fixes.setitem_never_inplace:
Never operate inplace when setting ``frame[keys] = values``
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
When setting multiple columns using ``frame[keys] = values`` new arrays will
replace pre-existing arrays for these keys, which will *not* be over-written
(:issue:`39510`). As a result, the columns will retain the dtype(s) of ``values``,
never casting to the dtypes of the existing arrays.
.. ipython:: python
df = pd.DataFrame(range(3), columns=["A"], dtype="float64")
df[["A"]] = 5
In the old behavior, ``5`` was cast to ``float64`` and inserted into the existing
array backing ``df``:
*Previous behavior*:
.. code-block:: ipython
In [1]: df.dtypes
Out[1]:
A float64
In the new behavior, we get a new array, and retain an integer-dtyped ``5``:
*New behavior*:
.. ipython:: python
df.dtypes
.. _whatsnew_130.notable_bug_fixes.setitem_with_bool_casting:
Consistent casting with setting into Boolean Series
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Setting non-boolean values into a :class:`Series` with ``dtype=bool`` now consistently
casts to ``dtype=object`` (:issue:`38709`)
.. code-block:: ipython
In [1]: orig = pd.Series([True, False])
In [2]: ser = orig.copy()
In [3]: ser.iloc[1] = np.nan
In [4]: ser2 = orig.copy()
In [5]: ser2.iloc[1] = 2.0
*Previous behavior*:
.. code-block:: ipython
In [1]: ser
Out [1]:
0 1.0
1 NaN
dtype: float64
In [2]:ser2
Out [2]:
0 True
1 2.0
dtype: object
*New behavior*:
.. code-block:: ipython
In [1]: ser
Out [1]:
0 True
1 NaN
dtype: object
In [2]:ser2
Out [2]:
0 True
1 2.0
dtype: object
.. _whatsnew_130.notable_bug_fixes.rolling_groupby_column:
DataFrameGroupBy.rolling and SeriesGroupBy.rolling no longer return grouped-by column in values
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
The group-by column will now be dropped from the result of a
``groupby.rolling`` operation (:issue:`32262`)
.. ipython:: python
df = pd.DataFrame({"A": [1, 1, 2, 3], "B": [0, 1, 2, 3]})
df
*Previous behavior*:
.. code-block:: ipython
In [1]: df.groupby("A").rolling(2).sum()
Out[1]:
A B
A
1 0 NaN NaN
1 2.0 1.0
2 2 NaN NaN
3 3 NaN NaN
*New behavior*:
.. ipython:: python
df.groupby("A").rolling(2).sum()
.. _whatsnew_130.notable_bug_fixes.rolling_var_precision:
Removed artificial truncation in rolling variance and standard deviation
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
:meth:`.Rolling.std` and :meth:`.Rolling.var` will no longer
artificially truncate results that are less than ``~1e-8`` and ``~1e-15`` respectively to
zero (:issue:`37051`, :issue:`40448`, :issue:`39872`).
However, floating point artifacts may now exist in the results when rolling over larger values.
.. ipython:: python
s = pd.Series([7, 5, 5, 5])
s.rolling(3).var()
.. _whatsnew_130.notable_bug_fixes.rolling_groupby_multiindex:
DataFrameGroupBy.rolling and SeriesGroupBy.rolling with MultiIndex no longer drop levels in the result
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
:meth:`DataFrameGroupBy.rolling` and :meth:`SeriesGroupBy.rolling` will no longer drop levels of a :class:`DataFrame`
with a :class:`MultiIndex` in the result. This can lead to a perceived duplication of levels in the resulting
:class:`MultiIndex`, but this change restores the behavior that was present in version 1.1.3 (:issue:`38787`, :issue:`38523`).
.. ipython:: python
index = pd.MultiIndex.from_tuples([('idx1', 'idx2')], names=['label1', 'label2'])
df = pd.DataFrame({'a': [1], 'b': [2]}, index=index)
df
*Previous behavior*:
.. code-block:: ipython
In [1]: df.groupby('label1').rolling(1).sum()
Out[1]:
a b
label1
idx1 1.0 2.0
*New behavior*:
.. ipython:: python
df.groupby('label1').rolling(1).sum()
.. ---------------------------------------------------------------------------
.. _whatsnew_130.api_breaking:
Backwards incompatible API changes
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. _whatsnew_130.api_breaking.deps:
Increased minimum versions for dependencies
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Some minimum supported versions of dependencies were updated.
If installed, we now require:
+-----------------+-----------------+----------+---------+
| Package | Minimum Version | Required | Changed |
+=================+=================+==========+=========+
| numpy | 1.17.3 | X | X |
+-----------------+-----------------+----------+---------+
| pytz | 2017.3 | X | |
+-----------------+-----------------+----------+---------+
| python-dateutil | 2.7.3 | X | |
+-----------------+-----------------+----------+---------+
| bottleneck | 1.2.1 | | |
+-----------------+-----------------+----------+---------+
| numexpr | 2.7.0 | | X |
+-----------------+-----------------+----------+---------+
| pytest (dev) | 6.0 | | X |
+-----------------+-----------------+----------+---------+
| mypy (dev) | 0.812 | | X |
+-----------------+-----------------+----------+---------+
| setuptools | 38.6.0 | | X |
+-----------------+-----------------+----------+---------+
For `optional libraries <https://pandas.pydata.org/docs/getting_started/install.html>`_ the general recommendation is to use the latest version.
The following table lists the lowest version per library that is currently being tested throughout the development of pandas.
Optional libraries below the lowest tested version may still work, but are not considered supported.
+-----------------+-----------------+---------+
| Package | Minimum Version | Changed |
+=================+=================+=========+
| beautifulsoup4 | 4.6.0 | |
+-----------------+-----------------+---------+
| fastparquet | 0.4.0 | X |
+-----------------+-----------------+---------+
| fsspec | 0.7.4 | |
+-----------------+-----------------+---------+
| gcsfs | 0.6.0 | |
+-----------------+-----------------+---------+
| lxml | 4.3.0 | |
+-----------------+-----------------+---------+
| matplotlib | 2.2.3 | |
+-----------------+-----------------+---------+
| numba | 0.46.0 | |
+-----------------+-----------------+---------+
| openpyxl | 3.0.0 | X |
+-----------------+-----------------+---------+
| pyarrow | 0.17.0 | X |
+-----------------+-----------------+---------+
| pymysql | 0.8.1 | X |
+-----------------+-----------------+---------+
| pytables | 3.5.1 | |
+-----------------+-----------------+---------+
| s3fs | 0.4.0 | |
+-----------------+-----------------+---------+
| scipy | 1.2.0 | |
+-----------------+-----------------+---------+
| sqlalchemy | 1.3.0 | X |
+-----------------+-----------------+---------+
| tabulate | 0.8.7 | X |
+-----------------+-----------------+---------+
| xarray | 0.12.0 | |
+-----------------+-----------------+---------+
| xlrd | 1.2.0 | |
+-----------------+-----------------+---------+
| xlsxwriter | 1.0.2 | |
+-----------------+-----------------+---------+
| xlwt | 1.3.0 | |
+-----------------+-----------------+---------+
| pandas-gbq | 0.12.0 | |
+-----------------+-----------------+---------+
See :ref:`install.dependencies` and :ref:`install.optional_dependencies` for more.
.. _whatsnew_130.api_breaking.other:
Other API changes
^^^^^^^^^^^^^^^^^
- Partially initialized :class:`CategoricalDtype` objects (i.e. those with ``categories=None``) will no longer compare as equal to fully initialized dtype objects (:issue:`38516`)
- Accessing ``_constructor_expanddim`` on a :class:`DataFrame` and ``_constructor_sliced`` on a :class:`Series` now raise an ``AttributeError``. Previously a ``NotImplementedError`` was raised (:issue:`38782`)
- Added new ``engine`` and ``**engine_kwargs`` parameters to :meth:`DataFrame.to_sql` to support other future "SQL engines". Currently we still only use ``SQLAlchemy`` under the hood, but more engines are planned to be supported such as `turbodbc <https://turbodbc.readthedocs.io/en/latest/>`_ (:issue:`36893`)
- Removed redundant ``freq`` from :class:`PeriodIndex` string representation (:issue:`41653`)
- :meth:`ExtensionDtype.construct_array_type` is now a required method instead of an optional one for :class:`ExtensionDtype` subclasses (:issue:`24860`)
- Calling ``hash`` on non-hashable pandas objects will now raise ``TypeError`` with the built-in error message (e.g. ``unhashable type: 'Series'``). Previously it would raise a custom message such as ``'Series' objects are mutable, thus they cannot be hashed``. Furthermore, ``isinstance(<Series>, abc.collections.Hashable)`` will now return ``False`` (:issue:`40013`)
- :meth:`.Styler.from_custom_template` now has two new arguments for template names, and removed the old ``name``, due to template inheritance having been introducing for better parsing (:issue:`42053`). Subclassing modifications to Styler attributes are also needed.
