File: v1.3.0.rst

package info (click to toggle)
pandas 2.2.3%2Bdfsg-9
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 66,784 kB
  • sloc: python: 422,228; ansic: 9,190; sh: 270; xml: 102; makefile: 83
file content (1249 lines) | stat: -rw-r--r-- 84,192 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
.. _whatsnew_130:

What's new in 1.3.0 (July 2, 2021)
----------------------------------

These are the changes in pandas 1.3.0. See :ref:`release` for a full changelog
including other versions of pandas.

{{ header }}

.. warning::

   When reading new Excel 2007+ (``.xlsx``) files, the default argument
   ``engine=None`` to :func:`read_excel` will now result in using the
   `openpyxl <https://openpyxl.readthedocs.io/en/stable/>`_ engine in all cases
   when the option :attr:`io.excel.xlsx.reader` is set to ``"auto"``.
   Previously, some cases would use the
   `xlrd <https://xlrd.readthedocs.io/en/latest/>`_ engine instead. See
   :ref:`What's new 1.2.0 <whatsnew_120>` for background on this change.

.. ---------------------------------------------------------------------------

.. _whatsnew_130.enhancements:

Enhancements
~~~~~~~~~~~~

.. _whatsnew_130.enhancements.read_csv_json_http_headers:

Custom HTTP(s) headers when reading csv or json files
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

When reading from a remote URL that is not handled by fsspec (e.g. HTTP and
HTTPS) the dictionary passed to ``storage_options`` will be used to create the
headers included in the request.  This can be used to control the User-Agent
header or send other custom headers (:issue:`36688`).
For example:

.. code-block:: ipython

    In [1]: headers = {"User-Agent": "pandas"}
    In [2]: df = pd.read_csv(
       ...:     "https://download.bls.gov/pub/time.series/cu/cu.item",
       ...:     sep="\t",
       ...:     storage_options=headers
       ...: )

.. _whatsnew_130.enhancements.read_to_xml:

Read and write XML documents
^^^^^^^^^^^^^^^^^^^^^^^^^^^^

We added I/O support to read and render shallow versions of `XML`_ documents with
:func:`read_xml` and :meth:`DataFrame.to_xml`. Using `lxml`_ as parser,
both XPath 1.0 and XSLT 1.0 are available. (:issue:`27554`)

.. _XML: https://www.w3.org/standards/xml/core
.. _lxml: https://lxml.de

.. code-block:: ipython

    In [1]: xml = """<?xml version='1.0' encoding='utf-8'?>
       ...: <data>
       ...:  <row>
       ...:     <shape>square</shape>
       ...:     <degrees>360</degrees>
       ...:     <sides>4.0</sides>
       ...:  </row>
       ...:  <row>
       ...:     <shape>circle</shape>
       ...:     <degrees>360</degrees>
       ...:     <sides/>
       ...:  </row>
       ...:  <row>
       ...:     <shape>triangle</shape>
       ...:     <degrees>180</degrees>
       ...:     <sides>3.0</sides>
       ...:  </row>
       ...:  </data>"""

    In [2]: df = pd.read_xml(xml)
    In [3]: df
    Out[3]:
          shape  degrees  sides
    0    square      360    4.0
    1    circle      360    NaN
    2  triangle      180    3.0

    In [4]: df.to_xml()
    Out[4]:
    <?xml version='1.0' encoding='utf-8'?>
    <data>
      <row>
        <index>0</index>
        <shape>square</shape>
        <degrees>360</degrees>
        <sides>4.0</sides>
      </row>
      <row>
        <index>1</index>
        <shape>circle</shape>
        <degrees>360</degrees>
        <sides/>
      </row>
      <row>
        <index>2</index>
        <shape>triangle</shape>
        <degrees>180</degrees>
        <sides>3.0</sides>
      </row>
    </data>

For more, see :ref:`io.xml` in the user guide on IO tools.

.. _whatsnew_130.enhancements.styler:

Styler enhancements
^^^^^^^^^^^^^^^^^^^

We provided some focused development on :class:`.Styler`. See also the `Styler documentation <../user_guide/style.ipynb>`_
which has been revised and improved (:issue:`39720`, :issue:`39317`, :issue:`40493`).

 - The method :meth:`.Styler.set_table_styles` can now accept more natural CSS language for arguments, such as ``'color:red;'`` instead of ``[('color', 'red')]`` (:issue:`39563`)
 - The methods :meth:`.Styler.highlight_null`, :meth:`.Styler.highlight_min`, and :meth:`.Styler.highlight_max` now allow custom CSS highlighting instead of the default background coloring (:issue:`40242`)
 - :meth:`.Styler.apply` now accepts functions that return an ``ndarray`` when ``axis=None``, making it now consistent with the ``axis=0`` and ``axis=1`` behavior (:issue:`39359`)
 - When incorrectly formatted CSS is given via :meth:`.Styler.apply` or :meth:`.Styler.applymap`, an error is now raised upon rendering (:issue:`39660`)
 - :meth:`.Styler.format` now accepts the keyword argument ``escape`` for optional HTML and LaTeX escaping (:issue:`40388`, :issue:`41619`)
 - :meth:`.Styler.background_gradient` has gained the argument ``gmap`` to supply a specific gradient map for shading (:issue:`22727`)
 - :meth:`.Styler.clear` now clears :attr:`Styler.hidden_index` and :attr:`Styler.hidden_columns` as well (:issue:`40484`)
 - Added the method :meth:`.Styler.highlight_between` (:issue:`39821`)
 - Added the method :meth:`.Styler.highlight_quantile` (:issue:`40926`)
 - Added the method :meth:`.Styler.text_gradient` (:issue:`41098`)
 - Added the method :meth:`.Styler.set_tooltips` to allow hover tooltips; this can be used enhance interactive displays (:issue:`21266`, :issue:`40284`)
 - Added the parameter ``precision`` to the method :meth:`.Styler.format` to control the display of floating point numbers (:issue:`40134`)
 - :class:`.Styler` rendered HTML output now follows the `w3 HTML Style Guide <https://www.w3schools.com/html/html5_syntax.asp>`_ (:issue:`39626`)
 - Many features of the :class:`.Styler` class are now either partially or fully usable on a DataFrame with a non-unique indexes or columns (:issue:`41143`)
 - One has greater control of the display through separate sparsification of the index or columns using the :ref:`new styler options <options.available>`, which are also usable via :func:`option_context` (:issue:`41142`)
 - Added the option ``styler.render.max_elements`` to avoid browser overload when styling large DataFrames (:issue:`40712`)
 - Added the method :meth:`.Styler.to_latex` (:issue:`21673`, :issue:`42320`), which also allows some limited CSS conversion (:issue:`40731`)
 - Added the method :meth:`.Styler.to_html` (:issue:`13379`)
 - Added the method :meth:`.Styler.set_sticky` to make index and column headers permanently visible in scrolling HTML frames (:issue:`29072`)

.. _whatsnew_130.enhancements.dataframe_honors_copy_with_dict:

DataFrame constructor honors ``copy=False`` with dict
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

When passing a dictionary to :class:`DataFrame` with ``copy=False``,
a copy will no longer be made (:issue:`32960`).

.. ipython:: python

    arr = np.array([1, 2, 3])
    df = pd.DataFrame({"A": arr, "B": arr.copy()}, copy=False)
    df

``df["A"]`` remains a view on ``arr``:

.. ipython:: python

    arr[0] = 0
    assert df.iloc[0, 0] == 0

The default behavior when not passing ``copy`` will remain unchanged, i.e.
a copy will be made.

.. _whatsnew_130.enhancements.arrow_string:

PyArrow backed string data type
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

We've enhanced the :class:`StringDtype`, an extension type dedicated to string data.
(:issue:`39908`)

It is now possible to specify a ``storage`` keyword option to :class:`StringDtype`. Use
pandas options or specify the dtype using ``dtype='string[pyarrow]'`` to allow the
StringArray to be backed by a PyArrow array instead of a NumPy array of Python objects.

The PyArrow backed StringArray requires pyarrow 1.0.0 or greater to be installed.

.. warning::

   ``string[pyarrow]`` is currently considered experimental. The implementation
   and parts of the API may change without warning.

.. ipython:: python

   pd.Series(['abc', None, 'def'], dtype=pd.StringDtype(storage="pyarrow"))

You can use the alias ``"string[pyarrow]"`` as well.

.. ipython:: python

   s = pd.Series(['abc', None, 'def'], dtype="string[pyarrow]")
   s

You can also create a PyArrow backed string array using pandas options.

.. ipython:: python

    with pd.option_context("string_storage", "pyarrow"):
        s = pd.Series(['abc', None, 'def'], dtype="string")
    s

The usual string accessor methods work. Where appropriate, the return type of the Series
or columns of a DataFrame will also have string dtype.

.. ipython:: python

   s.str.upper()
   s.str.split('b', expand=True).dtypes

String accessor methods returning integers will return a value with :class:`Int64Dtype`

.. ipython:: python

   s.str.count("a")

.. _whatsnew_130.enhancements.centered_datetimelike_rolling_window:

Centered datetime-like rolling windows
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

When performing rolling calculations on DataFrame and Series
objects with a datetime-like index, a centered datetime-like window can now be
used (:issue:`38780`).
For example:

.. ipython:: python

    df = pd.DataFrame(
        {"A": [0, 1, 2, 3, 4]}, index=pd.date_range("2020", periods=5, freq="1D")
    )
    df
    df.rolling("2D", center=True).mean()


.. _whatsnew_130.enhancements.other:

Other enhancements
^^^^^^^^^^^^^^^^^^

- :meth:`DataFrame.rolling`, :meth:`Series.rolling`, :meth:`DataFrame.expanding`, and :meth:`Series.expanding` now support a ``method`` argument with a ``'table'`` option that performs the windowing operation over an entire :class:`DataFrame`. See :ref:`Window Overview <window.overview>` for performance and functional benefits (:issue:`15095`, :issue:`38995`)
- :class:`.ExponentialMovingWindow` now support a ``online`` method that can perform ``mean`` calculations in an online fashion. See :ref:`Window Overview <window.overview>` (:issue:`41673`)
- Added :meth:`MultiIndex.dtypes` (:issue:`37062`)
- Added ``end`` and ``end_day`` options for the ``origin`` argument in :meth:`DataFrame.resample` (:issue:`37804`)
- Improved error message when ``usecols`` and ``names`` do not match for :func:`read_csv` and ``engine="c"`` (:issue:`29042`)
- Improved consistency of error messages when passing an invalid ``win_type`` argument in :ref:`Window methods <api.window>` (:issue:`15969`)
- :func:`read_sql_query` now accepts a ``dtype`` argument to cast the columnar data from the SQL database based on user input (:issue:`10285`)
- :func:`read_csv` now raising ``ParserWarning`` if length of header or given names does not match length of data when ``usecols`` is not specified (:issue:`21768`)
- Improved integer type mapping from pandas to SQLAlchemy when using :meth:`DataFrame.to_sql` (:issue:`35076`)
- :func:`to_numeric` now supports downcasting of nullable ``ExtensionDtype`` objects (:issue:`33013`)
- Added support for dict-like names in :class:`MultiIndex.set_names` and :class:`MultiIndex.rename` (:issue:`20421`)
- :func:`read_excel` can now auto-detect .xlsb files and older .xls files (:issue:`35416`, :issue:`41225`)
- :class:`ExcelWriter` now accepts an ``if_sheet_exists`` parameter to control the behavior of append mode when writing to existing sheets (:issue:`40230`)
- :meth:`.Rolling.sum`, :meth:`.Expanding.sum`, :meth:`.Rolling.mean`, :meth:`.Expanding.mean`, :meth:`.ExponentialMovingWindow.mean`, :meth:`.Rolling.median`, :meth:`.Expanding.median`, :meth:`.Rolling.max`, :meth:`.Expanding.max`, :meth:`.Rolling.min`, and :meth:`.Expanding.min` now support `Numba <http://numba.pydata.org/>`_ execution with the ``engine`` keyword (:issue:`38895`, :issue:`41267`)
- :meth:`DataFrame.apply` can now accept NumPy unary operators as strings, e.g. ``df.apply("sqrt")``, which was already the case for :meth:`Series.apply` (:issue:`39116`)
- :meth:`DataFrame.apply` can now accept non-callable DataFrame properties as strings, e.g. ``df.apply("size")``, which was already the case for :meth:`Series.apply` (:issue:`39116`)
- :meth:`DataFrame.applymap` can now accept kwargs to pass on to the user-provided ``func`` (:issue:`39987`)
- Passing a :class:`DataFrame` indexer to ``iloc`` is now disallowed for :meth:`Series.__getitem__` and :meth:`DataFrame.__getitem__` (:issue:`39004`)
- :meth:`Series.apply` can now accept list-like or dictionary-like arguments that aren't lists or dictionaries, e.g. ``ser.apply(np.array(["sum", "mean"]))``, which was already the case for :meth:`DataFrame.apply` (:issue:`39140`)
- :meth:`DataFrame.plot.scatter` can now accept a categorical column for the argument ``c`` (:issue:`12380`, :issue:`31357`)
- :meth:`Series.loc` now raises a helpful error message when the Series has a :class:`MultiIndex` and the indexer has too many dimensions (:issue:`35349`)
- :func:`read_stata` now supports reading data from compressed files (:issue:`26599`)
- Added support for parsing ``ISO 8601``-like timestamps with negative signs to :class:`Timedelta` (:issue:`37172`)
- Added support for unary operators in :class:`FloatingArray` (:issue:`38749`)
- :class:`RangeIndex` can now be constructed by passing a ``range`` object directly e.g. ``pd.RangeIndex(range(3))`` (:issue:`12067`)
- :meth:`Series.round` and :meth:`DataFrame.round` now work with nullable integer and floating dtypes (:issue:`38844`)
- :meth:`read_csv` and :meth:`read_json` expose the argument ``encoding_errors`` to control how encoding errors are handled (:issue:`39450`)
- :meth:`.DataFrameGroupBy.any`, :meth:`.SeriesGroupBy.any`, :meth:`.DataFrameGroupBy.all`, and :meth:`.SeriesGroupBy.all` use Kleene logic with nullable data types (:issue:`37506`)
- :meth:`.DataFrameGroupBy.any`, :meth:`.SeriesGroupBy.any`, :meth:`.DataFrameGroupBy.all`, and :meth:`.SeriesGroupBy.all` return a ``BooleanDtype`` for columns with nullable data types (:issue:`33449`)
- :meth:`.DataFrameGroupBy.any`, :meth:`.SeriesGroupBy.any`, :meth:`.DataFrameGroupBy.all`, and :meth:`.SeriesGroupBy.all` raising with ``object`` data containing ``pd.NA`` even when ``skipna=True`` (:issue:`37501`)
- :meth:`.DataFrameGroupBy.rank` and :meth:`.SeriesGroupBy.rank` now supports object-dtype data (:issue:`38278`)
- Constructing a :class:`DataFrame` or :class:`Series` with the ``data`` argument being a Python iterable that is *not* a NumPy ``ndarray`` consisting of NumPy scalars will now result in a dtype with a precision the maximum of the NumPy scalars; this was already the case when ``data`` is a NumPy ``ndarray`` (:issue:`40908`)
- Add keyword ``sort`` to :func:`pivot_table` to allow non-sorting of the result (:issue:`39143`)
- Add keyword ``dropna`` to :meth:`DataFrame.value_counts` to allow counting rows that include ``NA`` values (:issue:`41325`)
- :meth:`Series.replace` will now cast results to ``PeriodDtype`` where possible instead of ``object`` dtype (:issue:`41526`)
- Improved error message in ``corr`` and ``cov`` methods on :class:`.Rolling`, :class:`.Expanding`, and :class:`.ExponentialMovingWindow` when ``other`` is not a :class:`DataFrame` or :class:`Series` (:issue:`41741`)
- :meth:`Series.between` can now accept ``left`` or ``right`` as arguments to ``inclusive`` to include only the left or right boundary (:issue:`40245`)
- :meth:`DataFrame.explode` now supports exploding multiple columns. Its ``column`` argument now also accepts a list of str or tuples for exploding on multiple columns at the same time (:issue:`39240`)
- :meth:`DataFrame.sample` now accepts the ``ignore_index`` argument to reset the index after sampling, similar to :meth:`DataFrame.drop_duplicates` and :meth:`DataFrame.sort_values` (:issue:`38581`)

.. ---------------------------------------------------------------------------

.. _whatsnew_130.notable_bug_fixes:

Notable bug fixes
~~~~~~~~~~~~~~~~~

