1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112
|
.. _whatsnew_140:
What's new in 1.4.0 (January 22, 2022)
--------------------------------------
These are the changes in pandas 1.4.0. See :ref:`release` for a full changelog
including other versions of pandas.
{{ header }}
.. ---------------------------------------------------------------------------
.. _whatsnew_140.enhancements:
Enhancements
~~~~~~~~~~~~
.. _whatsnew_140.enhancements.warning_lineno:
Improved warning messages
^^^^^^^^^^^^^^^^^^^^^^^^^
Previously, warning messages may have pointed to lines within the pandas
library. Running the script ``setting_with_copy_warning.py``
.. code-block:: python
import pandas as pd
df = pd.DataFrame({'a': [1, 2, 3]})
df[:2].loc[:, 'a'] = 5
with pandas 1.3 resulted in::
.../site-packages/pandas/core/indexing.py:1951: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
This made it difficult to determine where the warning was being generated from.
Now pandas will inspect the call stack, reporting the first line outside of the
pandas library that gave rise to the warning. The output of the above script is
now::
setting_with_copy_warning.py:4: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
.. _whatsnew_140.enhancements.ExtensionIndex:
Index can hold arbitrary ExtensionArrays
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Until now, passing a custom :class:`ExtensionArray` to ``pd.Index`` would cast
the array to ``object`` dtype. Now :class:`Index` can directly hold arbitrary
ExtensionArrays (:issue:`43930`).
*Previous behavior*:
.. ipython:: python
arr = pd.array([1, 2, pd.NA])
idx = pd.Index(arr)
In the old behavior, ``idx`` would be object-dtype:
*Previous behavior*:
.. code-block:: ipython
In [1]: idx
Out[1]: Index([1, 2, <NA>], dtype='object')
With the new behavior, we keep the original dtype:
*New behavior*:
.. ipython:: python
idx
One exception to this is ``SparseArray``, which will continue to cast to numpy
dtype until pandas 2.0. At that point it will retain its dtype like other
ExtensionArrays.
.. _whatsnew_140.enhancements.styler:
Styler
^^^^^^
:class:`.Styler` has been further developed in 1.4.0. The following general enhancements have been made:
- Styling and formatting of indexes has been added, with :meth:`.Styler.apply_index`, :meth:`.Styler.applymap_index` and :meth:`.Styler.format_index`. These mirror the signature of the methods already used to style and format data values, and work with both HTML, LaTeX and Excel format (:issue:`41893`, :issue:`43101`, :issue:`41993`, :issue:`41995`)
- The new method :meth:`.Styler.hide` deprecates :meth:`.Styler.hide_index` and :meth:`.Styler.hide_columns` (:issue:`43758`)
- The keyword arguments ``level`` and ``names`` have been added to :meth:`.Styler.hide` (and implicitly to the deprecated methods :meth:`.Styler.hide_index` and :meth:`.Styler.hide_columns`) for additional control of visibility of MultiIndexes and of Index names (:issue:`25475`, :issue:`43404`, :issue:`43346`)
- The :meth:`.Styler.export` and :meth:`.Styler.use` have been updated to address all of the added functionality from v1.2.0 and v1.3.0 (:issue:`40675`)
- Global options under the category ``pd.options.styler`` have been extended to configure default ``Styler`` properties which address formatting, encoding, and HTML and LaTeX rendering. Note that formerly ``Styler`` relied on ``display.html.use_mathjax``, which has now been replaced by ``styler.html.mathjax`` (:issue:`41395`)
- Validation of certain keyword arguments, e.g. ``caption`` (:issue:`43368`)
- Various bug fixes as recorded below
Additionally there are specific enhancements to the HTML specific rendering:
- :meth:`.Styler.bar` introduces additional arguments to control alignment and display (:issue:`26070`, :issue:`36419`), and it also validates the input arguments ``width`` and ``height`` (:issue:`42511`)
- :meth:`.Styler.to_html` introduces keyword arguments ``sparse_index``, ``sparse_columns``, ``bold_headers``, ``caption``, ``max_rows`` and ``max_columns`` (:issue:`41946`, :issue:`43149`, :issue:`42972`)
- :meth:`.Styler.to_html` omits CSSStyle rules for hidden table elements as a performance enhancement (:issue:`43619`)
- Custom CSS classes can now be directly specified without string replacement (:issue:`43686`)
- Ability to render hyperlinks automatically via a new ``hyperlinks`` formatting keyword argument (:issue:`45058`)
There are also some LaTeX specific enhancements:
- :meth:`.Styler.to_latex` introduces keyword argument ``environment``, which also allows a specific "longtable" entry through a separate jinja2 template (:issue:`41866`)
- Naive sparsification is now possible for LaTeX without the necessity of including the multirow package (:issue:`43369`)
- *cline* support has been added for :class:`MultiIndex` row sparsification through a keyword argument (:issue:`45138`)
.. _whatsnew_140.enhancements.pyarrow_csv_engine:
Multi-threaded CSV reading with a new CSV Engine based on pyarrow
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
:func:`pandas.read_csv` now accepts ``engine="pyarrow"`` (requires at least
``pyarrow`` 1.0.1) as an argument, allowing for faster csv parsing on multicore
machines with pyarrow installed. See the :doc:`I/O docs </user_guide/io>` for
more info. (:issue:`23697`, :issue:`43706`)
.. _whatsnew_140.enhancements.window_rank:
Rank function for rolling and expanding windows
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Added ``rank`` function to :class:`Rolling` and :class:`Expanding`. The new
function supports the ``method``, ``ascending``, and ``pct`` flags of
:meth:`DataFrame.rank`. The ``method`` argument supports ``min``, ``max``, and
``average`` ranking methods.
Example:
.. ipython:: python
s = pd.Series([1, 4, 2, 3, 5, 3])
s.rolling(3).rank()
s.rolling(3).rank(method="max")
.. _whatsnew_140.enhancements.groupby_indexing:
Groupby positional indexing
^^^^^^^^^^^^^^^^^^^^^^^^^^^
It is now possible to specify positional ranges relative to the ends of each
group.
Negative arguments for :meth:`.DataFrameGroupBy.head`, :meth:`.SeriesGroupBy.head`, :meth:`.DataFrameGroupBy.tail`, and :meth:`.SeriesGroupBy.tail` now work
correctly and result in ranges relative to the end and start of each group,
respectively. Previously, negative arguments returned empty frames.
.. ipython:: python
df = pd.DataFrame([["g", "g0"], ["g", "g1"], ["g", "g2"], ["g", "g3"],
["h", "h0"], ["h", "h1"]], columns=["A", "B"])
df.groupby("A").head(-1)
:meth:`.DataFrameGroupBy.nth` and :meth:`.SeriesGroupBy.nth` now accept a slice or list of integers and slices.
.. ipython:: python
df.groupby("A").nth(slice(1, -1))
df.groupby("A").nth([slice(None, 1), slice(-1, None)])
:meth:`.DataFrameGroupBy.nth` and :meth:`.SeriesGroupBy.nth` now accept index notation.
.. ipython:: python
df.groupby("A").nth[1, -1]
df.groupby("A").nth[1:-1]
df.groupby("A").nth[:1, -1:]
.. _whatsnew_140.dict_tight:
DataFrame.from_dict and DataFrame.to_dict have new ``'tight'`` option
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
A new ``'tight'`` dictionary format that preserves :class:`MultiIndex` entries
and names is now available with the :meth:`DataFrame.from_dict` and
:meth:`DataFrame.to_dict` methods and can be used with the standard ``json``
library to produce a tight representation of :class:`DataFrame` objects
(:issue:`4889`).