.. _whatsnew_130.api_breaking.build:
Build
^^^^^
- Documentation in ``.pptx`` and ``.pdf`` formats are no longer included in wheels or source distributions. (:issue:`30741`)
.. ---------------------------------------------------------------------------
.. _whatsnew_130.deprecations:
Deprecations
~~~~~~~~~~~~
.. _whatsnew_130.deprecations.nuisance_columns:
Deprecated dropping nuisance columns in DataFrame reductions and DataFrameGroupBy operations
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Calling a reduction (e.g. ``.min``, ``.max``, ``.sum``) on a :class:`DataFrame` with
``numeric_only=None`` (the default), columns where the reduction raises a ``TypeError``
are silently ignored and dropped from the result.
This behavior is deprecated. In a future version, the ``TypeError`` will be raised,
and users will need to select only valid columns before calling the function.
For example:
.. ipython:: python
df = pd.DataFrame({"A": [1, 2, 3, 4], "B": pd.date_range("2016-01-01", periods=4)})
df
*Old behavior*:
.. code-block:: ipython
In [3]: df.prod()
Out[3]:
Out[3]:
A 24
dtype: int64
*Future behavior*:
.. code-block:: ipython
In [4]: df.prod()
...
TypeError: 'DatetimeArray' does not implement reduction 'prod'
In [5]: df[["A"]].prod()
Out[5]:
A 24
dtype: int64
Similarly, when applying a function to :class:`DataFrameGroupBy`, columns on which
the function raises ``TypeError`` are currently silently ignored and dropped
from the result.
This behavior is deprecated. In a future version, the ``TypeError``
will be raised, and users will need to select only valid columns before calling
the function.
For example:
.. ipython:: python
df = pd.DataFrame({"A": [1, 2, 3, 4], "B": pd.date_range("2016-01-01", periods=4)})
gb = df.groupby([1, 1, 2, 2])
*Old behavior*:
.. code-block:: ipython
In [4]: gb.prod(numeric_only=False)
Out[4]:
A
1 2
2 12
*Future behavior*:
.. code-block:: ipython
In [5]: gb.prod(numeric_only=False)
...
TypeError: datetime64 type does not support prod operations
In [6]: gb[["A"]].prod(numeric_only=False)
Out[6]:
A
1 2
2 12
.. _whatsnew_130.deprecations.other:
Other Deprecations
^^^^^^^^^^^^^^^^^^
- Deprecated allowing scalars to be passed to the :class:`Categorical` constructor (:issue:`38433`)
- Deprecated constructing :class:`CategoricalIndex` without passing list-like data (:issue:`38944`)
- Deprecated allowing subclass-specific keyword arguments in the :class:`Index` constructor, use the specific subclass directly instead (:issue:`14093`, :issue:`21311`, :issue:`22315`, :issue:`26974`)
- Deprecated the :meth:`astype` method of datetimelike (``timedelta64[ns]``, ``datetime64[ns]``, ``Datetime64TZDtype``, ``PeriodDtype``) to convert to integer dtypes, use ``values.view(...)`` instead (:issue:`38544`). This deprecation was later reverted in pandas 1.4.0.
- Deprecated :meth:`MultiIndex.is_lexsorted` and :meth:`MultiIndex.lexsort_depth`, use :meth:`MultiIndex.is_monotonic_increasing` instead (:issue:`32259`)
- Deprecated keyword ``try_cast`` in :meth:`Series.where`, :meth:`Series.mask`, :meth:`DataFrame.where`, :meth:`DataFrame.mask`; cast results manually if desired (:issue:`38836`)
- Deprecated comparison of :class:`Timestamp` objects with ``datetime.date`` objects. Instead of e.g. ``ts <= mydate`` use ``ts <= pd.Timestamp(mydate)`` or ``ts.date() <= mydate`` (:issue:`36131`)
- Deprecated :attr:`Rolling.win_type` returning ``"freq"`` (:issue:`38963`)
- Deprecated :attr:`Rolling.is_datetimelike` (:issue:`38963`)
- Deprecated :class:`DataFrame` indexer for :meth:`Series.__setitem__` and :meth:`DataFrame.__setitem__` (:issue:`39004`)
- Deprecated :meth:`ExponentialMovingWindow.vol` (:issue:`39220`)
- Using ``.astype`` to convert between ``datetime64[ns]`` dtype and :class:`DatetimeTZDtype` is deprecated and will raise in a future version, use ``obj.tz_localize`` or ``obj.dt.tz_localize`` instead (:issue:`38622`)
- Deprecated casting ``datetime.date`` objects to ``datetime64`` when used as ``fill_value`` in :meth:`DataFrame.unstack`, :meth:`DataFrame.shift`, :meth:`Series.shift`, and :meth:`DataFrame.reindex`, pass ``pd.Timestamp(dateobj)`` instead (:issue:`39767`)
- Deprecated :meth:`.Styler.set_na_rep` and :meth:`.Styler.set_precision` in favor of :meth:`.Styler.format` with ``na_rep`` and ``precision`` as existing and new input arguments respectively (:issue:`40134`, :issue:`40425`)
- Deprecated :meth:`.Styler.where` in favor of using an alternative formulation with :meth:`Styler.applymap` (:issue:`40821`)
- Deprecated allowing partial failure in :meth:`Series.transform` and :meth:`DataFrame.transform` when ``func`` is list-like or dict-like and raises anything but ``TypeError``; ``func`` raising anything but a ``TypeError`` will raise in a future version (:issue:`40211`)
- Deprecated arguments ``error_bad_lines`` and ``warn_bad_lines`` in :meth:`read_csv` and :meth:`read_table` in favor of argument ``on_bad_lines`` (:issue:`15122`)
- Deprecated support for ``np.ma.mrecords.MaskedRecords`` in the :class:`DataFrame` constructor, pass ``{name: data[name] for name in data.dtype.names}`` instead (:issue:`40363`)
- Deprecated using :func:`merge`, :meth:`DataFrame.merge`, and :meth:`DataFrame.join` on a different number of levels (:issue:`34862`)
- Deprecated the use of ``**kwargs`` in :class:`.ExcelWriter`; use the keyword argument ``engine_kwargs`` instead (:issue:`40430`)
- Deprecated the ``level`` keyword for :class:`DataFrame` and :class:`Series` aggregations; use groupby instead (:issue:`39983`)
- Deprecated the ``inplace`` parameter of :meth:`Categorical.remove_categories`, :meth:`Categorical.add_categories`, :meth:`Categorical.reorder_categories`, :meth:`Categorical.rename_categories`, :meth:`Categorical.set_categories` and will be removed in a future version (:issue:`37643`)
- Deprecated :func:`merge` producing duplicated columns through the ``suffixes`` keyword and already existing columns (:issue:`22818`)
- Deprecated setting :attr:`Categorical._codes`, create a new :class:`Categorical` with the desired codes instead (:issue:`40606`)
- Deprecated the ``convert_float`` optional argument in :func:`read_excel` and :meth:`ExcelFile.parse` (:issue:`41127`)
- Deprecated behavior of :meth:`DatetimeIndex.union` with mixed timezones; in a future version both will be cast to UTC instead of object dtype (:issue:`39328`)
- Deprecated using ``usecols`` with out of bounds indices for :func:`read_csv` with ``engine="c"`` (:issue:`25623`)
- Deprecated special treatment of lists with first element a Categorical in the :class:`DataFrame` constructor; pass as ``pd.DataFrame({col: categorical, ...})`` instead (:issue:`38845`)
- Deprecated behavior of :class:`DataFrame` constructor when a ``dtype`` is passed and the data cannot be cast to that dtype. In a future version, this will raise instead of being silently ignored (:issue:`24435`)
- Deprecated the :attr:`Timestamp.freq` attribute. For the properties that use it (``is_month_start``, ``is_month_end``, ``is_quarter_start``, ``is_quarter_end``, ``is_year_start``, ``is_year_end``), when you have a ``freq``, use e.g. ``freq.is_month_start(ts)`` (:issue:`15146`)
- Deprecated construction of :class:`Series` or :class:`DataFrame` with ``DatetimeTZDtype`` data and ``datetime64[ns]`` dtype. Use ``Series(data).dt.tz_localize(None)`` instead (:issue:`41555`, :issue:`33401`)
- Deprecated behavior of :class:`Series` construction with large-integer values and small-integer dtype silently overflowing; use ``Series(data).astype(dtype)`` instead (:issue:`41734`)
- Deprecated behavior of :class:`DataFrame` construction with floating data and integer dtype casting even when lossy; in a future version this will remain floating, matching :class:`Series` behavior (:issue:`41770`)