These are bug fixes that might have notable behavior changes.

.. _whatsnew_130.notable_bug_fixes.categorical_unique_maintains_dtype:

``Categorical.unique`` now always maintains same dtype as original
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Previously, when calling :meth:`Categorical.unique` with categorical data, unused categories in the new array
would be removed, making the dtype of the new array different than the
original (:issue:`18291`)

As an example of this, given:

.. ipython:: python

        dtype = pd.CategoricalDtype(['bad', 'neutral', 'good'], ordered=True)
        cat = pd.Categorical(['good', 'good', 'bad', 'bad'], dtype=dtype)
        original = pd.Series(cat)
        unique = original.unique()

*Previous behavior*:

.. code-block:: ipython

    In [1]: unique
    ['good', 'bad']
    Categories (2, object): ['bad' < 'good']
    In [2]: original.dtype == unique.dtype
    False

*New behavior*:

.. ipython:: python

        unique
        original.dtype == unique.dtype

.. _whatsnew_130.notable_bug_fixes.combine_first_preserves_dtype:

Preserve dtypes in :meth:`DataFrame.combine_first`
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

:meth:`DataFrame.combine_first` will now preserve dtypes (:issue:`7509`)

.. ipython:: python

   df1 = pd.DataFrame({"A": [1, 2, 3], "B": [1, 2, 3]}, index=[0, 1, 2])
   df1
   df2 = pd.DataFrame({"B": [4, 5, 6], "C": [1, 2, 3]}, index=[2, 3, 4])
   df2
   combined = df1.combine_first(df2)

*Previous behavior*:

.. code-block:: ipython

   In [1]: combined.dtypes
   Out[2]:
   A    float64
   B    float64
   C    float64
   dtype: object

*New behavior*:

.. ipython:: python

   combined.dtypes

.. _whatsnew_130.notable_bug_fixes.groupby_preserves_dtype:

Groupby methods agg and transform no longer changes return dtype for callables
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Previously the methods :meth:`.DataFrameGroupBy.aggregate`,
:meth:`.SeriesGroupBy.aggregate`, :meth:`.DataFrameGroupBy.transform`, and
:meth:`.SeriesGroupBy.transform` might cast the result dtype when the argument ``func``
is callable, possibly leading to undesirable results (:issue:`21240`). The cast would
occur if the result is numeric and casting back to the input dtype does not change any
values as measured by ``np.allclose``. Now no such casting occurs.

.. ipython:: python

    df = pd.DataFrame({'key': [1, 1], 'a': [True, False], 'b': [True, True]})
    df

*Previous behavior*:

.. code-block:: ipython

    In [5]: df.groupby('key').agg(lambda x: x.sum())
    Out[5]:
            a  b
    key
    1    True  2

*New behavior*:

.. ipython:: python

    df.groupby('key').agg(lambda x: x.sum())

.. _whatsnew_130.notable_bug_fixes.groupby_reductions_float_result:

``float`` result for :meth:`.DataFrameGroupBy.mean`, :meth:`.DataFrameGroupBy.median`, and :meth:`.GDataFrameGroupBy.var`, :meth:`.SeriesGroupBy.mean`, :meth:`.SeriesGroupBy.median`, and :meth:`.SeriesGroupBy.var`
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Previously, these methods could result in different dtypes depending on the input values.
Now, these methods will always return a float dtype. (:issue:`41137`)

.. ipython:: python

    df = pd.DataFrame({'a': [True], 'b': [1], 'c': [1.0]})

*Previous behavior*:

.. code-block:: ipython

    In [5]: df.groupby(df.index).mean()
    Out[5]:
            a  b    c
    0    True  1  1.0

*New behavior*:

.. ipython:: python

    df.groupby(df.index).mean()

.. _whatsnew_130.notable_bug_fixes.setitem_column_try_inplace:

Try operating inplace when setting values with ``loc`` and ``iloc``
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

When setting an entire column using ``loc`` or ``iloc``, pandas will try to
insert the values into the existing data rather than create an entirely new array.

.. ipython:: python

   df = pd.DataFrame(range(3), columns=["A"], dtype="float64")
   values = df.values
   new = np.array([5, 6, 7], dtype="int64")
   df.loc[[0, 1, 2], "A"] = new

In both the new and old behavior, the data in ``values`` is overwritten, but in
the old behavior the dtype of ``df["A"]`` changed to ``int64``.

*Previous behavior*:

.. code-block:: ipython

   In [1]: df.dtypes
   Out[1]:
   A    int64
   dtype: object
   In [2]: np.shares_memory(df["A"].values, new)
   Out[2]: False
   In [3]: np.shares_memory(df["A"].values, values)
   Out[3]: False

In pandas 1.3.0, ``df`` continues to share data with ``values``

*New behavior*:

.. ipython:: python

   df.dtypes
   np.shares_memory(df["A"], new)
   np.shares_memory(df["A"], values)


.. _whatsnew_130.notable_bug_fixes.setitem_never_inplace:

Never operate inplace when setting ``frame[keys] = values``
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

When setting multiple columns using ``frame[keys] = values`` new arrays will
replace pre-existing arrays for these keys, which will *not* be over-written
(:issue:`39510`).  As a result, the columns will retain the dtype(s) of ``values``,
never casting to the dtypes of the existing arrays.