.. ipython:: python
df = pd.DataFrame.from_records(
[[1, 3], [2, 4]],
index=pd.MultiIndex.from_tuples([("a", "b"), ("a", "c")],
names=["n1", "n2"]),
columns=pd.MultiIndex.from_tuples([("x", 1), ("y", 2)],
names=["z1", "z2"]),
)
df
df.to_dict(orient='tight')
.. _whatsnew_140.enhancements.other:
Other enhancements
^^^^^^^^^^^^^^^^^^
- :meth:`concat` will preserve the ``attrs`` when it is the same for all objects and discard the ``attrs`` when they are different (:issue:`41828`)
- :class:`DataFrameGroupBy` operations with ``as_index=False`` now correctly retain ``ExtensionDtype`` dtypes for columns being grouped on (:issue:`41373`)
- Add support for assigning values to ``by`` argument in :meth:`DataFrame.plot.hist` and :meth:`DataFrame.plot.box` (:issue:`15079`)
- :meth:`Series.sample`, :meth:`DataFrame.sample`, :meth:`.DataFrameGroupBy.sample`, and :meth:`.SeriesGroupBy.sample` now accept a ``np.random.Generator`` as input to ``random_state``. A generator will be more performant, especially with ``replace=False`` (:issue:`38100`)
- :meth:`Series.ewm` and :meth:`DataFrame.ewm` now support a ``method`` argument with a ``'table'`` option that performs the windowing operation over an entire :class:`DataFrame`. See :ref:`Window Overview <window.overview>` for performance and functional benefits (:issue:`42273`)
- :meth:`.DataFrameGroupBy.cummin`, :meth:`.SeriesGroupBy.cummin`, :meth:`.DataFrameGroupBy.cummax`, and :meth:`.SeriesGroupBy.cummax` now support the argument ``skipna`` (:issue:`34047`)
- :meth:`read_table` now supports the argument ``storage_options`` (:issue:`39167`)
- :meth:`DataFrame.to_stata` and :meth:`StataWriter` now accept the keyword only argument ``value_labels`` to save labels for non-categorical columns (:issue:`38454`)
- Methods that relied on hashmap based algos such as :meth:`DataFrameGroupBy.value_counts`, :meth:`DataFrameGroupBy.count` and :func:`factorize` ignored imaginary component for complex numbers (:issue:`17927`)
- Add :meth:`Series.str.removeprefix` and :meth:`Series.str.removesuffix` introduced in Python 3.9 to remove pre-/suffixes from string-type :class:`Series` (:issue:`36944`)
- Attempting to write into a file in missing parent directory with :meth:`DataFrame.to_csv`, :meth:`DataFrame.to_html`, :meth:`DataFrame.to_excel`, :meth:`DataFrame.to_feather`, :meth:`DataFrame.to_parquet`, :meth:`DataFrame.to_stata`, :meth:`DataFrame.to_json`, :meth:`DataFrame.to_pickle`, and :meth:`DataFrame.to_xml` now explicitly mentions missing parent directory, the same is true for :class:`Series` counterparts (:issue:`24306`)
- Indexing with ``.loc`` and ``.iloc`` now supports ``Ellipsis`` (:issue:`37750`)
- :meth:`IntegerArray.all` , :meth:`IntegerArray.any`, :meth:`FloatingArray.any`, and :meth:`FloatingArray.all` use Kleene logic (:issue:`41967`)
- Added support for nullable boolean and integer types in :meth:`DataFrame.to_stata`, :class:`~pandas.io.stata.StataWriter`, :class:`~pandas.io.stata.StataWriter117`, and :class:`~pandas.io.stata.StataWriterUTF8` (:issue:`40855`)
- :meth:`DataFrame.__pos__` and :meth:`DataFrame.__neg__` now retain ``ExtensionDtype`` dtypes (:issue:`43883`)
- The error raised when an optional dependency can't be imported now includes the original exception, for easier investigation (:issue:`43882`)
- Added :meth:`.ExponentialMovingWindow.sum` (:issue:`13297`)
- :meth:`Series.str.split` now supports a ``regex`` argument that explicitly specifies whether the pattern is a regular expression. Default is ``None`` (:issue:`43563`, :issue:`32835`, :issue:`25549`)
- :meth:`DataFrame.dropna` now accepts a single label as ``subset`` along with array-like (:issue:`41021`)
- Added :meth:`DataFrameGroupBy.value_counts` (:issue:`43564`)
- :func:`read_csv` now accepts a ``callable`` function in ``on_bad_lines`` when ``engine="python"`` for custom handling of bad lines (:issue:`5686`)
- :class:`ExcelWriter` argument ``if_sheet_exists="overlay"`` option added (:issue:`40231`)
- :meth:`read_excel` now accepts a ``decimal`` argument that allow the user to specify the decimal point when parsing string columns to numeric (:issue:`14403`)
- :meth:`.DataFrameGroupBy.mean`, :meth:`.SeriesGroupBy.mean`, :meth:`.DataFrameGroupBy.std`, :meth:`.SeriesGroupBy.std`, :meth:`.DataFrameGroupBy.var`, :meth:`.SeriesGroupBy.var`, :meth:`.DataFrameGroupBy.sum`, and :meth:`.SeriesGroupBy.sum` now support `Numba <http://numba.pydata.org/>`_ execution with the ``engine`` keyword (:issue:`43731`, :issue:`44862`, :issue:`44939`)
- :meth:`Timestamp.isoformat` now handles the ``timespec`` argument from the base ``datetime`` class (:issue:`26131`)
- :meth:`NaT.to_numpy` ``dtype`` argument is now respected, so ``np.timedelta64`` can be returned (:issue:`44460`)
- New option ``display.max_dir_items`` customizes the number of columns added to :meth:`Dataframe.__dir__` and suggested for tab completion (:issue:`37996`)
- Added "Juneteenth National Independence Day" to ``USFederalHolidayCalendar`` (:issue:`44574`)
- :meth:`.Rolling.var`, :meth:`.Expanding.var`, :meth:`.Rolling.std`, and :meth:`.Expanding.std` now support `Numba <http://numba.pydata.org/>`_ execution with the ``engine`` keyword (:issue:`44461`)
- :meth:`Series.info` has been added, for compatibility with :meth:`DataFrame.info` (:issue:`5167`)
- Implemented :meth:`IntervalArray.min` and :meth:`IntervalArray.max`, as a result of which ``min`` and ``max`` now work for :class:`IntervalIndex`, :class:`Series` and :class:`DataFrame` with ``IntervalDtype`` (:issue:`44746`)
- :meth:`UInt64Index.map` now retains ``dtype`` where possible (:issue:`44609`)
- :meth:`read_json` can now parse unsigned long long integers (:issue:`26068`)
- :meth:`DataFrame.take` now raises a ``TypeError`` when passed a scalar for the indexer (:issue:`42875`)
- :meth:`is_list_like` now identifies duck-arrays as list-like unless ``.ndim == 0`` (:issue:`35131`)
- :class:`ExtensionDtype` and :class:`ExtensionArray` are now (de)serialized when exporting a :class:`DataFrame` with :meth:`DataFrame.to_json` using ``orient='table'`` (:issue:`20612`, :issue:`44705`)
- Add support for `Zstandard <http://facebook.github.io/zstd/>`_ compression to :meth:`DataFrame.to_pickle`/:meth:`read_pickle` and friends (:issue:`43925`)
- :meth:`DataFrame.to_sql` now returns an ``int`` of the number of written rows (:issue:`23998`)
.. ---------------------------------------------------------------------------
.. _whatsnew_140.notable_bug_fixes:
Notable bug fixes
~~~~~~~~~~~~~~~~~
These are bug fixes that might have notable behavior changes.
.. _whatsnew_140.notable_bug_fixes.inconsistent_date_string_parsing:
Inconsistent date string parsing
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
The ``dayfirst`` option of :func:`to_datetime` isn't strict, and this can lead
to surprising behavior:
.. ipython:: python
:okwarning:
pd.to_datetime(["31-12-2021"], dayfirst=False)
Now, a warning will be raised if a date string cannot be parsed accordance to
the given ``dayfirst`` value when the value is a delimited date string (e.g.
``31-12-2012``).
.. _whatsnew_140.notable_bug_fixes.concat_with_empty_or_all_na:
Ignoring dtypes in concat with empty or all-NA columns
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.. note::
This behaviour change has been reverted in pandas 1.4.3.
When using :func:`concat` to concatenate two or more :class:`DataFrame` objects,
if one of the DataFrames was empty or had all-NA values, its dtype was
*sometimes* ignored when finding the concatenated dtype. These are now
consistently *not* ignored (:issue:`43507`).
.. code-block:: ipython
In [3]: df1 = pd.DataFrame({"bar": [pd.Timestamp("2013-01-01")]}, index=range(1))
In [4]: df2 = pd.DataFrame({"bar": np.nan}, index=range(1, 2))
In [5]: res = pd.concat([df1, df2])
Previously, the float-dtype in ``df2`` would be ignored so the result dtype
would be ``datetime64[ns]``. As a result, the ``np.nan`` would be cast to
``NaT``.
*Previous behavior*:
.. code-block:: ipython
In [6]: res
Out[6]:
bar
0 2013-01-01
1 NaT
Now the float-dtype is respected. Since the common dtype for these DataFrames is
object, the ``np.nan`` is retained.
*New behavior*:
.. code-block:: ipython
In [6]: res
Out[6]:
bar
0 2013-01-01 00:00:00
1 NaN
.. _whatsnew_140.notable_bug_fixes.value_counts_and_mode_do_not_coerce_to_nan:
Null-values are no longer coerced to NaN-value in value_counts and mode
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
:meth:`Series.value_counts` and :meth:`Series.mode` no longer coerce ``None``,
``NaT`` and other null-values to a NaN-value for ``np.object_``-dtype. This
behavior is now consistent with ``unique``, ``isin`` and others
(:issue:`42688`).
.. ipython:: python
s = pd.Series([True, None, pd.NaT, None, pd.NaT, None])
res = s.value_counts(dropna=False)
Previously, all null-values were replaced by a NaN-value.
*Previous behavior*:
.. code-block:: ipython
In [3]: res
Out[3]:
NaN 5
True 1
dtype: int64
Now null-values are no longer mangled.