- Deprecated inference of ``timedelta64[ns]``, ``datetime64[ns]``, or ``DatetimeTZDtype`` dtypes in :class:`Series` construction when data containing strings is passed and no ``dtype`` is passed (:issue:`33558`)
- In a future version, constructing :class:`Series` or :class:`DataFrame` with ``datetime64[ns]`` data and ``DatetimeTZDtype`` will treat the data as wall-times instead of as UTC times (matching DatetimeIndex behavior). To treat the data as UTC times, use ``pd.Series(data).dt.tz_localize("UTC").dt.tz_convert(dtype.tz)`` or ``pd.Series(data.view("int64"), dtype=dtype)`` (:issue:`33401`)
- Deprecated passing lists as ``key`` to :meth:`DataFrame.xs` and :meth:`Series.xs` (:issue:`41760`)
- Deprecated boolean arguments of ``inclusive`` in :meth:`Series.between` to have ``{"left", "right", "neither", "both"}`` as standard argument values (:issue:`40628`)
- Deprecated passing arguments as positional for all of the following, with exceptions noted (:issue:`41485`):
- :func:`concat` (other than ``objs``)
- :func:`read_csv` (other than ``filepath_or_buffer``)
- :func:`read_table` (other than ``filepath_or_buffer``)
- :meth:`DataFrame.clip` and :meth:`Series.clip` (other than ``upper`` and ``lower``)
- :meth:`DataFrame.drop_duplicates` (except for ``subset``), :meth:`Series.drop_duplicates`, :meth:`Index.drop_duplicates` and :meth:`MultiIndex.drop_duplicates`
- :meth:`DataFrame.drop` (other than ``labels``) and :meth:`Series.drop`
- :meth:`DataFrame.dropna` and :meth:`Series.dropna`
- :meth:`DataFrame.ffill`, :meth:`Series.ffill`, :meth:`DataFrame.bfill`, and :meth:`Series.bfill`
- :meth:`DataFrame.fillna` and :meth:`Series.fillna` (apart from ``value``)
- :meth:`DataFrame.interpolate` and :meth:`Series.interpolate` (other than ``method``)
- :meth:`DataFrame.mask` and :meth:`Series.mask` (other than ``cond`` and ``other``)
- :meth:`DataFrame.reset_index` (other than ``level``) and :meth:`Series.reset_index`
- :meth:`DataFrame.set_axis` and :meth:`Series.set_axis` (other than ``labels``)
- :meth:`DataFrame.set_index` (other than ``keys``)
- :meth:`DataFrame.sort_index` and :meth:`Series.sort_index`
- :meth:`DataFrame.sort_values` (other than ``by``) and :meth:`Series.sort_values`
- :meth:`DataFrame.where` and :meth:`Series.where` (other than ``cond`` and ``other``)
- :meth:`Index.set_names` and :meth:`MultiIndex.set_names` (except for ``names``)
- :meth:`MultiIndex.codes` (except for ``codes``)
- :meth:`MultiIndex.set_levels` (except for ``levels``)
- :meth:`Resampler.interpolate` (other than ``method``)
.. ---------------------------------------------------------------------------
.. _whatsnew_130.performance:
Performance improvements
~~~~~~~~~~~~~~~~~~~~~~~~
- Performance improvement in :meth:`IntervalIndex.isin` (:issue:`38353`)
- Performance improvement in :meth:`Series.mean` for nullable data types (:issue:`34814`)
- Performance improvement in :meth:`Series.isin` for nullable data types (:issue:`38340`)
- Performance improvement in :meth:`DataFrame.fillna` with ``method="pad"`` or ``method="backfill"`` for nullable floating and nullable integer dtypes (:issue:`39953`)
- Performance improvement in :meth:`DataFrame.corr` for ``method=kendall`` (:issue:`28329`)
- Performance improvement in :meth:`DataFrame.corr` for ``method=spearman`` (:issue:`40956`, :issue:`41885`)
- Performance improvement in :meth:`.Rolling.corr` and :meth:`.Rolling.cov` (:issue:`39388`)
- Performance improvement in :meth:`.RollingGroupby.corr`, :meth:`.ExpandingGroupby.corr`, :meth:`.ExpandingGroupby.corr` and :meth:`.ExpandingGroupby.cov` (:issue:`39591`)
- Performance improvement in :func:`unique` for object data type (:issue:`37615`)
- Performance improvement in :func:`json_normalize` for basic cases (including separators) (:issue:`40035` :issue:`15621`)
- Performance improvement in :class:`.ExpandingGroupby` aggregation methods (:issue:`39664`)
- Performance improvement in :class:`.Styler` where render times are more than 50% reduced and now matches :meth:`DataFrame.to_html` (:issue:`39972` :issue:`39952`, :issue:`40425`)
- The method :meth:`.Styler.set_td_classes` is now as performant as :meth:`.Styler.apply` and :meth:`.Styler.applymap`, and even more so in some cases (:issue:`40453`)
- Performance improvement in :meth:`.ExponentialMovingWindow.mean` with ``times`` (:issue:`39784`)
- Performance improvement in :meth:`.DataFrameGroupBy.apply` and :meth:`.SeriesGroupBy.apply` when requiring the Python fallback implementation (:issue:`40176`)
- Performance improvement in the conversion of a PyArrow Boolean array to a pandas nullable Boolean array (:issue:`41051`)
- Performance improvement for concatenation of data with type :class:`CategoricalDtype` (:issue:`40193`)
- Performance improvement in :meth:`.DataFrameGroupBy.cummin`, :meth:`.SeriesGroupBy.cummin`, :meth:`.DataFrameGroupBy.cummax`, and :meth:`.SeriesGroupBy.cummax` with nullable data types (:issue:`37493`)
- Performance improvement in :meth:`Series.nunique` with nan values (:issue:`40865`)
- Performance improvement in :meth:`DataFrame.transpose`, :meth:`Series.unstack` with ``DatetimeTZDtype`` (:issue:`40149`)
- Performance improvement in :meth:`Series.plot` and :meth:`DataFrame.plot` with entry point lazy loading (:issue:`41492`)
.. ---------------------------------------------------------------------------
.. _whatsnew_130.bug_fixes:
Bug fixes
~~~~~~~~~
Categorical
^^^^^^^^^^^
- Bug in :class:`CategoricalIndex` incorrectly failing to raise ``TypeError`` when scalar data is passed (:issue:`38614`)
- Bug in ``CategoricalIndex.reindex`` failed when the :class:`Index` passed was not categorical but whose values were all labels in the category (:issue:`28690`)
- Bug where constructing a :class:`Categorical` from an object-dtype array of ``date`` objects did not round-trip correctly with ``astype`` (:issue:`38552`)
- Bug in constructing a :class:`DataFrame` from an ``ndarray`` and a :class:`CategoricalDtype` (:issue:`38857`)
- Bug in setting categorical values into an object-dtype column in a :class:`DataFrame` (:issue:`39136`)
- Bug in :meth:`DataFrame.reindex` was raising an ``IndexError`` when the new index contained duplicates and the old index was a :class:`CategoricalIndex` (:issue:`38906`)
- Bug in :meth:`Categorical.fillna` with a tuple-like category raising ``NotImplementedError`` instead of ``ValueError`` when filling with a non-category tuple (:issue:`41914`)
Datetimelike
^^^^^^^^^^^^
- Bug in :class:`DataFrame` and :class:`Series` constructors sometimes dropping nanoseconds from :class:`Timestamp` (resp. :class:`Timedelta`) ``data``, with ``dtype=datetime64[ns]`` (resp. ``timedelta64[ns]``) (:issue:`38032`)
- Bug in :meth:`DataFrame.first` and :meth:`Series.first` with an offset of one month returning an incorrect result when the first day is the last day of a month (:issue:`29623`)
- Bug in constructing a :class:`DataFrame` or :class:`Series` with mismatched ``datetime64`` data and ``timedelta64`` dtype, or vice-versa, failing to raise a ``TypeError`` (:issue:`38575`, :issue:`38764`, :issue:`38792`)
- Bug in constructing a :class:`Series` or :class:`DataFrame` with a ``datetime`` object out of bounds for ``datetime64[ns]`` dtype or a ``timedelta`` object out of bounds for ``timedelta64[ns]`` dtype (:issue:`38792`, :issue:`38965`)
- Bug in :meth:`DatetimeIndex.intersection`, :meth:`DatetimeIndex.symmetric_difference`, :meth:`PeriodIndex.intersection`, :meth:`PeriodIndex.symmetric_difference` always returning object-dtype when operating with :class:`CategoricalIndex` (:issue:`38741`)
- Bug in :meth:`DatetimeIndex.intersection` giving incorrect results with non-Tick frequencies with ``n != 1`` (:issue:`42104`)