.. ipython:: python

   df = pd.DataFrame(range(3), columns=["A"], dtype="float64")
   df[["A"]] = 5

In the old behavior, ``5`` was cast to ``float64`` and inserted into the existing
array backing ``df``:

*Previous behavior*:

.. code-block:: ipython

   In [1]: df.dtypes
   Out[1]:
   A    float64

In the new behavior, we get a new array, and retain an integer-dtyped ``5``:

*New behavior*:

.. ipython:: python

   df.dtypes


.. _whatsnew_130.notable_bug_fixes.setitem_with_bool_casting:

Consistent casting with setting into Boolean Series
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Setting non-boolean values into a :class:`Series` with ``dtype=bool`` now consistently
casts to ``dtype=object`` (:issue:`38709`)

.. code-block:: ipython

   In [1]: orig = pd.Series([True, False])

   In [2]: ser = orig.copy()

   In [3]: ser.iloc[1] = np.nan

   In [4]: ser2 = orig.copy()

   In [5]: ser2.iloc[1] = 2.0

*Previous behavior*:

.. code-block:: ipython

   In [1]: ser
   Out [1]:
   0    1.0
   1    NaN
   dtype: float64

   In [2]:ser2
   Out [2]:
   0    True
   1     2.0
   dtype: object

*New behavior*:

.. code-block:: ipython

   In [1]: ser
   Out [1]:
   0    True
   1     NaN
   dtype: object

   In [2]:ser2
   Out [2]:
   0    True
   1     2.0
   dtype: object


.. _whatsnew_130.notable_bug_fixes.rolling_groupby_column:

DataFrameGroupBy.rolling and SeriesGroupBy.rolling no longer return grouped-by column in values
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

The group-by column will now be dropped from the result of a
``groupby.rolling`` operation (:issue:`32262`)

.. ipython:: python

    df = pd.DataFrame({"A": [1, 1, 2, 3], "B": [0, 1, 2, 3]})
    df

*Previous behavior*:

.. code-block:: ipython

    In [1]: df.groupby("A").rolling(2).sum()
    Out[1]:
           A    B
    A
    1 0  NaN  NaN
    1    2.0  1.0
    2 2  NaN  NaN
    3 3  NaN  NaN

*New behavior*:

.. ipython:: python

    df.groupby("A").rolling(2).sum()

.. _whatsnew_130.notable_bug_fixes.rolling_var_precision:

Removed artificial truncation in rolling variance and standard deviation
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

:meth:`.Rolling.std` and :meth:`.Rolling.var` will no longer
artificially truncate results that are less than ``~1e-8`` and ``~1e-15`` respectively to
zero (:issue:`37051`, :issue:`40448`, :issue:`39872`).

However, floating point artifacts may now exist in the results when rolling over larger values.

.. ipython:: python

   s = pd.Series([7, 5, 5, 5])
   s.rolling(3).var()

.. _whatsnew_130.notable_bug_fixes.rolling_groupby_multiindex:

DataFrameGroupBy.rolling and SeriesGroupBy.rolling with MultiIndex no longer drop levels in the result
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

:meth:`DataFrameGroupBy.rolling` and :meth:`SeriesGroupBy.rolling` will no longer drop levels of a :class:`DataFrame`
with a :class:`MultiIndex` in the result. This can lead to a perceived duplication of levels in the resulting
:class:`MultiIndex`, but this change restores the behavior that was present in version 1.1.3 (:issue:`38787`, :issue:`38523`).


.. ipython:: python

   index = pd.MultiIndex.from_tuples([('idx1', 'idx2')], names=['label1', 'label2'])
   df = pd.DataFrame({'a': [1], 'b': [2]}, index=index)
   df

*Previous behavior*:

.. code-block:: ipython

    In [1]: df.groupby('label1').rolling(1).sum()
    Out[1]:
              a    b
    label1
    idx1    1.0  2.0

*New behavior*:

.. ipython:: python

    df.groupby('label1').rolling(1).sum()


.. ---------------------------------------------------------------------------

.. _whatsnew_130.api_breaking:

Backwards incompatible API changes
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

.. _whatsnew_130.api_breaking.deps:

Increased minimum versions for dependencies
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Some minimum supported versions of dependencies were updated.
If installed, we now require:

+-----------------+-----------------+----------+---------+
| Package         | Minimum Version | Required | Changed |
+=================+=================+==========+=========+
| numpy           | 1.17.3          |    X     |    X    |
+-----------------+-----------------+----------+---------+
| pytz            | 2017.3          |    X     |         |
+-----------------+-----------------+----------+---------+
| python-dateutil | 2.7.3           |    X     |         |
+-----------------+-----------------+----------+---------+
| bottleneck      | 1.2.1           |          |         |
+-----------------+-----------------+----------+---------+
| numexpr         | 2.7.0           |          |    X    |
+-----------------+-----------------+----------+---------+
| pytest (dev)    | 6.0             |          |    X    |
+-----------------+-----------------+----------+---------+
| mypy (dev)      | 0.812           |          |    X    |
+-----------------+-----------------+----------+---------+
| setuptools      | 38.6.0          |          |    X    |
+-----------------+-----------------+----------+---------+

For `optional libraries <https://pandas.pydata.org/docs/getting_started/install.html>`_ the general recommendation is to use the latest version.
The following table lists the lowest version per library that is currently being tested throughout the development of pandas.
Optional libraries below the lowest tested version may still work, but are not considered supported.

+-----------------+-----------------+---------+
| Package         | Minimum Version | Changed |
+=================+=================+=========+
| beautifulsoup4  | 4.6.0           |         |
+-----------------+-----------------+---------+
| fastparquet     | 0.4.0           |    X    |
+-----------------+-----------------+---------+
| fsspec          | 0.7.4           |         |
+-----------------+-----------------+---------+
| gcsfs           | 0.6.0           |         |
+-----------------+-----------------+---------+
| lxml            | 4.3.0           |         |
+-----------------+-----------------+---------+
| matplotlib      | 2.2.3           |         |
+-----------------+-----------------+---------+
| numba           | 0.46.0          |         |
+-----------------+-----------------+---------+
| openpyxl        | 3.0.0           |    X    |
+-----------------+-----------------+---------+
| pyarrow         | 0.17.0          |    X    |
+-----------------+-----------------+---------+
| pymysql         | 0.8.1           |    X    |
+-----------------+-----------------+---------+
| pytables        | 3.5.1           |         |
+-----------------+-----------------+---------+
| s3fs            | 0.4.0           |         |
+-----------------+-----------------+---------+
| scipy           | 1.2.0           |         |
+-----------------+-----------------+---------+
| sqlalchemy      | 1.3.0           |    X    |
+-----------------+-----------------+---------+
| tabulate        | 0.8.7           |    X    |
+-----------------+-----------------+---------+
| xarray          | 0.12.0          |         |
+-----------------+-----------------+---------+
| xlrd            | 1.2.0           |         |
+-----------------+-----------------+---------+
| xlsxwriter      | 1.0.2           |         |
+-----------------+-----------------+---------+
| xlwt            | 1.3.0           |         |
+-----------------+-----------------+---------+
| pandas-gbq      | 0.12.0          |         |
+-----------------+-----------------+---------+

See :ref:`install.dependencies` and :ref:`install.optional_dependencies` for more.

.. _whatsnew_130.api_breaking.other:

Other API changes
^^^^^^^^^^^^^^^^^
- Partially initialized :class:`CategoricalDtype` objects (i.e. those with ``categories=None``) will no longer compare as equal to fully initialized dtype objects (:issue:`38516`)
- Accessing ``_constructor_expanddim`` on a :class:`DataFrame` and ``_constructor_sliced`` on a :class:`Series` now raise an ``AttributeError``. Previously a ``NotImplementedError`` was raised (:issue:`38782`)
- Added new ``engine`` and ``**engine_kwargs`` parameters to :meth:`DataFrame.to_sql` to support other future "SQL engines". Currently we still only use ``SQLAlchemy`` under the hood, but more engines are planned to be supported such as `turbodbc <https://turbodbc.readthedocs.io/en/latest/>`_ (:issue:`36893`)
- Removed redundant ``freq`` from :class:`PeriodIndex` string representation (:issue:`41653`)
- :meth:`ExtensionDtype.construct_array_type` is now a required method instead of an optional one for :class:`ExtensionDtype` subclasses (:issue:`24860`)
- Calling ``hash`` on non-hashable pandas objects will now raise ``TypeError`` with the built-in error message (e.g. ``unhashable type: 'Series'``). Previously it would raise a custom message such as ``'Series' objects are mutable, thus they cannot be hashed``. Furthermore, ``isinstance(<Series>, abc.collections.Hashable)`` will now return ``False`` (:issue:`40013`)
- :meth:`.Styler.from_custom_template` now has two new arguments for template names, and removed the old ``name``, due to template inheritance having been introducing for better parsing (:issue:`42053`). Subclassing modifications to Styler attributes are also needed.

.. _whatsnew_130.api_breaking.build:

Build
^^^^^
- Documentation in ``.pptx`` and ``.pdf`` formats are no longer included in wheels or source distributions. (:issue:`30741`)

.. ---------------------------------------------------------------------------

.. _whatsnew_130.deprecations:

Deprecations
~~~~~~~~~~~~

.. _whatsnew_130.deprecations.nuisance_columns:

Deprecated dropping nuisance columns in DataFrame reductions and DataFrameGroupBy operations
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Calling a reduction (e.g. ``.min``, ``.max``, ``.sum``) on a :class:`DataFrame` with
``numeric_only=None`` (the default), columns where the reduction raises a ``TypeError``
are silently ignored and dropped from the result.

This behavior is deprecated. In a future version, the ``TypeError`` will be raised,
and users will need to select only valid columns before calling the function.

For example:

.. ipython:: python

   df = pd.DataFrame({"A": [1, 2, 3, 4], "B": pd.date_range("2016-01-01", periods=4)})
   df

*Old behavior*:

.. code-block:: ipython

    In [3]: df.prod()
    Out[3]:
    Out[3]:
    A    24
    dtype: int64

*Future behavior*:

.. code-block:: ipython

    In [4]: df.prod()
    ...
    TypeError: 'DatetimeArray' does not implement reduction 'prod'

    In [5]: df[["A"]].prod()
    Out[5]:
    A    24
    dtype: int64


Similarly, when applying a function to :class:`DataFrameGroupBy`, columns on which
the function raises ``TypeError`` are currently silently ignored and dropped
from the result.

This behavior is deprecated.  In a future version, the ``TypeError``
will be raised, and users will need to select only valid columns before calling
the function.

For example:

.. ipython:: python

   df = pd.DataFrame({"A": [1, 2, 3, 4], "B": pd.date_range("2016-01-01", periods=4)})
   gb = df.groupby([1, 1, 2, 2])

*Old behavior*:

.. code-block:: ipython

    In [4]: gb.prod(numeric_only=False)
    Out[4]:
    A
    1   2
    2  12

*Future behavior*:

.. code-block:: ipython

    In [5]: gb.prod(numeric_only=False)
    ...
    TypeError: datetime64 type does not support prod operations

    In [6]: gb[["A"]].prod(numeric_only=False)
    Out[6]:
        A
    1   2
    2  12

.. _whatsnew_130.deprecations.other:

Other Deprecations
^^^^^^^^^^^^^^^^^^
- Deprecated allowing scalars to be passed to the :class:`Categorical` constructor (:issue:`38433`)
- Deprecated constructing :class:`CategoricalIndex` without passing list-like data (:issue:`38944`)
- Deprecated allowing subclass-specific keyword arguments in the :class:`Index` constructor, use the specific subclass directly instead (:issue:`14093`, :issue:`21311`, :issue:`22315`, :issue:`26974`)
- Deprecated the :meth:`astype` method of datetimelike (``timedelta64[ns]``, ``datetime64[ns]``, ``Datetime64TZDtype``, ``PeriodDtype``) to convert to integer dtypes, use ``values.view(...)`` instead (:issue:`38544`). This deprecation was later reverted in pandas 1.4.0.
- Deprecated :meth:`MultiIndex.is_lexsorted` and :meth:`MultiIndex.lexsort_depth`, use :meth:`MultiIndex.is_monotonic_increasing` instead (:issue:`32259`)
- Deprecated keyword ``try_cast`` in :meth:`Series.where`, :meth:`Series.mask`, :meth:`DataFrame.where`, :meth:`DataFrame.mask`; cast results manually if desired (:issue:`38836`)
- Deprecated comparison of :class:`Timestamp` objects with ``datetime.date`` objects.  Instead of e.g. ``ts <= mydate`` use ``ts <= pd.Timestamp(mydate)`` or ``ts.date() <= mydate`` (:issue:`36131`)
- Deprecated :attr:`Rolling.win_type` returning ``"freq"`` (:issue:`38963`)
- Deprecated :attr:`Rolling.is_datetimelike` (:issue:`38963`)
- Deprecated :class:`DataFrame` indexer for :meth:`Series.__setitem__` and :meth:`DataFrame.__setitem__` (:issue:`39004`)
- Deprecated :meth:`ExponentialMovingWindow.vol` (:issue:`39220`)
- Using ``.astype`` to convert between ``datetime64[ns]`` dtype and :class:`DatetimeTZDtype` is deprecated and will raise in a future version, use ``obj.tz_localize`` or ``obj.dt.tz_localize`` instead (:issue:`38622`)
- Deprecated casting ``datetime.date`` objects to ``datetime64`` when used as ``fill_value`` in :meth:`DataFrame.unstack`, :meth:`DataFrame.shift`, :meth:`Series.shift`, and :meth:`DataFrame.reindex`, pass ``pd.Timestamp(dateobj)`` instead (:issue:`39767`)
- Deprecated :meth:`.Styler.set_na_rep` and :meth:`.Styler.set_precision` in favor of :meth:`.Styler.format` with ``na_rep`` and ``precision`` as existing and new input arguments respectively (:issue:`40134`, :issue:`40425`)
- Deprecated :meth:`.Styler.where` in favor of using an alternative formulation with :meth:`Styler.applymap` (:issue:`40821`)
- Deprecated allowing partial failure in :meth:`Series.transform` and :meth:`DataFrame.transform` when ``func`` is list-like or dict-like and raises anything but ``TypeError``; ``func`` raising anything but a ``TypeError`` will raise in a future version (:issue:`40211`)
- Deprecated arguments ``error_bad_lines`` and ``warn_bad_lines`` in :meth:`read_csv` and :meth:`read_table` in favor of argument ``on_bad_lines`` (:issue:`15122`)
- Deprecated support for ``np.ma.mrecords.MaskedRecords`` in the :class:`DataFrame` constructor, pass ``{name: data[name] for name in data.dtype.names}`` instead (:issue:`40363`)
- Deprecated using :func:`merge`, :meth:`DataFrame.merge`, and :meth:`DataFrame.join` on a different number of levels (:issue:`34862`)
- Deprecated the use of ``**kwargs`` in :class:`.ExcelWriter`; use the keyword argument ``engine_kwargs`` instead (:issue:`40430`)
- Deprecated the ``level`` keyword for :class:`DataFrame` and :class:`Series` aggregations; use groupby instead (:issue:`39983`)
- Deprecated the ``inplace`` parameter of :meth:`Categorical.remove_categories`, :meth:`Categorical.add_categories`, :meth:`Categorical.reorder_categories`, :meth:`Categorical.rename_categories`, :meth:`Categorical.set_categories` and will be removed in a future version (:issue:`37643`)
- Deprecated :func:`merge` producing duplicated columns through the ``suffixes`` keyword  and already existing columns (:issue:`22818`)
- Deprecated setting :attr:`Categorical._codes`, create a new :class:`Categorical` with the desired codes instead (:issue:`40606`)
- Deprecated the ``convert_float`` optional argument in :func:`read_excel` and :meth:`ExcelFile.parse` (:issue:`41127`)
- Deprecated behavior of :meth:`DatetimeIndex.union` with mixed timezones; in a future version both will be cast to UTC instead of object dtype (:issue:`39328`)
- Deprecated using ``usecols`` with out of bounds indices for :func:`read_csv` with ``engine="c"`` (:issue:`25623`)
- Deprecated special treatment of lists with first element a Categorical in the :class:`DataFrame` constructor; pass as ``pd.DataFrame({col: categorical, ...})`` instead (:issue:`38845`)
- Deprecated behavior of :class:`DataFrame` constructor when a ``dtype`` is passed and the data cannot be cast to that dtype. In a future version, this will raise instead of being silently ignored (:issue:`24435`)
- Deprecated the :attr:`Timestamp.freq` attribute.  For the properties that use it (``is_month_start``, ``is_month_end``, ``is_quarter_start``, ``is_quarter_end``, ``is_year_start``, ``is_year_end``), when you have a ``freq``, use e.g. ``freq.is_month_start(ts)`` (:issue:`15146`)
- Deprecated construction of :class:`Series` or :class:`DataFrame` with ``DatetimeTZDtype`` data and ``datetime64[ns]`` dtype.  Use ``Series(data).dt.tz_localize(None)`` instead (:issue:`41555`, :issue:`33401`)
- Deprecated behavior of :class:`Series` construction with large-integer values and small-integer dtype silently overflowing; use ``Series(data).astype(dtype)`` instead (:issue:`41734`)
- Deprecated behavior of :class:`DataFrame` construction with floating data and integer dtype casting even when lossy; in a future version this will remain floating, matching :class:`Series` behavior (:issue:`41770`)
- Deprecated inference of ``timedelta64[ns]``, ``datetime64[ns]``, or ``DatetimeTZDtype`` dtypes in :class:`Series` construction when data containing strings is passed and no ``dtype`` is passed (:issue:`33558`)
- In a future version, constructing :class:`Series` or :class:`DataFrame` with ``datetime64[ns]`` data and ``DatetimeTZDtype`` will treat the data as wall-times instead of as UTC times (matching DatetimeIndex behavior). To treat the data as UTC times, use ``pd.Series(data).dt.tz_localize("UTC").dt.tz_convert(dtype.tz)`` or ``pd.Series(data.view("int64"), dtype=dtype)`` (:issue:`33401`)
- Deprecated passing lists as ``key`` to :meth:`DataFrame.xs` and :meth:`Series.xs` (:issue:`41760`)
- Deprecated boolean arguments of ``inclusive`` in :meth:`Series.between` to have ``{"left", "right", "neither", "both"}`` as standard argument values (:issue:`40628`)
- Deprecated passing arguments as positional for all of the following, with exceptions noted (:issue:`41485`):

  - :func:`concat` (other than ``objs``)
  - :func:`read_csv` (other than ``filepath_or_buffer``)
  - :func:`read_table` (other than ``filepath_or_buffer``)
  - :meth:`DataFrame.clip` and :meth:`Series.clip` (other than ``upper`` and ``lower``)
  - :meth:`DataFrame.drop_duplicates` (except for ``subset``), :meth:`Series.drop_duplicates`, :meth:`Index.drop_duplicates` and :meth:`MultiIndex.drop_duplicates`
  - :meth:`DataFrame.drop` (other than ``labels``) and :meth:`Series.drop`
  - :meth:`DataFrame.dropna` and :meth:`Series.dropna`
  - :meth:`DataFrame.ffill`, :meth:`Series.ffill`, :meth:`DataFrame.bfill`, and :meth:`Series.bfill`
  - :meth:`DataFrame.fillna` and :meth:`Series.fillna` (apart from ``value``)
  - :meth:`DataFrame.interpolate` and :meth:`Series.interpolate` (other than ``method``)
  - :meth:`DataFrame.mask` and :meth:`Series.mask` (other than ``cond`` and ``other``)
  - :meth:`DataFrame.reset_index` (other than ``level``) and :meth:`Series.reset_index`
  - :meth:`DataFrame.set_axis` and :meth:`Series.set_axis` (other than ``labels``)
  - :meth:`DataFrame.set_index` (other than ``keys``)
  - :meth:`DataFrame.sort_index` and :meth:`Series.sort_index`
  - :meth:`DataFrame.sort_values` (other than ``by``) and :meth:`Series.sort_values`
  - :meth:`DataFrame.where` and :meth:`Series.where` (other than ``cond`` and ``other``)
  - :meth:`Index.set_names` and :meth:`MultiIndex.set_names` (except for ``names``)
  - :meth:`MultiIndex.codes` (except for ``codes``)
  - :meth:`MultiIndex.set_levels` (except for ``levels``)
  - :meth:`Resampler.interpolate` (other than ``method``)


.. ---------------------------------------------------------------------------


.. _whatsnew_130.performance:

Performance improvements
~~~~~~~~~~~~~~~~~~~~~~~~
- Performance improvement in :meth:`IntervalIndex.isin` (:issue:`38353`)
- Performance improvement in :meth:`Series.mean` for nullable data types (:issue:`34814`)
- Performance improvement in :meth:`Series.isin` for nullable data types (:issue:`38340`)
- Performance improvement in :meth:`DataFrame.fillna` with ``method="pad"`` or ``method="backfill"`` for nullable floating and nullable integer dtypes (:issue:`39953`)
- Performance improvement in :meth:`DataFrame.corr` for ``method=kendall`` (:issue:`28329`)
- Performance improvement in :meth:`DataFrame.corr` for ``method=spearman`` (:issue:`40956`, :issue:`41885`)
- Performance improvement in :meth:`.Rolling.corr` and :meth:`.Rolling.cov` (:issue:`39388`)
- Performance improvement in :meth:`.RollingGroupby.corr`, :meth:`.ExpandingGroupby.corr`, :meth:`.ExpandingGroupby.corr` and :meth:`.ExpandingGroupby.cov` (:issue:`39591`)
- Performance improvement in :func:`unique` for object data type (:issue:`37615`)
- Performance improvement in :func:`json_normalize` for basic cases (including separators) (:issue:`40035` :issue:`15621`)
- Performance improvement in :class:`.ExpandingGroupby` aggregation methods (:issue:`39664`)
- Performance improvement in :class:`.Styler` where render times are more than 50% reduced and now matches :meth:`DataFrame.to_html` (:issue:`39972` :issue:`39952`, :issue:`40425`)
- The method :meth:`.Styler.set_td_classes` is now as performant as :meth:`.Styler.apply` and :meth:`.Styler.applymap`, and even more so in some cases (:issue:`40453`)
- Performance improvement in :meth:`.ExponentialMovingWindow.mean` with ``times`` (:issue:`39784`)
- Performance improvement in :meth:`.DataFrameGroupBy.apply` and :meth:`.SeriesGroupBy.apply` when requiring the Python fallback implementation (:issue:`40176`)
- Performance improvement in the conversion of a PyArrow Boolean array to a pandas nullable Boolean array (:issue:`41051`)
- Performance improvement for concatenation of data with type :class:`CategoricalDtype` (:issue:`40193`)
- Performance improvement in :meth:`.DataFrameGroupBy.cummin`, :meth:`.SeriesGroupBy.cummin`, :meth:`.DataFrameGroupBy.cummax`, and :meth:`.SeriesGroupBy.cummax` with nullable data types (:issue:`37493`)
- Performance improvement in :meth:`Series.nunique` with nan values (:issue:`40865`)
- Performance improvement in :meth:`DataFrame.transpose`, :meth:`Series.unstack` with ``DatetimeTZDtype`` (:issue:`40149`)
- Performance improvement in :meth:`Series.plot` and :meth:`DataFrame.plot` with entry point lazy loading (:issue:`41492`)