*New behavior*:
.. ipython:: python
res
.. _whatsnew_140.notable_bug_fixes.read_csv_mangle_dup_cols:
mangle_dupe_cols in read_csv no longer renames unique columns conflicting with target names
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
:func:`read_csv` no longer renames unique column labels which conflict with the target
names of duplicated columns. Already existing columns are skipped, i.e. the next
available index is used for the target column name (:issue:`14704`).
.. ipython:: python
import io
data = "a,a,a.1\n1,2,3"
res = pd.read_csv(io.StringIO(data))
Previously, the second column was called ``a.1``, while the third column was
also renamed to ``a.1.1``.
*Previous behavior*:
.. code-block:: ipython
In [3]: res
Out[3]:
a a.1 a.1.1
0 1 2 3
Now the renaming checks if ``a.1`` already exists when changing the name of the
second column and jumps this index. The second column is instead renamed to
``a.2``.
*New behavior*:
.. ipython:: python
res
.. _whatsnew_140.notable_bug_fixes.unstack_pivot_int32_limit:
unstack and pivot_table no longer raises ValueError for result that would exceed int32 limit
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Previously :meth:`DataFrame.pivot_table` and :meth:`DataFrame.unstack` would
raise a ``ValueError`` if the operation could produce a result with more than
``2**31 - 1`` elements. This operation now raises a
:class:`errors.PerformanceWarning` instead (:issue:`26314`).
*Previous behavior*:
.. code-block:: ipython
In [3]: df = DataFrame({"ind1": np.arange(2 ** 16), "ind2": np.arange(2 ** 16), "count": 0})
In [4]: df.pivot_table(index="ind1", columns="ind2", values="count", aggfunc="count")
ValueError: Unstacked DataFrame is too big, causing int32 overflow
*New behavior*:
.. code-block:: python
In [4]: df.pivot_table(index="ind1", columns="ind2", values="count", aggfunc="count")
PerformanceWarning: The following operation may generate 4294967296 cells in the resulting pandas object.
.. ---------------------------------------------------------------------------
.. _whatsnew_140.notable_bug_fixes.groupby_apply_mutation:
groupby.apply consistent transform detection
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
:meth:`.DataFrameGroupBy.apply` and :meth:`.SeriesGroupBy.apply` are designed to be flexible, allowing users to perform
aggregations, transformations, filters, and use it with user-defined functions
that might not fall into any of these categories. As part of this, apply will
attempt to detect when an operation is a transform, and in such a case, the
result will have the same index as the input. In order to determine if the
operation is a transform, pandas compares the input's index to the result's and
determines if it has been mutated. Previously in pandas 1.3, different code
paths used different definitions of "mutated": some would use Python's ``is``
whereas others would test only up to equality.
This inconsistency has been removed, pandas now tests up to equality.
.. ipython:: python
def func(x):
return x.copy()
df = pd.DataFrame({'a': [1, 2], 'b': [3, 4], 'c': [5, 6]})
df
*Previous behavior*:
.. code-block:: ipython
In [3]: df.groupby(['a']).apply(func)
Out[3]:
a b c
a
1 0 1 3 5
2 1 2 4 6
In [4]: df.set_index(['a', 'b']).groupby(['a']).apply(func)
Out[4]:
c
a b
1 3 5
2 4 6
In the examples above, the first uses a code path where pandas uses ``is`` and
determines that ``func`` is not a transform whereas the second tests up to
equality and determines that ``func`` is a transform. In the first case, the
result's index is not the same as the input's.
*New behavior*:
.. code-block:: ipython
In [5]: df.groupby(['a']).apply(func)
Out[5]:
a b c
0 1 3 5
1 2 4 6
In [6]: df.set_index(['a', 'b']).groupby(['a']).apply(func)
Out[6]:
c
a b
1 3 5
2 4 6
Now in both cases it is determined that ``func`` is a transform. In each case,
the result has the same index as the input.
.. _whatsnew_140.api_breaking:
Backwards incompatible API changes
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. _whatsnew_140.api_breaking.python:
Increased minimum version for Python
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
pandas 1.4.0 supports Python 3.8 and higher.
.. _whatsnew_140.api_breaking.deps:
Increased minimum versions for dependencies
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Some minimum supported versions of dependencies were updated.
If installed, we now require:
+-----------------+-----------------+----------+---------+
| Package | Minimum Version | Required | Changed |
+=================+=================+==========+=========+
| numpy | 1.18.5 | X | X |
+-----------------+-----------------+----------+---------+
| pytz | 2020.1 | X | X |
+-----------------+-----------------+----------+---------+
| python-dateutil | 2.8.1 | X | X |
+-----------------+-----------------+----------+---------+
| bottleneck | 1.3.1 | | X |
+-----------------+-----------------+----------+---------+
| numexpr | 2.7.1 | | X |
+-----------------+-----------------+----------+---------+
| pytest (dev) | 6.0 | | |
+-----------------+-----------------+----------+---------+
| mypy (dev) | 0.930 | | X |
+-----------------+-----------------+----------+---------+
For `optional libraries
<https://pandas.pydata.org/docs/getting_started/install.html>`_ the general
recommendation is to use the latest version. The following table lists the
lowest version per library that is currently being tested throughout the
development of pandas. Optional libraries below the lowest tested version may
still work, but are not considered supported.
+-----------------+-----------------+---------+
| Package | Minimum Version | Changed |
+=================+=================+=========+
| beautifulsoup4 | 4.8.2 | X |
+-----------------+-----------------+---------+
| fastparquet | 0.4.0 | |
+-----------------+-----------------+---------+
| fsspec | 0.7.4 | |
+-----------------+-----------------+---------+
| gcsfs | 0.6.0 | |
+-----------------+-----------------+---------+
| lxml | 4.5.0 | X |
+-----------------+-----------------+---------+
| matplotlib | 3.3.2 | X |
+-----------------+-----------------+---------+
| numba | 0.50.1 | X |
+-----------------+-----------------+---------+
| openpyxl | 3.0.3 | X |
+-----------------+-----------------+---------+
| pandas-gbq | 0.14.0 | X |
+-----------------+-----------------+---------+
| pyarrow | 1.0.1 | X |
+-----------------+-----------------+---------+
| pymysql | 0.10.1 | X |
+-----------------+-----------------+---------+
| pytables | 3.6.1 | X |
+-----------------+-----------------+---------+
| s3fs | 0.4.0 | |
+-----------------+-----------------+---------+
| scipy | 1.4.1 | X |
+-----------------+-----------------+---------+
| sqlalchemy | 1.4.0 | X |
+-----------------+-----------------+---------+
| tabulate | 0.8.7 | |
+-----------------+-----------------+---------+
| xarray | 0.15.1 | X |
+-----------------+-----------------+---------+
| xlrd | 2.0.1 | X |
+-----------------+-----------------+---------+
| xlsxwriter | 1.2.2 | X |
+-----------------+-----------------+---------+
| xlwt | 1.3.0 | |
+-----------------+-----------------+---------+
See :ref:`install.dependencies` and :ref:`install.optional_dependencies` for more.
.. _whatsnew_140.api_breaking.other:
Other API changes
^^^^^^^^^^^^^^^^^
- :meth:`Index.get_indexer_for` no longer accepts keyword arguments (other than ``target``); in the past these would be silently ignored if the index was not unique (:issue:`42310`)
- Change in the position of the ``min_rows`` argument in :meth:`DataFrame.to_string` due to change in the docstring (:issue:`44304`)
- Reduction operations for :class:`DataFrame` or :class:`Series` now raising a ``ValueError`` when ``None`` is passed for ``skipna`` (:issue:`44178`)
- :func:`read_csv` and :func:`read_html` no longer raising an error when one of the header rows consists only of ``Unnamed:`` columns (:issue:`13054`)
- Changed the ``name`` attribute of several holidays in
``USFederalHolidayCalendar`` to match `official federal holiday
names <https://www.opm.gov/policy-data-oversight/pay-leave/federal-holidays/>`_
specifically:
- "New Year's Day" gains the possessive apostrophe
- "Presidents Day" becomes "Washington's Birthday"
- "Martin Luther King Jr. Day" is now "Birthday of Martin Luther King, Jr."
- "July 4th" is now "Independence Day"
- "Thanksgiving" is now "Thanksgiving Day"
- "Christmas" is now "Christmas Day"
- Added "Juneteenth National Independence Day"
.. ---------------------------------------------------------------------------
.. _whatsnew_140.deprecations:
Deprecations
~~~~~~~~~~~~
.. _whatsnew_140.deprecations.int64_uint64_float64index:
Deprecated Int64Index, UInt64Index & Float64Index
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
:class:`Int64Index`, :class:`UInt64Index` and :class:`Float64Index` have been
deprecated in favor of the base :class:`Index` class and will be removed in
Pandas 2.0 (:issue:`43028`).