- Bug in :meth:`Series.where` incorrectly casting ``datetime64`` values to ``int64`` (:issue:`37682`)
- Bug in :class:`Categorical` incorrectly typecasting ``datetime`` object to ``Timestamp`` (:issue:`38878`)
- Bug in comparisons between :class:`Timestamp` object and ``datetime64`` objects just outside the implementation bounds for nanosecond ``datetime64`` (:issue:`39221`)
- Bug in :meth:`Timestamp.round`, :meth:`Timestamp.floor`, :meth:`Timestamp.ceil` for values near the implementation bounds of :class:`Timestamp` (:issue:`39244`)
- Bug in :meth:`Timedelta.round`, :meth:`Timedelta.floor`, :meth:`Timedelta.ceil` for values near the implementation bounds of :class:`Timedelta` (:issue:`38964`)
- Bug in :func:`date_range` incorrectly creating :class:`DatetimeIndex` containing ``NaT`` instead of raising ``OutOfBoundsDatetime`` in corner cases (:issue:`24124`)
- Bug in :func:`infer_freq` incorrectly fails to infer 'H' frequency of :class:`DatetimeIndex` if the latter has a timezone and crosses DST boundaries (:issue:`39556`)
- Bug in :class:`Series` backed by :class:`DatetimeArray` or :class:`TimedeltaArray` sometimes failing to set the array's ``freq`` to ``None`` (:issue:`41425`)
Timedelta
^^^^^^^^^
- Bug in constructing :class:`Timedelta` from ``np.timedelta64`` objects with non-nanosecond units that are out of bounds for ``timedelta64[ns]`` (:issue:`38965`)
- Bug in constructing a :class:`TimedeltaIndex` incorrectly accepting ``np.datetime64("NaT")`` objects (:issue:`39462`)
- Bug in constructing :class:`Timedelta` from an input string with only symbols and no digits failed to raise an error (:issue:`39710`)
- Bug in :class:`TimedeltaIndex` and :func:`to_timedelta` failing to raise when passed non-nanosecond ``timedelta64`` arrays that overflow when converting to ``timedelta64[ns]`` (:issue:`40008`)
Timezones
^^^^^^^^^
- Bug in different ``tzinfo`` objects representing UTC not being treated as equivalent (:issue:`39216`)
- Bug in ``dateutil.tz.gettz("UTC")`` not being recognized as equivalent to other UTC-representing tzinfos (:issue:`39276`)
Numeric
^^^^^^^
- Bug in :meth:`DataFrame.quantile`, :meth:`DataFrame.sort_values` causing incorrect subsequent indexing behavior (:issue:`38351`)
- Bug in :meth:`DataFrame.sort_values` raising an :class:`IndexError` for empty ``by`` (:issue:`40258`)
- Bug in :meth:`DataFrame.select_dtypes` with ``include=np.number`` would drop numeric ``ExtensionDtype`` columns (:issue:`35340`)
- Bug in :meth:`DataFrame.mode` and :meth:`Series.mode` not keeping consistent integer :class:`Index` for empty input (:issue:`33321`)
- Bug in :meth:`DataFrame.rank` when the DataFrame contained ``np.inf`` (:issue:`32593`)
- Bug in :meth:`DataFrame.rank` with ``axis=0`` and columns holding incomparable types raising an ``IndexError`` (:issue:`38932`)
- Bug in :meth:`Series.rank`, :meth:`DataFrame.rank`, :meth:`.DataFrameGroupBy.rank`, and :meth:`.SeriesGroupBy.rank` treating the most negative ``int64`` value as missing (:issue:`32859`)
- Bug in :meth:`DataFrame.select_dtypes` different behavior between Windows and Linux with ``include="int"`` (:issue:`36596`)
- Bug in :meth:`DataFrame.apply` and :meth:`DataFrame.agg` when passed the argument ``func="size"`` would operate on the entire ``DataFrame`` instead of rows or columns (:issue:`39934`)
- Bug in :meth:`DataFrame.transform` would raise a ``SpecificationError`` when passed a dictionary and columns were missing; will now raise a ``KeyError`` instead (:issue:`40004`)
- Bug in :meth:`.DataFrameGroupBy.rank` and :meth:`.SeriesGroupBy.rank` giving incorrect results with ``pct=True`` and equal values between consecutive groups (:issue:`40518`)
- Bug in :meth:`Series.count` would result in an ``int32`` result on 32-bit platforms when argument ``level=None`` (:issue:`40908`)
- Bug in :class:`Series` and :class:`DataFrame` reductions with methods ``any`` and ``all`` not returning Boolean results for object data (:issue:`12863`, :issue:`35450`, :issue:`27709`)
- Bug in :meth:`Series.clip` would fail if the Series contains NA values and has nullable int or float as a data type (:issue:`40851`)
- Bug in :meth:`UInt64Index.where` and :meth:`UInt64Index.putmask` with an ``np.int64`` dtype ``other`` incorrectly raising ``TypeError`` (:issue:`41974`)
- Bug in :meth:`DataFrame.agg()` not sorting the aggregated axis in the order of the provided aggregation functions when one or more aggregation function fails to produce results (:issue:`33634`)
- Bug in :meth:`DataFrame.clip` not interpreting missing values as no threshold (:issue:`40420`)
Conversion
^^^^^^^^^^
- Bug in :meth:`Series.to_dict` with ``orient='records'`` now returns Python native types (:issue:`25969`)
- Bug in :meth:`Series.view` and :meth:`Index.view` when converting between datetime-like (``datetime64[ns]``, ``datetime64[ns, tz]``, ``timedelta64``, ``period``) dtypes (:issue:`39788`)
- Bug in creating a :class:`DataFrame` from an empty ``np.recarray`` not retaining the original dtypes (:issue:`40121`)
- Bug in :class:`DataFrame` failing to raise a ``TypeError`` when constructing from a ``frozenset`` (:issue:`40163`)
- Bug in :class:`Index` construction silently ignoring a passed ``dtype`` when the data cannot be cast to that dtype (:issue:`21311`)
- Bug in :meth:`StringArray.astype` falling back to NumPy and raising when converting to ``dtype='categorical'`` (:issue:`40450`)
- Bug in :func:`factorize` where, when given an array with a numeric NumPy dtype lower than int64, uint64 and float64, the unique values did not keep their original dtype (:issue:`41132`)
- Bug in :class:`DataFrame` construction with a dictionary containing an array-like with ``ExtensionDtype`` and ``copy=True`` failing to make a copy (:issue:`38939`)
- Bug in :meth:`qcut` raising error when taking ``Float64DType`` as input (:issue:`40730`)
- Bug in :class:`DataFrame` and :class:`Series` construction with ``datetime64[ns]`` data and ``dtype=object`` resulting in ``datetime`` objects instead of :class:`Timestamp` objects (:issue:`41599`)
- Bug in :class:`DataFrame` and :class:`Series` construction with ``timedelta64[ns]`` data and ``dtype=object`` resulting in ``np.timedelta64`` objects instead of :class:`Timedelta` objects (:issue:`41599`)
- Bug in :class:`DataFrame` construction when given a two-dimensional object-dtype ``np.ndarray`` of :class:`Period` or :class:`Interval` objects failing to cast to :class:`PeriodDtype` or :class:`IntervalDtype`, respectively (:issue:`41812`)
- Bug in constructing a :class:`Series` from a list and a :class:`PandasDtype` (:issue:`39357`)
- Bug in creating a :class:`Series` from a ``range`` object that does not fit in the bounds of ``int64`` dtype (:issue:`30173`)
- Bug in creating a :class:`Series` from a ``dict`` with all-tuple keys and an :class:`Index` that requires reindexing (:issue:`41707`)
- Bug in :func:`.infer_dtype` not recognizing Series, Index, or array with a Period dtype (:issue:`23553`)
- Bug in :func:`.infer_dtype` raising an error for general :class:`.ExtensionArray` objects. It will now return ``"unknown-array"`` instead of raising (:issue:`37367`)
- Bug in :meth:`DataFrame.convert_dtypes` incorrectly raised a ``ValueError`` when called on an empty DataFrame (:issue:`40393`)
Strings
^^^^^^^
- Bug in the conversion from ``pyarrow.ChunkedArray`` to :class:`~arrays.StringArray` when the original had zero chunks (:issue:`41040`)
- Bug in :meth:`Series.replace` and :meth:`DataFrame.replace` ignoring replacements with ``regex=True`` for ``StringDType`` data (:issue:`41333`, :issue:`35977`)
- Bug in :meth:`Series.str.extract` with :class:`~arrays.StringArray` returning object dtype for an empty :class:`DataFrame` (:issue:`41441`)