.. ---------------------------------------------------------------------------

.. _whatsnew_130.bug_fixes:

Bug fixes
~~~~~~~~~

Categorical
^^^^^^^^^^^
- Bug in :class:`CategoricalIndex` incorrectly failing to raise ``TypeError`` when scalar data is passed (:issue:`38614`)
- Bug in ``CategoricalIndex.reindex`` failed when the :class:`Index` passed was not categorical but whose values were all labels in the category (:issue:`28690`)
- Bug where constructing a :class:`Categorical` from an object-dtype array of ``date`` objects did not round-trip correctly with ``astype`` (:issue:`38552`)
- Bug in constructing a :class:`DataFrame` from an ``ndarray`` and a :class:`CategoricalDtype` (:issue:`38857`)
- Bug in setting categorical values into an object-dtype column in a :class:`DataFrame` (:issue:`39136`)
- Bug in :meth:`DataFrame.reindex` was raising an ``IndexError`` when the new index contained duplicates and the old index was a :class:`CategoricalIndex` (:issue:`38906`)
- Bug in :meth:`Categorical.fillna` with a tuple-like category raising ``NotImplementedError`` instead of ``ValueError`` when filling with a non-category tuple (:issue:`41914`)

Datetimelike
^^^^^^^^^^^^
- Bug in :class:`DataFrame` and :class:`Series` constructors sometimes dropping nanoseconds from :class:`Timestamp` (resp. :class:`Timedelta`) ``data``, with ``dtype=datetime64[ns]`` (resp. ``timedelta64[ns]``) (:issue:`38032`)
- Bug in :meth:`DataFrame.first` and :meth:`Series.first` with an offset of one month returning an incorrect result when the first day is the last day of a month (:issue:`29623`)
- Bug in constructing a :class:`DataFrame` or :class:`Series` with mismatched ``datetime64`` data and ``timedelta64`` dtype, or vice-versa, failing to raise a ``TypeError`` (:issue:`38575`, :issue:`38764`, :issue:`38792`)
- Bug in constructing a :class:`Series` or :class:`DataFrame` with a ``datetime`` object out of bounds for ``datetime64[ns]`` dtype or a ``timedelta`` object out of bounds for ``timedelta64[ns]`` dtype (:issue:`38792`, :issue:`38965`)
- Bug in :meth:`DatetimeIndex.intersection`, :meth:`DatetimeIndex.symmetric_difference`, :meth:`PeriodIndex.intersection`, :meth:`PeriodIndex.symmetric_difference` always returning object-dtype when operating with :class:`CategoricalIndex` (:issue:`38741`)
- Bug in :meth:`DatetimeIndex.intersection` giving incorrect results with non-Tick frequencies with ``n != 1`` (:issue:`42104`)
- Bug in :meth:`Series.where` incorrectly casting ``datetime64`` values to ``int64`` (:issue:`37682`)
- Bug in :class:`Categorical` incorrectly typecasting ``datetime`` object to ``Timestamp`` (:issue:`38878`)
- Bug in comparisons between :class:`Timestamp` object and ``datetime64`` objects just outside the implementation bounds for nanosecond ``datetime64`` (:issue:`39221`)
- Bug in :meth:`Timestamp.round`, :meth:`Timestamp.floor`, :meth:`Timestamp.ceil` for values near the implementation bounds of :class:`Timestamp` (:issue:`39244`)
- Bug in :meth:`Timedelta.round`, :meth:`Timedelta.floor`, :meth:`Timedelta.ceil` for values near the implementation bounds of :class:`Timedelta` (:issue:`38964`)
- Bug in :func:`date_range` incorrectly creating :class:`DatetimeIndex` containing ``NaT`` instead of raising ``OutOfBoundsDatetime`` in corner cases (:issue:`24124`)
- Bug in :func:`infer_freq` incorrectly fails to infer 'H' frequency of :class:`DatetimeIndex` if the latter has a timezone and crosses DST boundaries (:issue:`39556`)
- Bug in :class:`Series` backed by :class:`DatetimeArray` or :class:`TimedeltaArray` sometimes failing to set the array's ``freq`` to ``None`` (:issue:`41425`)

Timedelta
^^^^^^^^^
- Bug in constructing :class:`Timedelta` from ``np.timedelta64`` objects with non-nanosecond units that are out of bounds for ``timedelta64[ns]`` (:issue:`38965`)
- Bug in constructing a :class:`TimedeltaIndex` incorrectly accepting ``np.datetime64("NaT")`` objects (:issue:`39462`)
- Bug in constructing :class:`Timedelta` from an input string with only symbols and no digits failed to raise an error (:issue:`39710`)
- Bug in :class:`TimedeltaIndex` and :func:`to_timedelta` failing to raise when passed non-nanosecond ``timedelta64`` arrays that overflow when converting to ``timedelta64[ns]`` (:issue:`40008`)

Timezones
^^^^^^^^^
- Bug in different ``tzinfo`` objects representing UTC not being treated as equivalent (:issue:`39216`)
- Bug in ``dateutil.tz.gettz("UTC")`` not being recognized as equivalent to other UTC-representing tzinfos (:issue:`39276`)

Numeric
^^^^^^^
- Bug in :meth:`DataFrame.quantile`, :meth:`DataFrame.sort_values` causing incorrect subsequent indexing behavior (:issue:`38351`)
- Bug in :meth:`DataFrame.sort_values` raising an :class:`IndexError` for empty ``by`` (:issue:`40258`)
- Bug in :meth:`DataFrame.select_dtypes` with ``include=np.number`` would drop numeric ``ExtensionDtype`` columns (:issue:`35340`)
- Bug in :meth:`DataFrame.mode` and :meth:`Series.mode` not keeping consistent integer :class:`Index` for empty input (:issue:`33321`)
- Bug in :meth:`DataFrame.rank` when the DataFrame contained ``np.inf`` (:issue:`32593`)
- Bug in :meth:`DataFrame.rank` with ``axis=0`` and columns holding incomparable types raising an ``IndexError`` (:issue:`38932`)
- Bug in :meth:`Series.rank`, :meth:`DataFrame.rank`, :meth:`.DataFrameGroupBy.rank`, and :meth:`.SeriesGroupBy.rank` treating the most negative ``int64`` value as missing (:issue:`32859`)
- Bug in :meth:`DataFrame.select_dtypes` different behavior between Windows and Linux with ``include="int"`` (:issue:`36596`)
- Bug in :meth:`DataFrame.apply` and :meth:`DataFrame.agg` when passed the argument ``func="size"`` would operate on the entire ``DataFrame`` instead of rows or columns (:issue:`39934`)
- Bug in :meth:`DataFrame.transform` would raise a ``SpecificationError`` when passed a dictionary and columns were missing; will now raise a ``KeyError`` instead (:issue:`40004`)
- Bug in :meth:`.DataFrameGroupBy.rank` and :meth:`.SeriesGroupBy.rank` giving incorrect results with ``pct=True`` and equal values between consecutive groups (:issue:`40518`)
- Bug in :meth:`Series.count` would result in an ``int32`` result on 32-bit platforms when argument ``level=None`` (:issue:`40908`)
- Bug in :class:`Series` and :class:`DataFrame` reductions with methods ``any`` and ``all`` not returning Boolean results for object data (:issue:`12863`, :issue:`35450`, :issue:`27709`)
- Bug in :meth:`Series.clip` would fail if the Series contains NA values and has nullable int or float as a data type (:issue:`40851`)
- Bug in :meth:`UInt64Index.where` and :meth:`UInt64Index.putmask` with an ``np.int64`` dtype ``other`` incorrectly raising ``TypeError`` (:issue:`41974`)
- Bug in :meth:`DataFrame.agg()` not sorting the aggregated axis in the order of the provided aggregation functions when one or more aggregation function fails to produce results (:issue:`33634`)
- Bug in :meth:`DataFrame.clip` not interpreting missing values as no threshold (:issue:`40420`)

Conversion
^^^^^^^^^^
- Bug in :meth:`Series.to_dict` with ``orient='records'`` now returns Python native types (:issue:`25969`)
- Bug in :meth:`Series.view` and :meth:`Index.view` when converting between datetime-like (``datetime64[ns]``, ``datetime64[ns, tz]``, ``timedelta64``, ``period``) dtypes (:issue:`39788`)
- Bug in creating a :class:`DataFrame` from an empty ``np.recarray`` not retaining the original dtypes (:issue:`40121`)
- Bug in :class:`DataFrame` failing to raise a ``TypeError`` when constructing from a ``frozenset`` (:issue:`40163`)
- Bug in :class:`Index` construction silently ignoring a passed ``dtype`` when the data cannot be cast to that dtype (:issue:`21311`)
- Bug in :meth:`StringArray.astype` falling back to NumPy and raising when converting to ``dtype='categorical'`` (:issue:`40450`)
- Bug in :func:`factorize` where, when given an array with a numeric NumPy dtype lower than int64, uint64 and float64, the unique values did not keep their original dtype (:issue:`41132`)
- Bug in :class:`DataFrame` construction with a dictionary containing an array-like with ``ExtensionDtype`` and ``copy=True`` failing to make a copy (:issue:`38939`)
- Bug in :meth:`qcut` raising error when taking ``Float64DType`` as input (:issue:`40730`)
- Bug in :class:`DataFrame` and :class:`Series` construction with ``datetime64[ns]`` data and ``dtype=object`` resulting in ``datetime`` objects instead of :class:`Timestamp` objects (:issue:`41599`)
- Bug in :class:`DataFrame` and :class:`Series` construction with ``timedelta64[ns]`` data and ``dtype=object`` resulting in ``np.timedelta64`` objects instead of :class:`Timedelta` objects (:issue:`41599`)
- Bug in :class:`DataFrame` construction when given a two-dimensional object-dtype ``np.ndarray`` of :class:`Period` or :class:`Interval` objects failing to cast to :class:`PeriodDtype` or :class:`IntervalDtype`, respectively (:issue:`41812`)
- Bug in constructing a :class:`Series` from a list and a :class:`PandasDtype` (:issue:`39357`)
- Bug in creating a :class:`Series` from a ``range`` object that does not fit in the bounds of ``int64`` dtype (:issue:`30173`)
- Bug in creating a :class:`Series` from a ``dict`` with all-tuple keys and an :class:`Index` that requires reindexing (:issue:`41707`)
- Bug in :func:`.infer_dtype` not recognizing Series, Index, or array with a Period dtype (:issue:`23553`)
- Bug in :func:`.infer_dtype` raising an error for general :class:`.ExtensionArray` objects. It will now return ``"unknown-array"`` instead of raising (:issue:`37367`)
- Bug in :meth:`DataFrame.convert_dtypes` incorrectly raised a ``ValueError`` when called on an empty DataFrame (:issue:`40393`)

Strings
^^^^^^^
- Bug in the conversion from ``pyarrow.ChunkedArray`` to :class:`~arrays.StringArray` when the original had zero chunks (:issue:`41040`)
- Bug in :meth:`Series.replace` and :meth:`DataFrame.replace` ignoring replacements with ``regex=True`` for ``StringDType`` data (:issue:`41333`, :issue:`35977`)
- Bug in :meth:`Series.str.extract` with :class:`~arrays.StringArray` returning object dtype for an empty :class:`DataFrame` (:issue:`41441`)
- Bug in :meth:`Series.str.replace` where the ``case`` argument was ignored when ``regex=False`` (:issue:`41602`)