For constructing a numeric index, you can use the base :class:`Index` class
instead specifying the data type (which will also work on older pandas
releases):
.. code-block:: python
# replace
pd.Int64Index([1, 2, 3])
# with
pd.Index([1, 2, 3], dtype="int64")
For checking the data type of an index object, you can replace ``isinstance``
checks with checking the ``dtype``:
.. code-block:: python
# replace
isinstance(idx, pd.Int64Index)
# with
idx.dtype == "int64"
Currently, in order to maintain backward compatibility, calls to :class:`Index`
will continue to return :class:`Int64Index`, :class:`UInt64Index` and
:class:`Float64Index` when given numeric data, but in the future, an
:class:`Index` will be returned.
*Current behavior*:
.. code-block:: ipython
In [1]: pd.Index([1, 2, 3], dtype="int32")
Out [1]: Int64Index([1, 2, 3], dtype='int64')
In [1]: pd.Index([1, 2, 3], dtype="uint64")
Out [1]: UInt64Index([1, 2, 3], dtype='uint64')
*Future behavior*:
.. code-block:: ipython
In [3]: pd.Index([1, 2, 3], dtype="int32")
Out [3]: Index([1, 2, 3], dtype='int32')
In [4]: pd.Index([1, 2, 3], dtype="uint64")
Out [4]: Index([1, 2, 3], dtype='uint64')
.. _whatsnew_140.deprecations.frame_series_append:
Deprecated DataFrame.append and Series.append
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
:meth:`DataFrame.append` and :meth:`Series.append` have been deprecated and will
be removed in a future version. Use :func:`pandas.concat` instead (:issue:`35407`).
*Deprecated syntax*
.. code-block:: ipython
In [1]: pd.Series([1, 2]).append(pd.Series([3, 4])
Out [1]:
<stdin>:1: FutureWarning: The series.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.
0 1
1 2
0 3
1 4
dtype: int64
In [2]: df1 = pd.DataFrame([[1, 2], [3, 4]], columns=list('AB'))
In [3]: df2 = pd.DataFrame([[5, 6], [7, 8]], columns=list('AB'))
In [4]: df1.append(df2)
Out [4]:
<stdin>:1: FutureWarning: The series.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.
A B
0 1 2
1 3 4
0 5 6
1 7 8
*Recommended syntax*
.. ipython:: python
pd.concat([pd.Series([1, 2]), pd.Series([3, 4])])
df1 = pd.DataFrame([[1, 2], [3, 4]], columns=list('AB'))
df2 = pd.DataFrame([[5, 6], [7, 8]], columns=list('AB'))
pd.concat([df1, df2])
.. _whatsnew_140.deprecations.other:
Other Deprecations
^^^^^^^^^^^^^^^^^^
- Deprecated :meth:`Index.is_type_compatible` (:issue:`42113`)
- Deprecated ``method`` argument in :meth:`Index.get_loc`, use ``index.get_indexer([label], method=...)`` instead (:issue:`42269`)
- Deprecated treating integer keys in :meth:`Series.__setitem__` as positional when the index is a :class:`Float64Index` not containing the key, a :class:`IntervalIndex` with no entries containing the key, or a :class:`MultiIndex` with leading :class:`Float64Index` level not containing the key (:issue:`33469`)
- Deprecated treating ``numpy.datetime64`` objects as UTC times when passed to the :class:`Timestamp` constructor along with a timezone. In a future version, these will be treated as wall-times. To retain the old behavior, use ``Timestamp(dt64).tz_localize("UTC").tz_convert(tz)`` (:issue:`24559`)
- Deprecated ignoring missing labels when indexing with a sequence of labels on a level of a :class:`MultiIndex` (:issue:`42351`)
- Creating an empty :class:`Series` without a ``dtype`` will now raise a more visible ``FutureWarning`` instead of a ``DeprecationWarning`` (:issue:`30017`)
- Deprecated the ``kind`` argument in :meth:`Index.get_slice_bound`, :meth:`Index.slice_indexer`, and :meth:`Index.slice_locs`; in a future version passing ``kind`` will raise (:issue:`42857`)
- Deprecated dropping of nuisance columns in :class:`Rolling`, :class:`Expanding`, and :class:`EWM` aggregations (:issue:`42738`)
- Deprecated :meth:`Index.reindex` with a non-unique :class:`Index` (:issue:`42568`)
- Deprecated :meth:`.Styler.render` in favor of :meth:`.Styler.to_html` (:issue:`42140`)
- Deprecated :meth:`.Styler.hide_index` and :meth:`.Styler.hide_columns` in favor of :meth:`.Styler.hide` (:issue:`43758`)
- Deprecated passing in a string column label into ``times`` in :meth:`DataFrame.ewm` (:issue:`43265`)
- Deprecated the ``include_start`` and ``include_end`` arguments in :meth:`DataFrame.between_time`; in a future version passing ``include_start`` or ``include_end`` will raise (:issue:`40245`)
- Deprecated the ``squeeze`` argument to :meth:`read_csv`, :meth:`read_table`, and :meth:`read_excel`. Users should squeeze the :class:`DataFrame` afterwards with ``.squeeze("columns")`` instead (:issue:`43242`)
- Deprecated the ``index`` argument to :class:`SparseArray` construction (:issue:`23089`)
- Deprecated the ``closed`` argument in :meth:`date_range` and :meth:`bdate_range` in favor of ``inclusive`` argument; In a future version passing ``closed`` will raise (:issue:`40245`)
- Deprecated :meth:`.Rolling.validate`, :meth:`.Expanding.validate`, and :meth:`.ExponentialMovingWindow.validate` (:issue:`43665`)
- Deprecated silent dropping of columns that raised a ``TypeError`` in :class:`Series.transform` and :class:`DataFrame.transform` when used with a dictionary (:issue:`43740`)
- Deprecated silent dropping of columns that raised a ``TypeError``, ``DataError``, and some cases of ``ValueError`` in :meth:`Series.aggregate`, :meth:`DataFrame.aggregate`, :meth:`Series.groupby.aggregate`, and :meth:`DataFrame.groupby.aggregate` when used with a list (:issue:`43740`)
- Deprecated casting behavior when setting timezone-aware value(s) into a timezone-aware :class:`Series` or :class:`DataFrame` column when the timezones do not match. Previously this cast to object dtype. In a future version, the values being inserted will be converted to the series or column's existing timezone (:issue:`37605`)
- Deprecated casting behavior when passing an item with mismatched-timezone to :meth:`DatetimeIndex.insert`, :meth:`DatetimeIndex.putmask`, :meth:`DatetimeIndex.where` :meth:`DatetimeIndex.fillna`, :meth:`Series.mask`, :meth:`Series.where`, :meth:`Series.fillna`, :meth:`Series.shift`, :meth:`Series.replace`, :meth:`Series.reindex` (and :class:`DataFrame` column analogues). In the past this has cast to object ``dtype``. In a future version, these will cast the passed item to the index or series's timezone (:issue:`37605`, :issue:`44940`)
- Deprecated the ``prefix`` keyword argument in :func:`read_csv` and :func:`read_table`, in a future version the argument will be removed (:issue:`43396`)
- Deprecated passing non boolean argument to ``sort`` in :func:`concat` (:issue:`41518`)
- Deprecated passing arguments as positional for :func:`read_fwf` other than ``filepath_or_buffer`` (:issue:`41485`)
- Deprecated passing arguments as positional for :func:`read_xml` other than ``path_or_buffer`` (:issue:`45133`)
- Deprecated passing ``skipna=None`` for :meth:`DataFrame.mad` and :meth:`Series.mad`, pass ``skipna=True`` instead (:issue:`44580`)
- Deprecated the behavior of :func:`to_datetime` with the string "now" with ``utc=False``; in a future version this will match ``Timestamp("now")``, which in turn matches :meth:`Timestamp.now` returning the local time (:issue:`18705`)
- Deprecated :meth:`DateOffset.apply`, use ``offset + other`` instead (:issue:`44522`)
- Deprecated parameter ``names`` in :meth:`Index.copy` (:issue:`44916`)
- A deprecation warning is now shown for :meth:`DataFrame.to_latex` indicating the arguments signature may change and emulate more the arguments to :meth:`.Styler.to_latex` in future versions (:issue:`44411`)
- Deprecated behavior of :func:`concat` between objects with bool-dtype and numeric-dtypes; in a future version these will cast to object dtype instead of coercing bools to numeric values (:issue:`39817`)
- Deprecated :meth:`Categorical.replace`, use :meth:`Series.replace` instead (:issue:`44929`)
- Deprecated passing ``set`` or ``dict`` as indexer for :meth:`DataFrame.loc.__setitem__`, :meth:`DataFrame.loc.__getitem__`, :meth:`Series.loc.__setitem__`, :meth:`Series.loc.__getitem__`, :meth:`DataFrame.__getitem__`, :meth:`Series.__getitem__` and :meth:`Series.__setitem__` (:issue:`42825`)