- Bug in :meth:`Series.str.replace` where the ``case`` argument was ignored when ``regex=False`` (:issue:`41602`)
Interval
^^^^^^^^
- Bug in :meth:`IntervalIndex.intersection` and :meth:`IntervalIndex.symmetric_difference` always returning object-dtype when operating with :class:`CategoricalIndex` (:issue:`38653`, :issue:`38741`)
- Bug in :meth:`IntervalIndex.intersection` returning duplicates when at least one of the :class:`Index` objects have duplicates which are present in the other (:issue:`38743`)
- :meth:`IntervalIndex.union`, :meth:`IntervalIndex.intersection`, :meth:`IntervalIndex.difference`, and :meth:`IntervalIndex.symmetric_difference` now cast to the appropriate dtype instead of raising a ``TypeError`` when operating with another :class:`IntervalIndex` with incompatible dtype (:issue:`39267`)
- :meth:`PeriodIndex.union`, :meth:`PeriodIndex.intersection`, :meth:`PeriodIndex.symmetric_difference`, :meth:`PeriodIndex.difference` now cast to object dtype instead of raising ``IncompatibleFrequency`` when operating with another :class:`PeriodIndex` with incompatible dtype (:issue:`39306`)
- Bug in :meth:`IntervalIndex.is_monotonic`, :meth:`IntervalIndex.get_loc`, :meth:`IntervalIndex.get_indexer_for`, and :meth:`IntervalIndex.__contains__` when NA values are present (:issue:`41831`)
Indexing
^^^^^^^^
- Bug in :meth:`Index.union` and :meth:`MultiIndex.union` dropping duplicate ``Index`` values when ``Index`` was not monotonic or ``sort`` was set to ``False`` (:issue:`36289`, :issue:`31326`, :issue:`40862`)
- Bug in :meth:`CategoricalIndex.get_indexer` failing to raise ``InvalidIndexError`` when non-unique (:issue:`38372`)
- Bug in :meth:`IntervalIndex.get_indexer` when ``target`` has ``CategoricalDtype`` and both the index and the target contain NA values (:issue:`41934`)
- Bug in :meth:`Series.loc` raising a ``ValueError`` when input was filtered with a Boolean list and values to set were a list with lower dimension (:issue:`20438`)
- Bug in inserting many new columns into a :class:`DataFrame` causing incorrect subsequent indexing behavior (:issue:`38380`)
- Bug in :meth:`DataFrame.__setitem__` raising a ``ValueError`` when setting multiple values to duplicate columns (:issue:`15695`)
- Bug in :meth:`DataFrame.loc`, :meth:`Series.loc`, :meth:`DataFrame.__getitem__` and :meth:`Series.__getitem__` returning incorrect elements for non-monotonic :class:`DatetimeIndex` for string slices (:issue:`33146`)
- Bug in :meth:`DataFrame.reindex` and :meth:`Series.reindex` with timezone aware indexes raising a ``TypeError`` for ``method="ffill"`` and ``method="bfill"`` and specified ``tolerance`` (:issue:`38566`)
- Bug in :meth:`DataFrame.reindex` with ``datetime64[ns]`` or ``timedelta64[ns]`` incorrectly casting to integers when the ``fill_value`` requires casting to object dtype (:issue:`39755`)
- Bug in :meth:`DataFrame.__setitem__` raising a ``ValueError`` when setting on an empty :class:`DataFrame` using specified columns and a nonempty :class:`DataFrame` value (:issue:`38831`)
- Bug in :meth:`DataFrame.loc.__setitem__` raising a ``ValueError`` when operating on a unique column when the :class:`DataFrame` has duplicate columns (:issue:`38521`)
- Bug in :meth:`DataFrame.iloc.__setitem__` and :meth:`DataFrame.loc.__setitem__` with mixed dtypes when setting with a dictionary value (:issue:`38335`)
- Bug in :meth:`Series.loc.__setitem__` and :meth:`DataFrame.loc.__setitem__` raising ``KeyError`` when provided a Boolean generator (:issue:`39614`)
- Bug in :meth:`Series.iloc` and :meth:`DataFrame.iloc` raising a ``KeyError`` when provided a generator (:issue:`39614`)
- Bug in :meth:`DataFrame.__setitem__` not raising a ``ValueError`` when the right hand side is a :class:`DataFrame` with wrong number of columns (:issue:`38604`)
- Bug in :meth:`Series.__setitem__` raising a ``ValueError`` when setting a :class:`Series` with a scalar indexer (:issue:`38303`)
- Bug in :meth:`DataFrame.loc` dropping levels of a :class:`MultiIndex` when the :class:`DataFrame` used as input has only one row (:issue:`10521`)
- Bug in :meth:`DataFrame.__getitem__` and :meth:`Series.__getitem__` always raising ``KeyError`` when slicing with existing strings where the :class:`Index` has milliseconds (:issue:`33589`)
- Bug in setting ``timedelta64`` or ``datetime64`` values into numeric :class:`Series` failing to cast to object dtype (:issue:`39086`, :issue:`39619`)
- Bug in setting :class:`Interval` values into a :class:`Series` or :class:`DataFrame` with mismatched :class:`IntervalDtype` incorrectly casting the new values to the existing dtype (:issue:`39120`)
- Bug in setting ``datetime64`` values into a :class:`Series` with integer-dtype incorrectly casting the datetime64 values to integers (:issue:`39266`)
- Bug in setting ``np.datetime64("NaT")`` into a :class:`Series` with :class:`Datetime64TZDtype` incorrectly treating the timezone-naive value as timezone-aware (:issue:`39769`)
- Bug in :meth:`Index.get_loc` not raising ``KeyError`` when ``key=NaN`` and ``method`` is specified but ``NaN`` is not in the :class:`Index` (:issue:`39382`)
- Bug in :meth:`DatetimeIndex.insert` when inserting ``np.datetime64("NaT")`` into a timezone-aware index incorrectly treating the timezone-naive value as timezone-aware (:issue:`39769`)
- Bug in incorrectly raising in :meth:`Index.insert`, when setting a new column that cannot be held in the existing ``frame.columns``, or in :meth:`Series.reset_index` or :meth:`DataFrame.reset_index` instead of casting to a compatible dtype (:issue:`39068`)
- Bug in :meth:`RangeIndex.append` where a single object of length 1 was concatenated incorrectly (:issue:`39401`)
- Bug in :meth:`RangeIndex.astype` where when converting to :class:`CategoricalIndex`, the categories became a :class:`Int64Index` instead of a :class:`RangeIndex` (:issue:`41263`)
- Bug in setting ``numpy.timedelta64`` values into an object-dtype :class:`Series` using a Boolean indexer (:issue:`39488`)
- Bug in setting numeric values into a into a boolean-dtypes :class:`Series` using ``at`` or ``iat`` failing to cast to object-dtype (:issue:`39582`)
- Bug in :meth:`DataFrame.__setitem__` and :meth:`DataFrame.iloc.__setitem__` raising ``ValueError`` when trying to index with a row-slice and setting a list as values (:issue:`40440`)
- Bug in :meth:`DataFrame.loc` not raising ``KeyError`` when the key was not found in :class:`MultiIndex` and the levels were not fully specified (:issue:`41170`)
- Bug in :meth:`DataFrame.loc.__setitem__` when setting-with-expansion incorrectly raising when the index in the expanding axis contained duplicates (:issue:`40096`)
- Bug in :meth:`DataFrame.loc.__getitem__` with :class:`MultiIndex` casting to float when at least one index column has float dtype and we retrieve a scalar (:issue:`41369`)
- Bug in :meth:`DataFrame.loc` incorrectly matching non-Boolean index elements (:issue:`20432`)
- Bug in indexing with ``np.nan`` on a :class:`Series` or :class:`DataFrame` with a :class:`CategoricalIndex` incorrectly raising ``KeyError`` when ``np.nan`` keys are present (:issue:`41933`)
- Bug in :meth:`Series.__delitem__` with ``ExtensionDtype`` incorrectly casting to ``ndarray`` (:issue:`40386`)
- Bug in :meth:`DataFrame.at` with a :class:`CategoricalIndex` returning incorrect results when passed integer keys (:issue:`41846`)
- Bug in :meth:`DataFrame.loc` returning a :class:`MultiIndex` in the wrong order if an indexer has duplicates (:issue:`40978`)
- Bug in :meth:`DataFrame.__setitem__` raising a ``TypeError`` when using a ``str`` subclass as the column name with a :class:`DatetimeIndex` (:issue:`37366`)