Interval
^^^^^^^^
- Bug in :meth:`IntervalIndex.intersection` and :meth:`IntervalIndex.symmetric_difference` always returning object-dtype when operating with :class:`CategoricalIndex` (:issue:`38653`, :issue:`38741`)
- Bug in :meth:`IntervalIndex.intersection` returning duplicates when at least one of the :class:`Index` objects have duplicates which are present in the other (:issue:`38743`)
- :meth:`IntervalIndex.union`, :meth:`IntervalIndex.intersection`, :meth:`IntervalIndex.difference`, and :meth:`IntervalIndex.symmetric_difference` now cast to the appropriate dtype instead of raising a ``TypeError`` when operating with another :class:`IntervalIndex` with incompatible dtype (:issue:`39267`)
- :meth:`PeriodIndex.union`, :meth:`PeriodIndex.intersection`, :meth:`PeriodIndex.symmetric_difference`, :meth:`PeriodIndex.difference` now cast to object dtype instead of raising ``IncompatibleFrequency`` when operating with another :class:`PeriodIndex` with incompatible dtype (:issue:`39306`)
- Bug in :meth:`IntervalIndex.is_monotonic`, :meth:`IntervalIndex.get_loc`, :meth:`IntervalIndex.get_indexer_for`, and :meth:`IntervalIndex.__contains__` when NA values are present (:issue:`41831`)

Indexing
^^^^^^^^
- Bug in :meth:`Index.union` and :meth:`MultiIndex.union` dropping duplicate ``Index`` values when ``Index`` was not monotonic or ``sort`` was set to ``False`` (:issue:`36289`, :issue:`31326`, :issue:`40862`)
- Bug in :meth:`CategoricalIndex.get_indexer` failing to raise ``InvalidIndexError`` when non-unique (:issue:`38372`)
- Bug in :meth:`IntervalIndex.get_indexer` when ``target`` has ``CategoricalDtype`` and both the index and the target contain NA values (:issue:`41934`)
- Bug in :meth:`Series.loc` raising a ``ValueError`` when input was filtered with a Boolean list and values to set were a list with lower dimension (:issue:`20438`)
- Bug in inserting many new columns into a :class:`DataFrame` causing incorrect subsequent indexing behavior (:issue:`38380`)
- Bug in :meth:`DataFrame.__setitem__` raising a ``ValueError`` when setting multiple values to duplicate columns (:issue:`15695`)
- Bug in :meth:`DataFrame.loc`, :meth:`Series.loc`, :meth:`DataFrame.__getitem__` and :meth:`Series.__getitem__` returning incorrect elements for non-monotonic :class:`DatetimeIndex` for string slices (:issue:`33146`)
- Bug in :meth:`DataFrame.reindex` and :meth:`Series.reindex` with timezone aware indexes raising a ``TypeError`` for ``method="ffill"`` and ``method="bfill"`` and specified ``tolerance`` (:issue:`38566`)
- Bug in :meth:`DataFrame.reindex` with ``datetime64[ns]`` or ``timedelta64[ns]`` incorrectly casting to integers when the ``fill_value`` requires casting to object dtype (:issue:`39755`)
- Bug in :meth:`DataFrame.__setitem__` raising a ``ValueError`` when setting on an empty :class:`DataFrame` using specified columns and a nonempty :class:`DataFrame` value (:issue:`38831`)
- Bug in :meth:`DataFrame.loc.__setitem__` raising a ``ValueError`` when operating on a unique column when the :class:`DataFrame` has duplicate columns (:issue:`38521`)
- Bug in :meth:`DataFrame.iloc.__setitem__` and :meth:`DataFrame.loc.__setitem__` with mixed dtypes when setting with a dictionary value (:issue:`38335`)
- Bug in :meth:`Series.loc.__setitem__` and :meth:`DataFrame.loc.__setitem__` raising ``KeyError`` when provided a Boolean generator (:issue:`39614`)
- Bug in :meth:`Series.iloc` and :meth:`DataFrame.iloc` raising a ``KeyError`` when provided a generator (:issue:`39614`)
- Bug in :meth:`DataFrame.__setitem__` not raising a ``ValueError`` when the right hand side is a :class:`DataFrame` with wrong number of columns (:issue:`38604`)
- Bug in :meth:`Series.__setitem__` raising a ``ValueError`` when setting a :class:`Series` with a scalar indexer (:issue:`38303`)
- Bug in :meth:`DataFrame.loc` dropping levels of a :class:`MultiIndex` when the :class:`DataFrame` used as input has only one row (:issue:`10521`)
- Bug in :meth:`DataFrame.__getitem__` and :meth:`Series.__getitem__` always raising ``KeyError`` when slicing with existing strings where the :class:`Index` has milliseconds (:issue:`33589`)
- Bug in setting ``timedelta64`` or ``datetime64`` values into numeric :class:`Series` failing to cast to object dtype (:issue:`39086`, :issue:`39619`)
- Bug in setting :class:`Interval` values into a :class:`Series` or :class:`DataFrame` with mismatched :class:`IntervalDtype` incorrectly casting the new values to the existing dtype (:issue:`39120`)
- Bug in setting ``datetime64`` values into a :class:`Series` with integer-dtype incorrectly casting the datetime64 values to integers (:issue:`39266`)
- Bug in setting ``np.datetime64("NaT")`` into a :class:`Series` with :class:`Datetime64TZDtype` incorrectly treating the timezone-naive value as timezone-aware (:issue:`39769`)
- Bug in :meth:`Index.get_loc` not raising ``KeyError`` when ``key=NaN`` and ``method`` is specified but ``NaN`` is not in the :class:`Index` (:issue:`39382`)
- Bug in :meth:`DatetimeIndex.insert` when inserting ``np.datetime64("NaT")`` into a timezone-aware index incorrectly treating the timezone-naive value as timezone-aware (:issue:`39769`)
- Bug in incorrectly raising in :meth:`Index.insert`, when setting a new column that cannot be held in the existing ``frame.columns``, or in :meth:`Series.reset_index` or :meth:`DataFrame.reset_index` instead of casting to a compatible dtype (:issue:`39068`)
- Bug in :meth:`RangeIndex.append` where a single object of length 1 was concatenated incorrectly (:issue:`39401`)
- Bug in :meth:`RangeIndex.astype` where when converting to :class:`CategoricalIndex`, the categories became a :class:`Int64Index` instead of a :class:`RangeIndex` (:issue:`41263`)
- Bug in setting ``numpy.timedelta64`` values into an object-dtype :class:`Series` using a Boolean indexer (:issue:`39488`)
- Bug in setting numeric values into a into a boolean-dtypes :class:`Series` using ``at`` or ``iat`` failing to cast to object-dtype (:issue:`39582`)
- Bug in :meth:`DataFrame.__setitem__` and :meth:`DataFrame.iloc.__setitem__` raising ``ValueError`` when trying to index with a row-slice and setting a list as values (:issue:`40440`)
- Bug in :meth:`DataFrame.loc` not raising ``KeyError`` when the key was not found in :class:`MultiIndex` and the levels were not fully specified (:issue:`41170`)
- Bug in :meth:`DataFrame.loc.__setitem__` when setting-with-expansion incorrectly raising when the index in the expanding axis contained duplicates (:issue:`40096`)
- Bug in :meth:`DataFrame.loc.__getitem__` with :class:`MultiIndex` casting to float when at least one index column has float dtype and we retrieve a scalar (:issue:`41369`)
- Bug in :meth:`DataFrame.loc` incorrectly matching non-Boolean index elements (:issue:`20432`)
- Bug in indexing with ``np.nan`` on a :class:`Series` or :class:`DataFrame` with a :class:`CategoricalIndex` incorrectly raising ``KeyError`` when ``np.nan`` keys are present (:issue:`41933`)
- Bug in :meth:`Series.__delitem__` with ``ExtensionDtype`` incorrectly casting to ``ndarray`` (:issue:`40386`)
- Bug in :meth:`DataFrame.at` with a :class:`CategoricalIndex` returning incorrect results when passed integer keys (:issue:`41846`)
- Bug in :meth:`DataFrame.loc` returning a :class:`MultiIndex` in the wrong order if an indexer has duplicates (:issue:`40978`)
- Bug in :meth:`DataFrame.__setitem__` raising a ``TypeError`` when using a ``str`` subclass as the column name with a :class:`DatetimeIndex` (:issue:`37366`)
- Bug in :meth:`PeriodIndex.get_loc` failing to raise a ``KeyError`` when given a :class:`Period` with a mismatched ``freq`` (:issue:`41670`)
- Bug ``.loc.__getitem__`` with a :class:`UInt64Index` and negative-integer keys raising ``OverflowError`` instead of ``KeyError`` in some cases, wrapping around to positive integers in others (:issue:`41777`)
- Bug in :meth:`Index.get_indexer` failing to raise ``ValueError`` in some cases with invalid ``method``, ``limit``, or ``tolerance`` arguments (:issue:`41918`)
- Bug when slicing a :class:`Series` or :class:`DataFrame` with a :class:`TimedeltaIndex` when passing an invalid string raising ``ValueError`` instead of a ``TypeError`` (:issue:`41821`)
- Bug in :class:`Index` constructor sometimes silently ignoring a specified ``dtype`` (:issue:`38879`)
- :meth:`Index.where` behavior now mirrors :meth:`Index.putmask` behavior, i.e. ``index.where(mask, other)`` matches ``index.putmask(~mask, other)`` (:issue:`39412`)

Missing
^^^^^^^
- Bug in :class:`Grouper` did not correctly propagate the ``dropna`` argument; :meth:`.DataFrameGroupBy.transform` now correctly handles missing values for ``dropna=True`` (:issue:`35612`)
- Bug in :func:`isna`, :meth:`Series.isna`, :meth:`Index.isna`, :meth:`DataFrame.isna`, and the corresponding ``notna`` functions not recognizing ``Decimal("NaN")`` objects (:issue:`39409`)
- Bug in :meth:`DataFrame.fillna` not accepting a dictionary for the ``downcast`` keyword (:issue:`40809`)
- Bug in :func:`isna` not returning a copy of the mask for nullable types, causing any subsequent mask modification to change the original array (:issue:`40935`)
- Bug in :class:`DataFrame` construction with float data containing ``NaN`` and an integer ``dtype`` casting instead of retaining the ``NaN`` (:issue:`26919`)
- Bug in :meth:`Series.isin` and :meth:`MultiIndex.isin` didn't treat all nans as equivalent if they were in tuples (:issue:`41836`)

MultiIndex
^^^^^^^^^^
- Bug in :meth:`DataFrame.drop` raising a ``TypeError`` when the :class:`MultiIndex` is non-unique and ``level`` is not provided (:issue:`36293`)
- Bug in :meth:`MultiIndex.intersection` duplicating ``NaN`` in the result (:issue:`38623`)
- Bug in :meth:`MultiIndex.equals` incorrectly returning ``True`` when the :class:`MultiIndex` contained ``NaN`` even when they are differently ordered (:issue:`38439`)
- Bug in :meth:`MultiIndex.intersection` always returning an empty result when intersecting with :class:`CategoricalIndex` (:issue:`38653`)
- Bug in :meth:`MultiIndex.difference` incorrectly raising ``TypeError`` when indexes contain non-sortable entries (:issue:`41915`)