- Deprecated :meth:`Index.__getitem__` with a bool key; use ``index.values[key]`` to get the old behavior (:issue:`44051`)
- Deprecated downcasting column-by-column in :meth:`DataFrame.where` with integer-dtypes (:issue:`44597`)
- Deprecated :meth:`DatetimeIndex.union_many`, use :meth:`DatetimeIndex.union` instead (:issue:`44091`)
- Deprecated :meth:`.Groupby.pad` in favor of :meth:`.Groupby.ffill` (:issue:`33396`)
- Deprecated :meth:`.Groupby.backfill` in favor of :meth:`.Groupby.bfill` (:issue:`33396`)
- Deprecated :meth:`.Resample.pad` in favor of :meth:`.Resample.ffill` (:issue:`33396`)
- Deprecated :meth:`.Resample.backfill` in favor of :meth:`.Resample.bfill` (:issue:`33396`)
- Deprecated ``numeric_only=None`` in :meth:`DataFrame.rank`; in a future version ``numeric_only`` must be either ``True`` or ``False`` (the default) (:issue:`45036`)
- Deprecated the behavior of :meth:`Timestamp.utcfromtimestamp`, in the future it will return a timezone-aware UTC :class:`Timestamp` (:issue:`22451`)
- Deprecated :meth:`NaT.freq` (:issue:`45071`)
- Deprecated behavior of :class:`Series` and :class:`DataFrame` construction when passed float-dtype data containing ``NaN`` and an integer dtype ignoring the dtype argument; in a future version this will raise (:issue:`40110`)
- Deprecated the behaviour of :meth:`Series.to_frame` and :meth:`Index.to_frame` to ignore the ``name`` argument when ``name=None``. Currently, this means to preserve the existing name, but in the future explicitly passing ``name=None`` will set ``None`` as the name of the column in the resulting DataFrame (:issue:`44212`)
.. ---------------------------------------------------------------------------
.. _whatsnew_140.performance:
Performance improvements
~~~~~~~~~~~~~~~~~~~~~~~~
- Performance improvement in :meth:`.DataFrameGroupBy.sample` and :meth:`.SeriesGroupBy.sample`, especially when ``weights`` argument provided (:issue:`34483`)
- Performance improvement when converting non-string arrays to string arrays (:issue:`34483`)
- Performance improvement in :meth:`.DataFrameGroupBy.transform` and :meth:`.SeriesGroupBy.transform` for user-defined functions (:issue:`41598`)
- Performance improvement in constructing :class:`DataFrame` objects (:issue:`42631`, :issue:`43142`, :issue:`43147`, :issue:`43307`, :issue:`43144`, :issue:`44826`)
- Performance improvement in :meth:`.DataFrameGroupBy.shift` and :meth:`.SeriesGroupBy.shift` when ``fill_value`` argument is provided (:issue:`26615`)
- Performance improvement in :meth:`DataFrame.corr` for ``method=pearson`` on data without missing values (:issue:`40956`)
- Performance improvement in some :meth:`.DataFrameGroupBy.apply` and :meth:`.SeriesGroupBy.apply` operations (:issue:`42992`, :issue:`43578`)
- Performance improvement in :func:`read_stata` (:issue:`43059`, :issue:`43227`)
- Performance improvement in :func:`read_sas` (:issue:`43333`)
- Performance improvement in :meth:`to_datetime` with ``uint`` dtypes (:issue:`42606`)
- Performance improvement in :meth:`to_datetime` with ``infer_datetime_format`` set to ``True`` (:issue:`43901`)
- Performance improvement in :meth:`Series.sparse.to_coo` (:issue:`42880`)
- Performance improvement in indexing with a :class:`UInt64Index` (:issue:`43862`)
- Performance improvement in indexing with a :class:`Float64Index` (:issue:`43705`)
- Performance improvement in indexing with a non-unique :class:`Index` (:issue:`43792`)
- Performance improvement in indexing with a listlike indexer on a :class:`MultiIndex` (:issue:`43370`)
- Performance improvement in indexing with a :class:`MultiIndex` indexer on another :class:`MultiIndex` (:issue:`43370`)
- Performance improvement in :meth:`.DataFrameGroupBy.quantile` and :meth:`.SeriesGroupBy.quantile` (:issue:`43469`, :issue:`43725`)
- Performance improvement in :meth:`.DataFrameGroupBy.count` and :meth:`.SeriesGroupBy.count` (:issue:`43730`, :issue:`43694`)
- Performance improvement in :meth:`.DataFrameGroupBy.any`, :meth:`.SeriesGroupBy.any`, :meth:`.DataFrameGroupBy.all`, and :meth:`.SeriesGroupBy.all` (:issue:`43675`, :issue:`42841`)
- Performance improvement in :meth:`.DataFrameGroupBy.std` and :meth:`.SeriesGroupBy.std` (:issue:`43115`, :issue:`43576`)
- Performance improvement in :meth:`.DataFrameGroupBy.cumsum` and :meth:`.SeriesGroupBy.cumsum` (:issue:`43309`)
- :meth:`SparseArray.min` and :meth:`SparseArray.max` no longer require converting to a dense array (:issue:`43526`)
- Indexing into a :class:`SparseArray` with a ``slice`` with ``step=1`` no longer requires converting to a dense array (:issue:`43777`)
- Performance improvement in :meth:`SparseArray.take` with ``allow_fill=False`` (:issue:`43654`)
- Performance improvement in :meth:`.Rolling.mean`, :meth:`.Expanding.mean`, :meth:`.Rolling.sum`, :meth:`.Expanding.sum`, :meth:`.Rolling.max`, :meth:`.Expanding.max`, :meth:`.Rolling.min` and :meth:`.Expanding.min` with ``engine="numba"`` (:issue:`43612`, :issue:`44176`, :issue:`45170`)
- Improved performance of :meth:`pandas.read_csv` with ``memory_map=True`` when file encoding is UTF-8 (:issue:`43787`)
- Performance improvement in :meth:`RangeIndex.sort_values` overriding :meth:`Index.sort_values` (:issue:`43666`)
- Performance improvement in :meth:`RangeIndex.insert` (:issue:`43988`)
- Performance improvement in :meth:`Index.insert` (:issue:`43953`)
- Performance improvement in :meth:`DatetimeIndex.tolist` (:issue:`43823`)
- Performance improvement in :meth:`DatetimeIndex.union` (:issue:`42353`)
- Performance improvement in :meth:`Series.nsmallest` (:issue:`43696`)
- Performance improvement in :meth:`DataFrame.insert` (:issue:`42998`)
- Performance improvement in :meth:`DataFrame.dropna` (:issue:`43683`)
- Performance improvement in :meth:`DataFrame.fillna` (:issue:`43316`)
- Performance improvement in :meth:`DataFrame.values` (:issue:`43160`)
- Performance improvement in :meth:`DataFrame.select_dtypes` (:issue:`42611`)
- Performance improvement in :class:`DataFrame` reductions (:issue:`43185`, :issue:`43243`, :issue:`43311`, :issue:`43609`)
- Performance improvement in :meth:`Series.unstack` and :meth:`DataFrame.unstack` (:issue:`43335`, :issue:`43352`, :issue:`42704`, :issue:`43025`)
- Performance improvement in :meth:`Series.to_frame` (:issue:`43558`)
- Performance improvement in :meth:`Series.mad` (:issue:`43010`)
- Performance improvement in :func:`merge` (:issue:`43332`)
- Performance improvement in :func:`to_csv` when index column is a datetime and is formatted (:issue:`39413`)
- Performance improvement in :func:`to_csv` when :class:`MultiIndex` contains a lot of unused levels (:issue:`37484`)
- Performance improvement in :func:`read_csv` when ``index_col`` was set with a numeric column (:issue:`44158`)
- Performance improvement in :func:`concat` (:issue:`43354`)
- Performance improvement in :meth:`SparseArray.__getitem__` (:issue:`23122`)
- Performance improvement in constructing a :class:`DataFrame` from array-like objects like a ``Pytorch`` tensor (:issue:`44616`)
.. ---------------------------------------------------------------------------
.. _whatsnew_140.bug_fixes:
Bug fixes
~~~~~~~~~
Categorical
^^^^^^^^^^^
- Bug in setting dtype-incompatible values into a :class:`Categorical` (or ``Series`` or ``DataFrame`` backed by ``Categorical``) raising ``ValueError`` instead of ``TypeError`` (:issue:`41919`)
- Bug in :meth:`Categorical.searchsorted` when passing a dtype-incompatible value raising ``KeyError`` instead of ``TypeError`` (:issue:`41919`)
- Bug in :meth:`Categorical.astype` casting datetimes and :class:`Timestamp` to int for dtype ``object`` (:issue:`44930`)
- Bug in :meth:`Series.where` with ``CategoricalDtype`` when passing a dtype-incompatible value raising ``ValueError`` instead of ``TypeError`` (:issue:`41919`)
- Bug in :meth:`Categorical.fillna` when passing a dtype-incompatible value raising ``ValueError`` instead of ``TypeError`` (:issue:`41919`)
- Bug in :meth:`Categorical.fillna` with a tuple-like category raising ``ValueError`` instead of ``TypeError`` when filling with a non-category tuple (:issue:`41919`)
Datetimelike
^^^^^^^^^^^^