- Bug in :meth:`PeriodIndex.get_loc` failing to raise a ``KeyError`` when given a :class:`Period` with a mismatched ``freq`` (:issue:`41670`)
- Bug ``.loc.__getitem__`` with a :class:`UInt64Index` and negative-integer keys raising ``OverflowError`` instead of ``KeyError`` in some cases, wrapping around to positive integers in others (:issue:`41777`)
- Bug in :meth:`Index.get_indexer` failing to raise ``ValueError`` in some cases with invalid ``method``, ``limit``, or ``tolerance`` arguments (:issue:`41918`)
- Bug when slicing a :class:`Series` or :class:`DataFrame` with a :class:`TimedeltaIndex` when passing an invalid string raising ``ValueError`` instead of a ``TypeError`` (:issue:`41821`)
- Bug in :class:`Index` constructor sometimes silently ignoring a specified ``dtype`` (:issue:`38879`)
- :meth:`Index.where` behavior now mirrors :meth:`Index.putmask` behavior, i.e. ``index.where(mask, other)`` matches ``index.putmask(~mask, other)`` (:issue:`39412`)
Missing
^^^^^^^
- Bug in :class:`Grouper` did not correctly propagate the ``dropna`` argument; :meth:`.DataFrameGroupBy.transform` now correctly handles missing values for ``dropna=True`` (:issue:`35612`)
- Bug in :func:`isna`, :meth:`Series.isna`, :meth:`Index.isna`, :meth:`DataFrame.isna`, and the corresponding ``notna`` functions not recognizing ``Decimal("NaN")`` objects (:issue:`39409`)
- Bug in :meth:`DataFrame.fillna` not accepting a dictionary for the ``downcast`` keyword (:issue:`40809`)
- Bug in :func:`isna` not returning a copy of the mask for nullable types, causing any subsequent mask modification to change the original array (:issue:`40935`)
- Bug in :class:`DataFrame` construction with float data containing ``NaN`` and an integer ``dtype`` casting instead of retaining the ``NaN`` (:issue:`26919`)
- Bug in :meth:`Series.isin` and :meth:`MultiIndex.isin` didn't treat all nans as equivalent if they were in tuples (:issue:`41836`)
MultiIndex
^^^^^^^^^^
- Bug in :meth:`DataFrame.drop` raising a ``TypeError`` when the :class:`MultiIndex` is non-unique and ``level`` is not provided (:issue:`36293`)
- Bug in :meth:`MultiIndex.intersection` duplicating ``NaN`` in the result (:issue:`38623`)
- Bug in :meth:`MultiIndex.equals` incorrectly returning ``True`` when the :class:`MultiIndex` contained ``NaN`` even when they are differently ordered (:issue:`38439`)
- Bug in :meth:`MultiIndex.intersection` always returning an empty result when intersecting with :class:`CategoricalIndex` (:issue:`38653`)
- Bug in :meth:`MultiIndex.difference` incorrectly raising ``TypeError`` when indexes contain non-sortable entries (:issue:`41915`)
- Bug in :meth:`MultiIndex.reindex` raising a ``ValueError`` when used on an empty :class:`MultiIndex` and indexing only a specific level (:issue:`41170`)
- Bug in :meth:`MultiIndex.reindex` raising ``TypeError`` when reindexing against a flat :class:`Index` (:issue:`41707`)
I/O
^^^
- Bug in :meth:`Index.__repr__` when ``display.max_seq_items=1`` (:issue:`38415`)
- Bug in :func:`read_csv` not recognizing scientific notation if the argument ``decimal`` is set and ``engine="python"`` (:issue:`31920`)
- Bug in :func:`read_csv` interpreting ``NA`` value as comment, when ``NA`` does contain the comment string fixed for ``engine="python"`` (:issue:`34002`)
- Bug in :func:`read_csv` raising an ``IndexError`` with multiple header columns and ``index_col`` is specified when the file has no data rows (:issue:`38292`)
- Bug in :func:`read_csv` not accepting ``usecols`` with a different length than ``names`` for ``engine="python"`` (:issue:`16469`)
- Bug in :meth:`read_csv` returning object dtype when ``delimiter=","`` with ``usecols`` and ``parse_dates`` specified for ``engine="python"`` (:issue:`35873`)
- Bug in :func:`read_csv` raising a ``TypeError`` when ``names`` and ``parse_dates`` is specified for ``engine="c"`` (:issue:`33699`)
- Bug in :func:`read_clipboard` and :func:`DataFrame.to_clipboard` not working in WSL (:issue:`38527`)
- Allow custom error values for the ``parse_dates`` argument of :func:`read_sql`, :func:`read_sql_query` and :func:`read_sql_table` (:issue:`35185`)
- Bug in :meth:`DataFrame.to_hdf` and :meth:`Series.to_hdf` raising a ``KeyError`` when trying to apply for subclasses of ``DataFrame`` or ``Series`` (:issue:`33748`)
- Bug in :meth:`.HDFStore.put` raising a wrong ``TypeError`` when saving a DataFrame with non-string dtype (:issue:`34274`)
- Bug in :func:`json_normalize` resulting in the first element of a generator object not being included in the returned DataFrame (:issue:`35923`)
- Bug in :func:`read_csv` applying the thousands separator to date columns when the column should be parsed for dates and ``usecols`` is specified for ``engine="python"`` (:issue:`39365`)
- Bug in :func:`read_excel` forward filling :class:`MultiIndex` names when multiple header and index columns are specified (:issue:`34673`)
- Bug in :func:`read_excel` not respecting :func:`set_option` (:issue:`34252`)
- Bug in :func:`read_csv` not switching ``true_values`` and ``false_values`` for nullable Boolean dtype (:issue:`34655`)
- Bug in :func:`read_json` when ``orient="split"`` not maintaining a numeric string index (:issue:`28556`)
- :meth:`read_sql` returned an empty generator if ``chunksize`` was non-zero and the query returned no results. Now returns a generator with a single empty DataFrame (:issue:`34411`)
- Bug in :func:`read_hdf` returning unexpected records when filtering on categorical string columns using the ``where`` parameter (:issue:`39189`)
- Bug in :func:`read_sas` raising a ``ValueError`` when ``datetimes`` were null (:issue:`39725`)
- Bug in :func:`read_excel` dropping empty values from single-column spreadsheets (:issue:`39808`)
- Bug in :func:`read_excel` loading trailing empty rows/columns for some filetypes (:issue:`41167`)
- Bug in :func:`read_excel` raising an ``AttributeError`` when the excel file had a ``MultiIndex`` header followed by two empty rows and no index (:issue:`40442`)
- Bug in :func:`read_excel`, :func:`read_csv`, :func:`read_table`, :func:`read_fwf`, and :func:`read_clipboard` where one blank row after a ``MultiIndex`` header with no index would be dropped (:issue:`40442`)
- Bug in :meth:`DataFrame.to_string` misplacing the truncation column when ``index=False`` (:issue:`40904`)
- Bug in :meth:`DataFrame.to_string` adding an extra dot and misaligning the truncation row when ``index=False`` (:issue:`40904`)
- Bug in :func:`read_orc` always raising an ``AttributeError`` (:issue:`40918`)
- Bug in :func:`read_csv` and :func:`read_table` silently ignoring ``prefix`` if ``names`` and ``prefix`` are defined, now raising a ``ValueError`` (:issue:`39123`)
- Bug in :func:`read_csv` and :func:`read_excel` not respecting the dtype for a duplicated column name when ``mangle_dupe_cols`` is set to ``True`` (:issue:`35211`)
- Bug in :func:`read_csv` silently ignoring ``sep`` if ``delimiter`` and ``sep`` are defined, now raising a ``ValueError`` (:issue:`39823`)
- Bug in :func:`read_csv` and :func:`read_table` misinterpreting arguments when ``sys.setprofile`` had been previously called (:issue:`41069`)
- Bug in the conversion from PyArrow to pandas (e.g. for reading Parquet) with nullable dtypes and a PyArrow array whose data buffer size is not a multiple of the dtype size (:issue:`40896`)
- Bug in :func:`read_excel` would raise an error when pandas could not determine the file type even though the user specified the ``engine`` argument (:issue:`41225`)
- Bug in :func:`read_clipboard` copying from an excel file shifts values into the wrong column if there are null values in first column (:issue:`41108`)
- Bug in :meth:`DataFrame.to_hdf` and :meth:`Series.to_hdf` raising a ``TypeError`` when trying to append a string column to an incompatible column (:issue:`41897`)