- Bug in :meth:`MultiIndex.reindex` raising a ``ValueError`` when used on an empty :class:`MultiIndex` and indexing only a specific level (:issue:`41170`)
- Bug in :meth:`MultiIndex.reindex` raising ``TypeError`` when reindexing against a flat :class:`Index` (:issue:`41707`)

I/O
^^^
- Bug in :meth:`Index.__repr__` when ``display.max_seq_items=1`` (:issue:`38415`)
- Bug in :func:`read_csv` not recognizing scientific notation if the argument ``decimal`` is set and ``engine="python"`` (:issue:`31920`)
- Bug in :func:`read_csv` interpreting ``NA`` value as comment, when ``NA`` does contain the comment string fixed for ``engine="python"`` (:issue:`34002`)
- Bug in :func:`read_csv` raising an ``IndexError`` with multiple header columns and ``index_col`` is specified when the file has no data rows (:issue:`38292`)
- Bug in :func:`read_csv` not accepting ``usecols`` with a different length than ``names`` for ``engine="python"`` (:issue:`16469`)
- Bug in :meth:`read_csv` returning object dtype when ``delimiter=","`` with ``usecols`` and ``parse_dates`` specified for ``engine="python"`` (:issue:`35873`)
- Bug in :func:`read_csv` raising a ``TypeError`` when ``names`` and ``parse_dates`` is specified for ``engine="c"`` (:issue:`33699`)
- Bug in :func:`read_clipboard` and :func:`DataFrame.to_clipboard` not working in WSL (:issue:`38527`)
- Allow custom error values for the ``parse_dates`` argument of :func:`read_sql`, :func:`read_sql_query` and :func:`read_sql_table` (:issue:`35185`)
- Bug in :meth:`DataFrame.to_hdf` and :meth:`Series.to_hdf` raising a ``KeyError`` when trying to apply for subclasses of ``DataFrame`` or ``Series`` (:issue:`33748`)
- Bug in :meth:`.HDFStore.put` raising a wrong ``TypeError`` when saving a DataFrame with non-string dtype (:issue:`34274`)
- Bug in :func:`json_normalize` resulting in the first element of a generator object not being included in the returned DataFrame (:issue:`35923`)
- Bug in :func:`read_csv` applying the thousands separator to date columns when the column should be parsed for dates and ``usecols`` is specified for ``engine="python"`` (:issue:`39365`)
- Bug in :func:`read_excel` forward filling :class:`MultiIndex` names when multiple header and index columns are specified (:issue:`34673`)
- Bug in :func:`read_excel` not respecting :func:`set_option` (:issue:`34252`)
- Bug in :func:`read_csv` not switching ``true_values`` and ``false_values`` for nullable Boolean dtype (:issue:`34655`)
- Bug in :func:`read_json` when ``orient="split"`` not maintaining a numeric string index (:issue:`28556`)
- :meth:`read_sql` returned an empty generator if ``chunksize`` was non-zero and the query returned no results. Now returns a generator with a single empty DataFrame (:issue:`34411`)
- Bug in :func:`read_hdf` returning unexpected records when filtering on categorical string columns using the ``where`` parameter (:issue:`39189`)
- Bug in :func:`read_sas` raising a ``ValueError`` when ``datetimes`` were null (:issue:`39725`)
- Bug in :func:`read_excel` dropping empty values from single-column spreadsheets (:issue:`39808`)
- Bug in :func:`read_excel` loading trailing empty rows/columns for some filetypes (:issue:`41167`)
- Bug in :func:`read_excel` raising an ``AttributeError`` when the excel file had a ``MultiIndex`` header followed by two empty rows and no index (:issue:`40442`)
- Bug in :func:`read_excel`, :func:`read_csv`, :func:`read_table`, :func:`read_fwf`, and :func:`read_clipboard` where one blank row after a ``MultiIndex`` header with no index would be dropped (:issue:`40442`)
- Bug in :meth:`DataFrame.to_string` misplacing the truncation column when ``index=False`` (:issue:`40904`)
- Bug in :meth:`DataFrame.to_string` adding an extra dot and misaligning the truncation row when ``index=False`` (:issue:`40904`)
- Bug in :func:`read_orc` always raising an ``AttributeError`` (:issue:`40918`)
- Bug in :func:`read_csv` and :func:`read_table` silently ignoring ``prefix`` if ``names`` and ``prefix`` are defined, now raising a ``ValueError`` (:issue:`39123`)
- Bug in :func:`read_csv` and :func:`read_excel` not respecting the dtype for a duplicated column name when ``mangle_dupe_cols`` is set to ``True`` (:issue:`35211`)
- Bug in :func:`read_csv` silently ignoring ``sep`` if ``delimiter`` and ``sep`` are defined, now raising a ``ValueError`` (:issue:`39823`)
- Bug in :func:`read_csv` and :func:`read_table` misinterpreting arguments when ``sys.setprofile`` had been previously called (:issue:`41069`)
- Bug in the conversion from PyArrow to pandas (e.g. for reading Parquet) with nullable dtypes and a PyArrow array whose data buffer size is not a multiple of the dtype size (:issue:`40896`)
- Bug in :func:`read_excel` would raise an error when pandas could not determine the file type even though the user specified the ``engine`` argument (:issue:`41225`)
- Bug in :func:`read_clipboard` copying from an excel file shifts values into the wrong column if there are null values in first column (:issue:`41108`)
- Bug in :meth:`DataFrame.to_hdf` and :meth:`Series.to_hdf` raising a ``TypeError`` when trying to append a string column to an incompatible column (:issue:`41897`)

Period
^^^^^^
- Comparisons of :class:`Period` objects or :class:`Index`, :class:`Series`, or :class:`DataFrame` with mismatched ``PeriodDtype`` now behave like other mismatched-type comparisons, returning ``False`` for equals, ``True`` for not-equal, and raising ``TypeError`` for inequality checks (:issue:`39274`)

Plotting
^^^^^^^^
- Bug in :func:`plotting.scatter_matrix` raising when 2d ``ax`` argument passed (:issue:`16253`)
- Prevent warnings when Matplotlib's ``constrained_layout`` is enabled (:issue:`25261`)
- Bug in :func:`DataFrame.plot` was showing the wrong colors in the legend if the function was called repeatedly and some calls used ``yerr`` while others didn't (:issue:`39522`)
- Bug in :func:`DataFrame.plot` was showing the wrong colors in the legend if the function was called repeatedly and some calls used ``secondary_y`` and others use ``legend=False`` (:issue:`40044`)
- Bug in :meth:`DataFrame.plot.box` when ``dark_background`` theme was selected, caps or min/max markers for the plot were not visible (:issue:`40769`)

Groupby/resample/rolling
^^^^^^^^^^^^^^^^^^^^^^^^
- Bug in :meth:`.DataFrameGroupBy.agg` and :meth:`.SeriesGroupBy.agg` with :class:`PeriodDtype` columns incorrectly casting results too aggressively (:issue:`38254`)
- Bug in :meth:`.SeriesGroupBy.value_counts` where unobserved categories in a grouped categorical Series were not tallied (:issue:`38672`)
- Bug in :meth:`.SeriesGroupBy.value_counts` where an error was raised on an empty Series (:issue:`39172`)
- Bug in :meth:`.GroupBy.indices` would contain non-existent indices when null values were present in the groupby keys (:issue:`9304`)
- Fixed bug in :meth:`.DataFrameGroupBy.sum` and :meth:`.SeriesGroupBy.sum` causing a loss of precision by now using Kahan summation (:issue:`38778`)
- Fixed bug in :meth:`.DataFrameGroupBy.cumsum`, :meth:`.SeriesGroupBy.cumsum`, :meth:`.DataFrameGroupBy.mean`, and :meth:`.SeriesGroupBy.mean` causing loss of precision through using Kahan summation (:issue:`38934`)
- Bug in :meth:`.Resampler.aggregate` and :meth:`DataFrame.transform` raising a ``TypeError`` instead of ``SpecificationError`` when missing keys had mixed dtypes (:issue:`39025`)
- Bug in :meth:`.DataFrameGroupBy.idxmin` and :meth:`.DataFrameGroupBy.idxmax` with ``ExtensionDtype`` columns (:issue:`38733`)
- Bug in :meth:`Series.resample` would raise when the index was a :class:`PeriodIndex` consisting of ``NaT`` (:issue:`39227`)
- Bug in :meth:`.RollingGroupby.corr` and :meth:`.ExpandingGroupby.corr` where the groupby column would return ``0`` instead of ``np.nan`` when providing ``other`` that was longer than each group (:issue:`39591`)
- Bug in :meth:`.ExpandingGroupby.corr` and :meth:`.ExpandingGroupby.cov` where ``1`` would be returned instead of ``np.nan`` when providing ``other`` that was longer than each group (:issue:`39591`)
- Bug in :meth:`.DataFrameGroupBy.mean`, :meth:`.SeriesGroupBy.mean`, :meth:`.DataFrameGroupBy.median`, :meth:`.SeriesGroupBy.median`, and :meth:`DataFrame.pivot_table` not propagating metadata (:issue:`28283`)
- Bug in :meth:`Series.rolling` and :meth:`DataFrame.rolling` not calculating window bounds correctly when window is an offset and dates are in descending order (:issue:`40002`)
- Bug in :meth:`Series.groupby` and :meth:`DataFrame.groupby` on an empty ``Series`` or ``DataFrame`` would lose index, columns, and/or data types when directly using the methods ``idxmax``, ``idxmin``, ``mad``, ``min``, ``max``, ``sum``, ``prod``, and ``skew`` or using them through ``apply``, ``aggregate``, or ``resample`` (:issue:`26411`)
- Bug in :meth:`.DataFrameGroupBy.apply` and :meth:`.SeriesGroupBy.apply` where a :class:`MultiIndex` would be created instead of an :class:`Index` when used on a :class:`.RollingGroupby` object (:issue:`39732`)
- Bug in :meth:`.DataFrameGroupBy.sample` where an error was raised when ``weights`` was specified and the index was an :class:`Int64Index` (:issue:`39927`)
- Bug in :meth:`.DataFrameGroupBy.aggregate` and :meth:`.Resampler.aggregate` would sometimes raise a ``SpecificationError`` when passed a dictionary and columns were missing; will now always raise a ``KeyError`` instead (:issue:`40004`)
- Bug in :meth:`.DataFrameGroupBy.sample` where column selection was not applied before computing the result (:issue:`39928`)
- Bug in :class:`.ExponentialMovingWindow` when calling ``__getitem__`` would incorrectly raise a ``ValueError`` when providing ``times`` (:issue:`40164`)
- Bug in :class:`.ExponentialMovingWindow` when calling ``__getitem__`` would not retain ``com``, ``span``, ``alpha`` or ``halflife`` attributes  (:issue:`40164`)
- :class:`.ExponentialMovingWindow` now raises a ``NotImplementedError`` when specifying ``times`` with ``adjust=False`` due to an incorrect calculation (:issue:`40098`)
- Bug in :meth:`.ExponentialMovingWindowGroupby.mean` where the ``times`` argument was ignored when ``engine='numba'`` (:issue:`40951`)
- Bug in :meth:`.ExponentialMovingWindowGroupby.mean` where the wrong times were used the in case of multiple groups (:issue:`40951`)