- Bug in :class:`DataFrame` constructor unnecessarily copying non-datetimelike 2D object arrays (:issue:`39272`)
- Bug in :func:`to_datetime` with ``format`` and ``pandas.NA`` was raising ``ValueError`` (:issue:`42957`)
- :func:`to_datetime` would silently swap ``MM/DD/YYYY`` and ``DD/MM/YYYY`` formats if the given ``dayfirst`` option could not be respected - now, a warning is raised in the case of delimited date strings (e.g. ``31-12-2012``) (:issue:`12585`)
- Bug in :meth:`date_range` and :meth:`bdate_range` do not return right bound when ``start`` = ``end`` and set is closed on one side (:issue:`43394`)
- Bug in inplace addition and subtraction of :class:`DatetimeIndex` or :class:`TimedeltaIndex` with :class:`DatetimeArray` or :class:`TimedeltaArray` (:issue:`43904`)
- Bug in calling ``np.isnan``, ``np.isfinite``, or ``np.isinf`` on a timezone-aware :class:`DatetimeIndex` incorrectly raising ``TypeError`` (:issue:`43917`)
- Bug in constructing a :class:`Series` from datetime-like strings with mixed timezones incorrectly partially-inferring datetime values (:issue:`40111`)
- Bug in addition of a :class:`Tick` object and a ``np.timedelta64`` object incorrectly raising instead of returning :class:`Timedelta` (:issue:`44474`)
- ``np.maximum.reduce`` and ``np.minimum.reduce`` now correctly return :class:`Timestamp` and :class:`Timedelta` objects when operating on :class:`Series`, :class:`DataFrame`, or :class:`Index` with ``datetime64[ns]`` or ``timedelta64[ns]`` dtype (:issue:`43923`)
- Bug in adding a ``np.timedelta64`` object to a :class:`BusinessDay` or :class:`CustomBusinessDay` object incorrectly raising (:issue:`44532`)
- Bug in :meth:`Index.insert` for inserting ``np.datetime64``, ``np.timedelta64`` or ``tuple`` into :class:`Index` with ``dtype='object'`` with negative loc adding ``None`` and replacing existing value (:issue:`44509`)
- Bug in :meth:`Timestamp.to_pydatetime` failing to retain the ``fold`` attribute (:issue:`45087`)
- Bug in :meth:`Series.mode` with ``DatetimeTZDtype`` incorrectly returning timezone-naive and ``PeriodDtype`` incorrectly raising (:issue:`41927`)
- Fixed regression in :meth:`~Series.reindex` raising an error when using an incompatible fill value with a datetime-like dtype (or not raising a deprecation warning for using a ``datetime.date`` as fill value) (:issue:`42921`)
- Bug in :class:`DateOffset` addition with :class:`Timestamp` where ``offset.nanoseconds`` would not be included in the result (:issue:`43968`, :issue:`36589`)
- Bug in :meth:`Timestamp.fromtimestamp` not supporting the ``tz`` argument (:issue:`45083`)
- Bug in :class:`DataFrame` construction from dict of :class:`Series` with mismatched index dtypes sometimes raising depending on the ordering of the passed dict (:issue:`44091`)
- Bug in :class:`Timestamp` hashing during some DST transitions caused a segmentation fault (:issue:`33931` and :issue:`40817`)
Timedelta
^^^^^^^^^
- Bug in division of all-``NaT`` :class:`TimeDeltaIndex`, :class:`Series` or :class:`DataFrame` column with object-dtype array like of numbers failing to infer the result as timedelta64-dtype (:issue:`39750`)
- Bug in floor division of ``timedelta64[ns]`` data with a scalar returning garbage values (:issue:`44466`)
- Bug in :class:`Timedelta` now properly taking into account any nanoseconds contribution of any kwarg (:issue:`43764`, :issue:`45227`)
Time Zones
^^^^^^^^^^
- Bug in :func:`to_datetime` with ``infer_datetime_format=True`` failing to parse zero UTC offset (``Z``) correctly (:issue:`41047`)
- Bug in :meth:`Series.dt.tz_convert` resetting index in a :class:`Series` with :class:`CategoricalIndex` (:issue:`43080`)
- Bug in ``Timestamp`` and ``DatetimeIndex`` incorrectly raising a ``TypeError`` when subtracting two timezone-aware objects with mismatched timezones (:issue:`31793`)
Numeric
^^^^^^^
- Bug in floor-dividing a list or tuple of integers by a :class:`Series` incorrectly raising (:issue:`44674`)
- Bug in :meth:`DataFrame.rank` raising ``ValueError`` with ``object`` columns and ``method="first"`` (:issue:`41931`)
- Bug in :meth:`DataFrame.rank` treating missing values and extreme values as equal (for example ``np.nan`` and ``np.inf``), causing incorrect results when ``na_option="bottom"`` or ``na_option="top`` used (:issue:`41931`)
- Bug in ``numexpr`` engine still being used when the option ``compute.use_numexpr`` is set to ``False`` (:issue:`32556`)
- Bug in :class:`DataFrame` arithmetic ops with a subclass whose :meth:`_constructor` attribute is a callable other than the subclass itself (:issue:`43201`)
- Bug in arithmetic operations involving :class:`RangeIndex` where the result would have the incorrect ``name`` (:issue:`43962`)
- Bug in arithmetic operations involving :class:`Series` where the result could have the incorrect ``name`` when the operands having matching NA or matching tuple names (:issue:`44459`)
- Bug in division with ``IntegerDtype`` or ``BooleanDtype`` array and NA scalar incorrectly raising (:issue:`44685`)
- Bug in multiplying a :class:`Series` with ``FloatingDtype`` with a timedelta-like scalar incorrectly raising (:issue:`44772`)
Conversion
^^^^^^^^^^
- Bug in :class:`UInt64Index` constructor when passing a list containing both positive integers small enough to cast to int64 and integers too large to hold in int64 (:issue:`42201`)
- Bug in :class:`Series` constructor returning 0 for missing values with dtype ``int64`` and ``False`` for dtype ``bool`` (:issue:`43017`, :issue:`43018`)
- Bug in constructing a :class:`DataFrame` from a :class:`PandasArray` containing :class:`Series` objects behaving differently than an equivalent ``np.ndarray`` (:issue:`43986`)
- Bug in :class:`IntegerDtype` not allowing coercion from string dtype (:issue:`25472`)
- Bug in :func:`to_datetime` with ``arg:xr.DataArray`` and ``unit="ns"`` specified raises ``TypeError`` (:issue:`44053`)
- Bug in :meth:`DataFrame.convert_dtypes` not returning the correct type when a subclass does not overload :meth:`_constructor_sliced` (:issue:`43201`)
- Bug in :meth:`DataFrame.astype` not propagating ``attrs`` from the original :class:`DataFrame` (:issue:`44414`)
- Bug in :meth:`DataFrame.convert_dtypes` result losing ``columns.names`` (:issue:`41435`)
- Bug in constructing a ``IntegerArray`` from pyarrow data failing to validate dtypes (:issue:`44891`)
- Bug in :meth:`Series.astype` not allowing converting from a ``PeriodDtype`` to ``datetime64`` dtype, inconsistent with the :class:`PeriodIndex` behavior (:issue:`45038`)
Strings
^^^^^^^
- Bug in checking for ``string[pyarrow]`` dtype incorrectly raising an ``ImportError`` when pyarrow is not installed (:issue:`44276`)
Interval
^^^^^^^^
- Bug in :meth:`Series.where` with ``IntervalDtype`` incorrectly raising when the ``where`` call should not replace anything (:issue:`44181`)
Indexing
^^^^^^^^
- Bug in :meth:`Series.rename` with :class:`MultiIndex` and ``level`` is provided (:issue:`43659`)
- Bug in :meth:`DataFrame.truncate` and :meth:`Series.truncate` when the object's :class:`Index` has a length greater than one but only one unique value (:issue:`42365`)
- Bug in :meth:`Series.loc` and :meth:`DataFrame.loc` with a :class:`MultiIndex` when indexing with a tuple in which one of the levels is also a tuple (:issue:`27591`)
- Bug in :meth:`Series.loc` with a :class:`MultiIndex` whose first level contains only ``np.nan`` values (:issue:`42055`)
- Bug in indexing on a :class:`Series` or :class:`DataFrame` with a :class:`DatetimeIndex` when passing a string, the return type depended on whether the index was monotonic (:issue:`24892`)
- Bug in indexing on a :class:`MultiIndex` failing to drop scalar levels when the indexer is a tuple containing a datetime-like string (:issue:`42476`)
- Bug in :meth:`DataFrame.sort_values` and :meth:`Series.sort_values` when passing an ascending value, failed to raise or incorrectly raising ``ValueError`` (:issue:`41634`)
- Bug in updating values of :class:`pandas.Series` using boolean index, created by using :meth:`pandas.DataFrame.pop` (:issue:`42530`)
- Bug in :meth:`Index.get_indexer_non_unique` when index contains multiple ``np.nan`` (:issue:`35392`)