Period
^^^^^^
- Comparisons of :class:`Period` objects or :class:`Index`, :class:`Series`, or :class:`DataFrame` with mismatched ``PeriodDtype`` now behave like other mismatched-type comparisons, returning ``False`` for equals, ``True`` for not-equal, and raising ``TypeError`` for inequality checks (:issue:`39274`)
Plotting
^^^^^^^^
- Bug in :func:`plotting.scatter_matrix` raising when 2d ``ax`` argument passed (:issue:`16253`)
- Prevent warnings when Matplotlib's ``constrained_layout`` is enabled (:issue:`25261`)
- Bug in :func:`DataFrame.plot` was showing the wrong colors in the legend if the function was called repeatedly and some calls used ``yerr`` while others didn't (:issue:`39522`)
- Bug in :func:`DataFrame.plot` was showing the wrong colors in the legend if the function was called repeatedly and some calls used ``secondary_y`` and others use ``legend=False`` (:issue:`40044`)
- Bug in :meth:`DataFrame.plot.box` when ``dark_background`` theme was selected, caps or min/max markers for the plot were not visible (:issue:`40769`)
Groupby/resample/rolling
^^^^^^^^^^^^^^^^^^^^^^^^
- Bug in :meth:`.DataFrameGroupBy.agg` and :meth:`.SeriesGroupBy.agg` with :class:`PeriodDtype` columns incorrectly casting results too aggressively (:issue:`38254`)
- Bug in :meth:`.SeriesGroupBy.value_counts` where unobserved categories in a grouped categorical Series were not tallied (:issue:`38672`)
- Bug in :meth:`.SeriesGroupBy.value_counts` where an error was raised on an empty Series (:issue:`39172`)
- Bug in :meth:`.GroupBy.indices` would contain non-existent indices when null values were present in the groupby keys (:issue:`9304`)
- Fixed bug in :meth:`.DataFrameGroupBy.sum` and :meth:`.SeriesGroupBy.sum` causing a loss of precision by now using Kahan summation (:issue:`38778`)
- Fixed bug in :meth:`.DataFrameGroupBy.cumsum`, :meth:`.SeriesGroupBy.cumsum`, :meth:`.DataFrameGroupBy.mean`, and :meth:`.SeriesGroupBy.mean` causing loss of precision through using Kahan summation (:issue:`38934`)
- Bug in :meth:`.Resampler.aggregate` and :meth:`DataFrame.transform` raising a ``TypeError`` instead of ``SpecificationError`` when missing keys had mixed dtypes (:issue:`39025`)
- Bug in :meth:`.DataFrameGroupBy.idxmin` and :meth:`.DataFrameGroupBy.idxmax` with ``ExtensionDtype`` columns (:issue:`38733`)
- Bug in :meth:`Series.resample` would raise when the index was a :class:`PeriodIndex` consisting of ``NaT`` (:issue:`39227`)
- Bug in :meth:`.RollingGroupby.corr` and :meth:`.ExpandingGroupby.corr` where the groupby column would return ``0`` instead of ``np.nan`` when providing ``other`` that was longer than each group (:issue:`39591`)
- Bug in :meth:`.ExpandingGroupby.corr` and :meth:`.ExpandingGroupby.cov` where ``1`` would be returned instead of ``np.nan`` when providing ``other`` that was longer than each group (:issue:`39591`)
- Bug in :meth:`.DataFrameGroupBy.mean`, :meth:`.SeriesGroupBy.mean`, :meth:`.DataFrameGroupBy.median`, :meth:`.SeriesGroupBy.median`, and :meth:`DataFrame.pivot_table` not propagating metadata (:issue:`28283`)
- Bug in :meth:`Series.rolling` and :meth:`DataFrame.rolling` not calculating window bounds correctly when window is an offset and dates are in descending order (:issue:`40002`)
- Bug in :meth:`Series.groupby` and :meth:`DataFrame.groupby` on an empty ``Series`` or ``DataFrame`` would lose index, columns, and/or data types when directly using the methods ``idxmax``, ``idxmin``, ``mad``, ``min``, ``max``, ``sum``, ``prod``, and ``skew`` or using them through ``apply``, ``aggregate``, or ``resample`` (:issue:`26411`)
- Bug in :meth:`.DataFrameGroupBy.apply` and :meth:`.SeriesGroupBy.apply` where a :class:`MultiIndex` would be created instead of an :class:`Index` when used on a :class:`.RollingGroupby` object (:issue:`39732`)
- Bug in :meth:`.DataFrameGroupBy.sample` where an error was raised when ``weights`` was specified and the index was an :class:`Int64Index` (:issue:`39927`)
- Bug in :meth:`.DataFrameGroupBy.aggregate` and :meth:`.Resampler.aggregate` would sometimes raise a ``SpecificationError`` when passed a dictionary and columns were missing; will now always raise a ``KeyError`` instead (:issue:`40004`)
- Bug in :meth:`.DataFrameGroupBy.sample` where column selection was not applied before computing the result (:issue:`39928`)
- Bug in :class:`.ExponentialMovingWindow` when calling ``__getitem__`` would incorrectly raise a ``ValueError`` when providing ``times`` (:issue:`40164`)
- Bug in :class:`.ExponentialMovingWindow` when calling ``__getitem__`` would not retain ``com``, ``span``, ``alpha`` or ``halflife`` attributes (:issue:`40164`)
- :class:`.ExponentialMovingWindow` now raises a ``NotImplementedError`` when specifying ``times`` with ``adjust=False`` due to an incorrect calculation (:issue:`40098`)
- Bug in :meth:`.ExponentialMovingWindowGroupby.mean` where the ``times`` argument was ignored when ``engine='numba'`` (:issue:`40951`)
- Bug in :meth:`.ExponentialMovingWindowGroupby.mean` where the wrong times were used the in case of multiple groups (:issue:`40951`)
- Bug in :class:`.ExponentialMovingWindowGroupby` where the times vector and values became out of sync for non-trivial groups (:issue:`40951`)
- Bug in :meth:`Series.asfreq` and :meth:`DataFrame.asfreq` dropping rows when the index was not sorted (:issue:`39805`)
- Bug in aggregation functions for :class:`DataFrame` not respecting ``numeric_only`` argument when ``level`` keyword was given (:issue:`40660`)
- Bug in :meth:`.SeriesGroupBy.aggregate` where using a user-defined function to aggregate a Series with an object-typed :class:`Index` causes an incorrect :class:`Index` shape (:issue:`40014`)
- Bug in :class:`.RollingGroupby` where ``as_index=False`` argument in ``groupby`` was ignored (:issue:`39433`)
- Bug in :meth:`.DataFrameGroupBy.any`, :meth:`.SeriesGroupBy.any`, :meth:`.DataFrameGroupBy.all` and :meth:`.SeriesGroupBy.all` raising a ``ValueError`` when using with nullable type columns holding ``NA`` even with ``skipna=True`` (:issue:`40585`)
- Bug in :meth:`.DataFrameGroupBy.cummin`, :meth:`.SeriesGroupBy.cummin`, :meth:`.DataFrameGroupBy.cummax` and :meth:`.SeriesGroupBy.cummax` incorrectly rounding integer values near the ``int64`` implementations bounds (:issue:`40767`)
- Bug in :meth:`.DataFrameGroupBy.rank` and :meth:`.SeriesGroupBy.rank` with nullable dtypes incorrectly raising a ``TypeError`` (:issue:`41010`)
- Bug in :meth:`.DataFrameGroupBy.cummin`, :meth:`.SeriesGroupBy.cummin`, :meth:`.DataFrameGroupBy.cummax` and :meth:`.SeriesGroupBy.cummax` computing wrong result with nullable data types too large to roundtrip when casting to float (:issue:`37493`)
- Bug in :meth:`DataFrame.rolling` returning mean zero for all ``NaN`` window with ``min_periods=0`` if calculation is not numerical stable (:issue:`41053`)
- Bug in :meth:`DataFrame.rolling` returning sum not zero for all ``NaN`` window with ``min_periods=0`` if calculation is not numerical stable (:issue:`41053`)
- Bug in :meth:`.SeriesGroupBy.agg` failing to retain ordered :class:`CategoricalDtype` on order-preserving aggregations (:issue:`41147`)
- Bug in :meth:`.DataFrameGroupBy.min`, :meth:`.SeriesGroupBy.min`, :meth:`.DataFrameGroupBy.max` and :meth:`.SeriesGroupBy.max` with multiple object-dtype columns and ``numeric_only=False`` incorrectly raising a ``ValueError`` (:issue:`41111`)
- Bug in :meth:`.DataFrameGroupBy.rank` with the GroupBy object's ``axis=0`` and the ``rank`` method's keyword ``axis=1`` (:issue:`41320`)
- Bug in :meth:`DataFrameGroupBy.__getitem__` with non-unique columns incorrectly returning a malformed :class:`SeriesGroupBy` instead of :class:`DataFrameGroupBy` (:issue:`41427`)