- Bug in :class:`.ExponentialMovingWindowGroupby` where the times vector and values became out of sync for non-trivial groups (:issue:`40951`)
- Bug in :meth:`Series.asfreq` and :meth:`DataFrame.asfreq` dropping rows when the index was not sorted (:issue:`39805`)
- Bug in aggregation functions for :class:`DataFrame` not respecting ``numeric_only`` argument when ``level`` keyword was given (:issue:`40660`)
- Bug in :meth:`.SeriesGroupBy.aggregate` where using a user-defined function to aggregate a Series with an object-typed :class:`Index` causes an incorrect :class:`Index` shape (:issue:`40014`)
- Bug in :class:`.RollingGroupby` where ``as_index=False`` argument in ``groupby`` was ignored (:issue:`39433`)
- Bug in :meth:`.DataFrameGroupBy.any`, :meth:`.SeriesGroupBy.any`, :meth:`.DataFrameGroupBy.all` and :meth:`.SeriesGroupBy.all` raising a ``ValueError`` when using with nullable type columns holding ``NA`` even with ``skipna=True`` (:issue:`40585`)
- Bug in :meth:`.DataFrameGroupBy.cummin`, :meth:`.SeriesGroupBy.cummin`, :meth:`.DataFrameGroupBy.cummax` and :meth:`.SeriesGroupBy.cummax` incorrectly rounding integer values near the ``int64`` implementations bounds (:issue:`40767`)
- Bug in :meth:`.DataFrameGroupBy.rank` and :meth:`.SeriesGroupBy.rank` with nullable dtypes incorrectly raising a ``TypeError`` (:issue:`41010`)
- Bug in :meth:`.DataFrameGroupBy.cummin`, :meth:`.SeriesGroupBy.cummin`, :meth:`.DataFrameGroupBy.cummax` and :meth:`.SeriesGroupBy.cummax` computing wrong result with nullable data types too large to roundtrip when casting to float (:issue:`37493`)
- Bug in :meth:`DataFrame.rolling` returning mean zero for all ``NaN`` window with ``min_periods=0`` if calculation is not numerical stable (:issue:`41053`)
- Bug in :meth:`DataFrame.rolling` returning sum not zero for all ``NaN`` window with ``min_periods=0`` if calculation is not numerical stable (:issue:`41053`)
- Bug in :meth:`.SeriesGroupBy.agg` failing to retain ordered :class:`CategoricalDtype` on order-preserving aggregations (:issue:`41147`)
- Bug in :meth:`.DataFrameGroupBy.min`, :meth:`.SeriesGroupBy.min`, :meth:`.DataFrameGroupBy.max` and :meth:`.SeriesGroupBy.max` with multiple object-dtype columns and ``numeric_only=False`` incorrectly raising a ``ValueError`` (:issue:`41111`)
- Bug in :meth:`.DataFrameGroupBy.rank` with the GroupBy object's ``axis=0`` and the ``rank`` method's keyword ``axis=1`` (:issue:`41320`)
- Bug in :meth:`DataFrameGroupBy.__getitem__` with non-unique columns incorrectly returning a malformed :class:`SeriesGroupBy` instead of :class:`DataFrameGroupBy` (:issue:`41427`)
- Bug in :meth:`.DataFrameGroupBy.transform` with non-unique columns incorrectly raising an ``AttributeError`` (:issue:`41427`)
- Bug in :meth:`.Resampler.apply` with non-unique columns incorrectly dropping duplicated columns (:issue:`41445`)
- Bug in :meth:`Series.groupby` aggregations incorrectly returning empty :class:`Series` instead of raising ``TypeError`` on aggregations that are invalid for its dtype, e.g. ``.prod`` with ``datetime64[ns]`` dtype (:issue:`41342`)
- Bug in :class:`DataFrameGroupBy` aggregations incorrectly failing to drop columns with invalid dtypes for that aggregation when there are no valid columns (:issue:`41291`)
- Bug in :meth:`DataFrame.rolling.__iter__` where ``on`` was not assigned to the index of the resulting objects (:issue:`40373`)
- Bug in :meth:`.DataFrameGroupBy.transform` and :meth:`.DataFrameGroupBy.agg` with ``engine="numba"`` where ``*args`` were being cached with the user passed function (:issue:`41647`)
- Bug in :class:`DataFrameGroupBy` methods ``agg``, ``transform``, ``sum``, ``bfill``, ``ffill``, ``pad``, ``pct_change``, ``shift``, ``ohlc`` dropping ``.columns.names`` (:issue:`41497`)


Reshaping
^^^^^^^^^
- Bug in :func:`merge` raising error when performing an inner join with partial index and ``right_index=True`` when there was no overlap between indices (:issue:`33814`)
- Bug in :meth:`DataFrame.unstack` with missing levels led to incorrect index names (:issue:`37510`)
- Bug in :func:`merge_asof` propagating the right Index with ``left_index=True`` and ``right_on`` specification instead of left Index (:issue:`33463`)
- Bug in :meth:`DataFrame.join` on a DataFrame with a :class:`MultiIndex` returned the wrong result when one of both indexes had only one level (:issue:`36909`)
- :func:`merge_asof` now raises a ``ValueError`` instead of a cryptic ``TypeError`` in case of non-numerical merge columns (:issue:`29130`)
- Bug in :meth:`DataFrame.join` not assigning values correctly when the DataFrame had a :class:`MultiIndex` where at least one dimension had dtype ``Categorical`` with non-alphabetically sorted categories (:issue:`38502`)
- :meth:`Series.value_counts` and :meth:`Series.mode` now return consistent keys in original order (:issue:`12679`, :issue:`11227` and :issue:`39007`)
- Bug in :meth:`DataFrame.stack` not handling ``NaN`` in :class:`MultiIndex` columns correctly (:issue:`39481`)
- Bug in :meth:`DataFrame.apply` would give incorrect results when the argument ``func`` was a string, ``axis=1``, and the axis argument was not supported; now raises a ``ValueError`` instead (:issue:`39211`)
- Bug in :meth:`DataFrame.sort_values` not reshaping the index correctly after sorting on columns when ``ignore_index=True`` (:issue:`39464`)
- Bug in :meth:`DataFrame.append` returning incorrect dtypes with combinations of ``ExtensionDtype`` dtypes (:issue:`39454`)
- Bug in :meth:`DataFrame.append` returning incorrect dtypes when used with combinations of ``datetime64`` and ``timedelta64`` dtypes (:issue:`39574`)
- Bug in :meth:`DataFrame.append` with a :class:`DataFrame` with a :class:`MultiIndex` and appending a :class:`Series` whose :class:`Index` is not a :class:`MultiIndex` (:issue:`41707`)
- Bug in :meth:`DataFrame.pivot_table` returning a :class:`MultiIndex` for a single value when operating on an empty DataFrame (:issue:`13483`)
- :class:`Index` can now be passed to the :func:`numpy.all` function (:issue:`40180`)
- Bug in :meth:`DataFrame.stack` not preserving ``CategoricalDtype`` in a :class:`MultiIndex` (:issue:`36991`)
- Bug in :func:`to_datetime` raising an error when the input sequence contained unhashable items (:issue:`39756`)
- Bug in :meth:`Series.explode` preserving the index when ``ignore_index`` was ``True`` and values were scalars (:issue:`40487`)
- Bug in :func:`to_datetime` raising a ``ValueError`` when :class:`Series` contains ``None`` and ``NaT`` and has more than 50 elements (:issue:`39882`)
- Bug in :meth:`Series.unstack` and :meth:`DataFrame.unstack` with object-dtype values containing timezone-aware datetime objects incorrectly raising ``TypeError`` (:issue:`41875`)
- Bug in :meth:`DataFrame.melt` raising ``InvalidIndexError`` when :class:`DataFrame` has duplicate columns used as ``value_vars`` (:issue:`41951`)

Sparse
^^^^^^
- Bug in :meth:`DataFrame.sparse.to_coo` raising a ``KeyError`` with columns that are a numeric :class:`Index` without a ``0`` (:issue:`18414`)
- Bug in :meth:`SparseArray.astype` with ``copy=False`` producing incorrect results when going from integer dtype to floating dtype (:issue:`34456`)
- Bug in :meth:`SparseArray.max` and :meth:`SparseArray.min` would always return an empty result (:issue:`40921`)

ExtensionArray
^^^^^^^^^^^^^^
- Bug in :meth:`DataFrame.where` when ``other`` is a Series with an :class:`ExtensionDtype` (:issue:`38729`)
- Fixed bug where :meth:`Series.idxmax`, :meth:`Series.idxmin`, :meth:`Series.argmax`, and :meth:`Series.argmin` would fail when the underlying data is an :class:`ExtensionArray` (:issue:`32749`, :issue:`33719`, :issue:`36566`)
- Fixed bug where some properties of subclasses of :class:`PandasExtensionDtype` where improperly cached (:issue:`40329`)
- Bug in :meth:`DataFrame.mask` where masking a DataFrame with an :class:`ExtensionDtype` raises a ``ValueError`` (:issue:`40941`)

Styler
^^^^^^
- Bug in :class:`.Styler` where the ``subset`` argument in methods raised an error for some valid MultiIndex slices (:issue:`33562`)
- :class:`.Styler` rendered HTML output has seen minor alterations to support w3 good code standards (:issue:`39626`)
- Bug in :class:`.Styler` where rendered HTML was missing a column class identifier for certain header cells (:issue:`39716`)
- Bug in :meth:`.Styler.background_gradient` where text-color was not determined correctly (:issue:`39888`)
- Bug in :meth:`.Styler.set_table_styles` where multiple elements in CSS-selectors of the ``table_styles`` argument were not correctly added (:issue:`34061`)
- Bug in :class:`.Styler` where copying from Jupyter dropped the top left cell and misaligned headers (:issue:`12147`)
- Bug in :class:`Styler.where` where ``kwargs`` were not passed to the applicable callable (:issue:`40845`)
- Bug in :class:`.Styler` causing CSS to duplicate on multiple renders (:issue:`39395`, :issue:`40334`)

Other
^^^^^
- ``inspect.getmembers(Series)`` no longer raises an ``AbstractMethodError`` (:issue:`38782`)
- Bug in :meth:`Series.where` with numeric dtype and ``other=None`` not casting to ``nan`` (:issue:`39761`)
- Bug in :func:`.assert_series_equal`, :func:`.assert_frame_equal`, :func:`.assert_index_equal` and :func:`.assert_extension_array_equal` incorrectly raising when an attribute has an unrecognized NA type (:issue:`39461`)
- Bug in :func:`.assert_index_equal` with ``exact=True`` not raising when comparing :class:`CategoricalIndex` instances with ``Int64Index`` and ``RangeIndex`` categories (:issue:`41263`)
- Bug in :meth:`DataFrame.equals`, :meth:`Series.equals`, and :meth:`Index.equals` with object-dtype containing ``np.datetime64("NaT")`` or ``np.timedelta64("NaT")`` (:issue:`39650`)
- Bug in :func:`show_versions` where console JSON output was not proper JSON (:issue:`39701`)
- pandas can now compile on z/OS when using `xlc <https://www.ibm.com/products/xl-cpp-compiler-zos>`_ (:issue:`35826`)
- Bug in :func:`pandas.util.hash_pandas_object` not recognizing ``hash_key``, ``encoding`` and ``categorize`` when the input object type is a :class:`DataFrame` (:issue:`41404`)

.. ---------------------------------------------------------------------------

.. _whatsnew_130.contributors:

Contributors
~~~~~~~~~~~~

.. contributors:: v1.2.5..v1.3.0