- Bug in :meth:`DataFrame.query` did not handle the degree sign in a backticked column name, such as \`Temp(°C)\`, used in an expression to query a :class:`DataFrame` (:issue:`42826`)
- Bug in :meth:`DataFrame.drop` where the error message did not show missing labels with commas when raising ``KeyError`` (:issue:`42881`)
- Bug in :meth:`DataFrame.query` where method calls in query strings led to errors when the ``numexpr`` package was installed (:issue:`22435`)
- Bug in :meth:`DataFrame.nlargest` and :meth:`Series.nlargest` where sorted result did not count indexes containing ``np.nan`` (:issue:`28984`)
- Bug in indexing on a non-unique object-dtype :class:`Index` with an NA scalar (e.g. ``np.nan``) (:issue:`43711`)
- Bug in :meth:`DataFrame.__setitem__` incorrectly writing into an existing column's array rather than setting a new array when the new dtype and the old dtype match (:issue:`43406`)
- Bug in setting floating-dtype values into a :class:`Series` with integer dtype failing to set inplace when those values can be losslessly converted to integers (:issue:`44316`)
- Bug in :meth:`Series.__setitem__` with object dtype when setting an array with matching size and dtype='datetime64[ns]' or dtype='timedelta64[ns]' incorrectly converting the datetime/timedeltas to integers (:issue:`43868`)
- Bug in :meth:`DataFrame.sort_index` where ``ignore_index=True`` was not being respected when the index was already sorted (:issue:`43591`)
- Bug in :meth:`Index.get_indexer_non_unique` when index contains multiple ``np.datetime64("NaT")`` and ``np.timedelta64("NaT")`` (:issue:`43869`)
- Bug in setting a scalar :class:`Interval` value into a :class:`Series` with ``IntervalDtype`` when the scalar's sides are floats and the values' sides are integers (:issue:`44201`)
- Bug when setting string-backed :class:`Categorical` values that can be parsed to datetimes into a :class:`DatetimeArray` or :class:`Series` or :class:`DataFrame` column backed by :class:`DatetimeArray` failing to parse these strings (:issue:`44236`)
- Bug in :meth:`Series.__setitem__` with an integer dtype other than ``int64`` setting with a ``range`` object unnecessarily upcasting to ``int64`` (:issue:`44261`)
- Bug in :meth:`Series.__setitem__` with a boolean mask indexer setting a listlike value of length 1 incorrectly broadcasting that value (:issue:`44265`)
- Bug in :meth:`Series.reset_index` not ignoring ``name`` argument when ``drop`` and ``inplace`` are set to ``True`` (:issue:`44575`)
- Bug in :meth:`DataFrame.loc.__setitem__` and :meth:`DataFrame.iloc.__setitem__` with mixed dtypes sometimes failing to operate in-place (:issue:`44345`)
- Bug in :meth:`DataFrame.loc.__getitem__` incorrectly raising ``KeyError`` when selecting a single column with a boolean key (:issue:`44322`).
- Bug in setting :meth:`DataFrame.iloc` with a single ``ExtensionDtype`` column and setting 2D values e.g. ``df.iloc[:] = df.values`` incorrectly raising (:issue:`44514`)
- Bug in setting values with :meth:`DataFrame.iloc` with a single ``ExtensionDtype`` column and a tuple of arrays as the indexer (:issue:`44703`)
- Bug in indexing on columns with ``loc`` or ``iloc`` using a slice with a negative step with ``ExtensionDtype`` columns incorrectly raising (:issue:`44551`)
- Bug in :meth:`DataFrame.loc.__setitem__` changing dtype when indexer was completely ``False`` (:issue:`37550`)
- Bug in :meth:`IntervalIndex.get_indexer_non_unique` returning boolean mask instead of array of integers for a non unique and non monotonic index (:issue:`44084`)
- Bug in :meth:`IntervalIndex.get_indexer_non_unique` not handling targets of ``dtype`` 'object' with NaNs correctly (:issue:`44482`)
- Fixed regression where a single column ``np.matrix`` was no longer coerced to a 1d ``np.ndarray`` when added to a :class:`DataFrame` (:issue:`42376`)
- Bug in :meth:`Series.__getitem__` with a :class:`CategoricalIndex` of integers treating lists of integers as positional indexers, inconsistent with the behavior with a single scalar integer (:issue:`15470`, :issue:`14865`)
- Bug in :meth:`Series.__setitem__` when setting floats or integers into integer-dtype :class:`Series` failing to upcast when necessary to retain precision (:issue:`45121`)
- Bug in :meth:`DataFrame.iloc.__setitem__` ignores axis argument (:issue:`45032`)
Missing
^^^^^^^
- Bug in :meth:`DataFrame.fillna` with ``limit`` and no ``method`` ignores ``axis='columns'`` or ``axis = 1`` (:issue:`40989`, :issue:`17399`)
- Bug in :meth:`DataFrame.fillna` not replacing missing values when using a dict-like ``value`` and duplicate column names (:issue:`43476`)
- Bug in constructing a :class:`DataFrame` with a dictionary ``np.datetime64`` as a value and ``dtype='timedelta64[ns]'``, or vice-versa, incorrectly casting instead of raising (:issue:`44428`)
- Bug in :meth:`Series.interpolate` and :meth:`DataFrame.interpolate` with ``inplace=True`` not writing to the underlying array(s) in-place (:issue:`44749`)
- Bug in :meth:`Index.fillna` incorrectly returning an unfilled :class:`Index` when NA values are present and ``downcast`` argument is specified. This now raises ``NotImplementedError`` instead; do not pass ``downcast`` argument (:issue:`44873`)
- Bug in :meth:`DataFrame.dropna` changing :class:`Index` even if no entries were dropped (:issue:`41965`)
- Bug in :meth:`Series.fillna` with an object-dtype incorrectly ignoring ``downcast="infer"`` (:issue:`44241`)
MultiIndex
^^^^^^^^^^
- Bug in :meth:`MultiIndex.get_loc` where the first level is a :class:`DatetimeIndex` and a string key is passed (:issue:`42465`)
- Bug in :meth:`MultiIndex.reindex` when passing a ``level`` that corresponds to an ``ExtensionDtype`` level (:issue:`42043`)
- Bug in :meth:`MultiIndex.get_loc` raising ``TypeError`` instead of ``KeyError`` on nested tuple (:issue:`42440`)
- Bug in :meth:`MultiIndex.union` setting wrong ``sortorder`` causing errors in subsequent indexing operations with slices (:issue:`44752`)
- Bug in :meth:`MultiIndex.putmask` where the other value was also a :class:`MultiIndex` (:issue:`43212`)
- Bug in :meth:`MultiIndex.dtypes` duplicate level names returned only one dtype per name (:issue:`45174`)
I/O
^^^
- Bug in :func:`read_excel` attempting to read chart sheets from .xlsx files (:issue:`41448`)
- Bug in :func:`json_normalize` where ``errors=ignore`` could fail to ignore missing values of ``meta`` when ``record_path`` has a length greater than one (:issue:`41876`)
- Bug in :func:`read_csv` with multi-header input and arguments referencing column names as tuples (:issue:`42446`)
- Bug in :func:`read_fwf`, where difference in lengths of ``colspecs`` and ``names`` was not raising ``ValueError`` (:issue:`40830`)
- Bug in :func:`Series.to_json` and :func:`DataFrame.to_json` where some attributes were skipped when serializing plain Python objects to JSON (:issue:`42768`, :issue:`33043`)
- Column headers are dropped when constructing a :class:`DataFrame` from a sqlalchemy's ``Row`` object (:issue:`40682`)
- Bug in unpickling an :class:`Index` with object dtype incorrectly inferring numeric dtypes (:issue:`43188`)
- Bug in :func:`read_csv` where reading multi-header input with unequal lengths incorrectly raised ``IndexError`` (:issue:`43102`)
- Bug in :func:`read_csv` raising ``ParserError`` when reading file in chunks and some chunk blocks have fewer columns than header for ``engine="c"`` (:issue:`21211`)
- Bug in :func:`read_csv`, changed exception class when expecting a file path name or file-like object from ``OSError`` to ``TypeError`` (:issue:`43366`)
- Bug in :func:`read_csv` and :func:`read_fwf` ignoring all ``skiprows`` except first when ``nrows`` is specified for ``engine='python'`` (:issue:`44021`, :issue:`10261`)
- Bug in :func:`read_csv` keeping the original column in object format when ``keep_date_col=True`` is set (:issue:`13378`)
- Bug in :func:`read_json` not handling non-numpy dtypes correctly (especially ``category``) (:issue:`21892`, :issue:`33205`)
- Bug in :func:`json_normalize` where multi-character ``sep`` parameter is incorrectly prefixed to every key (:issue:`43831`)