- Bug in :meth:`.DataFrameGroupBy.transform` with non-unique columns incorrectly raising an ``AttributeError`` (:issue:`41427`)
- Bug in :meth:`.Resampler.apply` with non-unique columns incorrectly dropping duplicated columns (:issue:`41445`)
- Bug in :meth:`Series.groupby` aggregations incorrectly returning empty :class:`Series` instead of raising ``TypeError`` on aggregations that are invalid for its dtype, e.g. ``.prod`` with ``datetime64[ns]`` dtype (:issue:`41342`)
- Bug in :class:`DataFrameGroupBy` aggregations incorrectly failing to drop columns with invalid dtypes for that aggregation when there are no valid columns (:issue:`41291`)
- Bug in :meth:`DataFrame.rolling.__iter__` where ``on`` was not assigned to the index of the resulting objects (:issue:`40373`)
- Bug in :meth:`.DataFrameGroupBy.transform` and :meth:`.DataFrameGroupBy.agg` with ``engine="numba"`` where ``*args`` were being cached with the user passed function (:issue:`41647`)
- Bug in :class:`DataFrameGroupBy` methods ``agg``, ``transform``, ``sum``, ``bfill``, ``ffill``, ``pad``, ``pct_change``, ``shift``, ``ohlc`` dropping ``.columns.names`` (:issue:`41497`)
Reshaping
^^^^^^^^^
- Bug in :func:`merge` raising error when performing an inner join with partial index and ``right_index=True`` when there was no overlap between indices (:issue:`33814`)
- Bug in :meth:`DataFrame.unstack` with missing levels led to incorrect index names (:issue:`37510`)
- Bug in :func:`merge_asof` propagating the right Index with ``left_index=True`` and ``right_on`` specification instead of left Index (:issue:`33463`)
- Bug in :meth:`DataFrame.join` on a DataFrame with a :class:`MultiIndex` returned the wrong result when one of both indexes had only one level (:issue:`36909`)
- :func:`merge_asof` now raises a ``ValueError`` instead of a cryptic ``TypeError`` in case of non-numerical merge columns (:issue:`29130`)
- Bug in :meth:`DataFrame.join` not assigning values correctly when the DataFrame had a :class:`MultiIndex` where at least one dimension had dtype ``Categorical`` with non-alphabetically sorted categories (:issue:`38502`)
- :meth:`Series.value_counts` and :meth:`Series.mode` now return consistent keys in original order (:issue:`12679`, :issue:`11227` and :issue:`39007`)
- Bug in :meth:`DataFrame.stack` not handling ``NaN`` in :class:`MultiIndex` columns correctly (:issue:`39481`)
- Bug in :meth:`DataFrame.apply` would give incorrect results when the argument ``func`` was a string, ``axis=1``, and the axis argument was not supported; now raises a ``ValueError`` instead (:issue:`39211`)
- Bug in :meth:`DataFrame.sort_values` not reshaping the index correctly after sorting on columns when ``ignore_index=True`` (:issue:`39464`)
- Bug in :meth:`DataFrame.append` returning incorrect dtypes with combinations of ``ExtensionDtype`` dtypes (:issue:`39454`)
- Bug in :meth:`DataFrame.append` returning incorrect dtypes when used with combinations of ``datetime64`` and ``timedelta64`` dtypes (:issue:`39574`)
- Bug in :meth:`DataFrame.append` with a :class:`DataFrame` with a :class:`MultiIndex` and appending a :class:`Series` whose :class:`Index` is not a :class:`MultiIndex` (:issue:`41707`)
- Bug in :meth:`DataFrame.pivot_table` returning a :class:`MultiIndex` for a single value when operating on an empty DataFrame (:issue:`13483`)
- :class:`Index` can now be passed to the :func:`numpy.all` function (:issue:`40180`)
- Bug in :meth:`DataFrame.stack` not preserving ``CategoricalDtype`` in a :class:`MultiIndex` (:issue:`36991`)
- Bug in :func:`to_datetime` raising an error when the input sequence contained unhashable items (:issue:`39756`)
- Bug in :meth:`Series.explode` preserving the index when ``ignore_index`` was ``True`` and values were scalars (:issue:`40487`)
- Bug in :func:`to_datetime` raising a ``ValueError`` when :class:`Series` contains ``None`` and ``NaT`` and has more than 50 elements (:issue:`39882`)
- Bug in :meth:`Series.unstack` and :meth:`DataFrame.unstack` with object-dtype values containing timezone-aware datetime objects incorrectly raising ``TypeError`` (:issue:`41875`)
- Bug in :meth:`DataFrame.melt` raising ``InvalidIndexError`` when :class:`DataFrame` has duplicate columns used as ``value_vars`` (:issue:`41951`)
Sparse
^^^^^^
- Bug in :meth:`DataFrame.sparse.to_coo` raising a ``KeyError`` with columns that are a numeric :class:`Index` without a ``0`` (:issue:`18414`)
- Bug in :meth:`SparseArray.astype` with ``copy=False`` producing incorrect results when going from integer dtype to floating dtype (:issue:`34456`)
- Bug in :meth:`SparseArray.max` and :meth:`SparseArray.min` would always return an empty result (:issue:`40921`)
ExtensionArray
^^^^^^^^^^^^^^
- Bug in :meth:`DataFrame.where` when ``other`` is a Series with an :class:`ExtensionDtype` (:issue:`38729`)
- Fixed bug where :meth:`Series.idxmax`, :meth:`Series.idxmin`, :meth:`Series.argmax`, and :meth:`Series.argmin` would fail when the underlying data is an :class:`ExtensionArray` (:issue:`32749`, :issue:`33719`, :issue:`36566`)
- Fixed bug where some properties of subclasses of :class:`PandasExtensionDtype` where improperly cached (:issue:`40329`)
- Bug in :meth:`DataFrame.mask` where masking a DataFrame with an :class:`ExtensionDtype` raises a ``ValueError`` (:issue:`40941`)
Styler
^^^^^^
- Bug in :class:`.Styler` where the ``subset`` argument in methods raised an error for some valid MultiIndex slices (:issue:`33562`)
- :class:`.Styler` rendered HTML output has seen minor alterations to support w3 good code standards (:issue:`39626`)
- Bug in :class:`.Styler` where rendered HTML was missing a column class identifier for certain header cells (:issue:`39716`)
- Bug in :meth:`.Styler.background_gradient` where text-color was not determined correctly (:issue:`39888`)
- Bug in :meth:`.Styler.set_table_styles` where multiple elements in CSS-selectors of the ``table_styles`` argument were not correctly added (:issue:`34061`)
- Bug in :class:`.Styler` where copying from Jupyter dropped the top left cell and misaligned headers (:issue:`12147`)
- Bug in :class:`Styler.where` where ``kwargs`` were not passed to the applicable callable (:issue:`40845`)
- Bug in :class:`.Styler` causing CSS to duplicate on multiple renders (:issue:`39395`, :issue:`40334`)
Other
^^^^^
- ``inspect.getmembers(Series)`` no longer raises an ``AbstractMethodError`` (:issue:`38782`)
- Bug in :meth:`Series.where` with numeric dtype and ``other=None`` not casting to ``nan`` (:issue:`39761`)
- Bug in :func:`.assert_series_equal`, :func:`.assert_frame_equal`, :func:`.assert_index_equal` and :func:`.assert_extension_array_equal` incorrectly raising when an attribute has an unrecognized NA type (:issue:`39461`)
- Bug in :func:`.assert_index_equal` with ``exact=True`` not raising when comparing :class:`CategoricalIndex` instances with ``Int64Index`` and ``RangeIndex`` categories (:issue:`41263`)
- Bug in :meth:`DataFrame.equals`, :meth:`Series.equals`, and :meth:`Index.equals` with object-dtype containing ``np.datetime64("NaT")`` or ``np.timedelta64("NaT")`` (:issue:`39650`)
- Bug in :func:`show_versions` where console JSON output was not proper JSON (:issue:`39701`)
- pandas can now compile on z/OS when using `xlc <https://www.ibm.com/products/xl-cpp-compiler-zos>`_ (:issue:`35826`)
- Bug in :func:`pandas.util.hash_pandas_object` not recognizing ``hash_key``, ``encoding`` and ``categorize`` when the input object type is a :class:`DataFrame` (:issue:`41404`)
.. ---------------------------------------------------------------------------
.. _whatsnew_130.contributors:
Contributors
~~~~~~~~~~~~
.. contributors:: v1.2.5..v1.3.0
|