- Bug in :func:`json_normalize` where reading data with missing multi-level metadata would not respect ``errors="ignore"`` (:issue:`44312`)
- Bug in :func:`read_csv` used second row to guess implicit index if ``header`` was set to ``None`` for ``engine="python"`` (:issue:`22144`)
- Bug in :func:`read_csv` not recognizing bad lines when ``names`` were given for ``engine="c"`` (:issue:`22144`)
- Bug in :func:`read_csv` with :code:`float_precision="round_trip"` which did not skip initial/trailing whitespace (:issue:`43713`)
- Bug when Python is built without the lzma module: a warning was raised at the pandas import time, even if the lzma capability isn't used (:issue:`43495`)
- Bug in :func:`read_csv` not applying dtype for ``index_col`` (:issue:`9435`)
- Bug in dumping/loading a :class:`DataFrame` with ``yaml.dump(frame)`` (:issue:`42748`)
- Bug in :func:`read_csv` raising ``ValueError`` when ``names`` was longer than ``header`` but equal to data rows for ``engine="python"`` (:issue:`38453`)
- Bug in :class:`ExcelWriter`, where ``engine_kwargs`` were not passed through to all engines (:issue:`43442`)
- Bug in :func:`read_csv` raising ``ValueError`` when ``parse_dates`` was used with :class:`MultiIndex` columns (:issue:`8991`)
- Bug in :func:`read_csv` not raising an ``ValueError`` when ``\n`` was specified as ``delimiter`` or ``sep`` which conflicts with ``lineterminator`` (:issue:`43528`)
- Bug in :func:`to_csv` converting datetimes in categorical :class:`Series` to integers (:issue:`40754`)
- Bug in :func:`read_csv` converting columns to numeric after date parsing failed (:issue:`11019`)
- Bug in :func:`read_csv` not replacing ``NaN`` values with ``np.nan`` before attempting date conversion (:issue:`26203`)
- Bug in :func:`read_csv` raising ``AttributeError`` when attempting to read a .csv file and infer index column dtype from an nullable integer type (:issue:`44079`)
- Bug in :func:`to_csv` always coercing datetime columns with different formats to the same format (:issue:`21734`)
- :meth:`DataFrame.to_csv` and :meth:`Series.to_csv` with ``compression`` set to ``'zip'`` no longer create a zip file containing a file ending with ".zip". Instead, they try to infer the inner file name more smartly (:issue:`39465`)
- Bug in :func:`read_csv` where reading a mixed column of booleans and missing values to a float type results in the missing values becoming 1.0 rather than NaN (:issue:`42808`, :issue:`34120`)
- Bug in :func:`to_xml` raising error for ``pd.NA`` with extension array dtype (:issue:`43903`)
- Bug in :func:`read_csv` when passing simultaneously a parser in ``date_parser`` and ``parse_dates=False``, the parsing was still called (:issue:`44366`)
- Bug in :func:`read_csv` not setting name of :class:`MultiIndex` columns correctly when ``index_col`` is not the first column (:issue:`38549`)
- Bug in :func:`read_csv` silently ignoring errors when failing to create a memory-mapped file (:issue:`44766`)
- Bug in :func:`read_csv` when passing a ``tempfile.SpooledTemporaryFile`` opened in binary mode (:issue:`44748`)
- Bug in :func:`read_json` raising ``ValueError`` when attempting to parse json strings containing "://" (:issue:`36271`)
- Bug in :func:`read_csv` when ``engine="c"`` and ``encoding_errors=None`` which caused a segfault (:issue:`45180`)
- Bug in :func:`read_csv` an invalid value of ``usecols`` leading to an unclosed file handle (:issue:`45384`)
- Bug in :meth:`DataFrame.to_json` fix memory leak (:issue:`43877`)
Period
^^^^^^
- Bug in adding a :class:`Period` object to a ``np.timedelta64`` object incorrectly raising ``TypeError`` (:issue:`44182`)
- Bug in :meth:`PeriodIndex.to_timestamp` when the index has ``freq="B"`` inferring ``freq="D"`` for its result instead of ``freq="B"`` (:issue:`44105`)
- Bug in :class:`Period` constructor incorrectly allowing ``np.timedelta64("NaT")`` (:issue:`44507`)
- Bug in :meth:`PeriodIndex.to_timestamp` giving incorrect values for indexes with non-contiguous data (:issue:`44100`)
- Bug in :meth:`Series.where` with ``PeriodDtype`` incorrectly raising when the ``where`` call should not replace anything (:issue:`45135`)
Plotting
^^^^^^^^
- When given non-numeric data, :meth:`DataFrame.boxplot` now raises a ``ValueError`` rather than a cryptic ``KeyError`` or ``ZeroDivisionError``, in line with other plotting functions like :meth:`DataFrame.hist` (:issue:`43480`)
Groupby/resample/rolling
^^^^^^^^^^^^^^^^^^^^^^^^
- Bug in :meth:`SeriesGroupBy.apply` where passing an unrecognized string argument failed to raise ``TypeError`` when the underlying ``Series`` is empty (:issue:`42021`)
- Bug in :meth:`Series.rolling.apply`, :meth:`DataFrame.rolling.apply`, :meth:`Series.expanding.apply` and :meth:`DataFrame.expanding.apply` with ``engine="numba"`` where ``*args`` were being cached with the user passed function (:issue:`42287`)
- Bug in :meth:`.DataFrameGroupBy.max`, :meth:`.SeriesGroupBy.max`, :meth:`.DataFrameGroupBy.min`, and :meth:`.SeriesGroupBy.min` with nullable integer dtypes losing precision (:issue:`41743`)
- Bug in :meth:`DataFrame.groupby.rolling.var` would calculate the rolling variance only on the first group (:issue:`42442`)
- Bug in :meth:`.DataFrameGroupBy.shift` and :meth:`.SeriesGroupBy.shift` that would return the grouping columns if ``fill_value`` was not ``None`` (:issue:`41556`)
- Bug in :meth:`SeriesGroupBy.nlargest` and :meth:`SeriesGroupBy.nsmallest` would have an inconsistent index when the input :class:`Series` was sorted and ``n`` was greater than or equal to all group sizes (:issue:`15272`, :issue:`16345`, :issue:`29129`)
- Bug in :meth:`pandas.DataFrame.ewm`, where non-float64 dtypes were silently failing (:issue:`42452`)
- Bug in :meth:`pandas.DataFrame.rolling` operation along rows (``axis=1``) incorrectly omits columns containing ``float16`` and ``float32`` (:issue:`41779`)
- Bug in :meth:`Resampler.aggregate` did not allow the use of Named Aggregation (:issue:`32803`)
- Bug in :meth:`Series.rolling` when the :class:`Series` ``dtype`` was ``Int64`` (:issue:`43016`)
- Bug in :meth:`DataFrame.rolling.corr` when the :class:`DataFrame` columns was a :class:`MultiIndex` (:issue:`21157`)
- Bug in :meth:`DataFrame.groupby.rolling` when specifying ``on`` and calling ``__getitem__`` would subsequently return incorrect results (:issue:`43355`)
- Bug in :meth:`.DataFrameGroupBy.apply` and :meth:`.SeriesGroupBy.apply` with time-based :class:`Grouper` objects incorrectly raising ``ValueError`` in corner cases where the grouping vector contains a ``NaT`` (:issue:`43500`, :issue:`43515`)
- Bug in :meth:`.DataFrameGroupBy.mean` and :meth:`.SeriesGroupBy.mean` failing with ``complex`` dtype (:issue:`43701`)
- Bug in :meth:`Series.rolling` and :meth:`DataFrame.rolling` not calculating window bounds correctly for the first row when ``center=True`` and index is decreasing (:issue:`43927`)
- Bug in :meth:`Series.rolling` and :meth:`DataFrame.rolling` for centered datetimelike windows with uneven nanosecond (:issue:`43997`)
- Bug in :meth:`.DataFrameGroupBy.mean` and :meth:`.SeriesGroupBy.mean` raising ``KeyError`` when column was selected at least twice (:issue:`44924`)
- Bug in :meth:`.DataFrameGroupBy.nth` and :meth:`.SeriesGroupBy.nth` failing on ``axis=1`` (:issue:`43926`)
- Bug in :meth:`Series.rolling` and :meth:`DataFrame.rolling` not respecting right bound on centered datetime-like windows, if the index contain duplicates (:issue:`3944`)
- Bug in :meth:`Series.rolling` and :meth:`DataFrame.rolling` when using a :class:`pandas.api.indexers.BaseIndexer` subclass that returned unequal start and end arrays would segfault instead of raising a ``ValueError`` (:issue:`44470`)
- Bug in :meth:`Groupby.nunique` not respecting ``observed=True`` for ``categorical`` grouping columns (:issue:`45128`)
- Bug in :meth:`.DataFrameGroupBy.head`, :meth:`.SeriesGroupBy.head`, :meth:`.DataFrameGroupBy.tail`, and :meth:`.SeriesGroupBy.tail` not dropping groups with ``NaN`` when ``dropna=True`` (:issue:`45089`)
- Bug in :meth:`GroupBy.__iter__` after selecting a subset of columns in a :class:`GroupBy` object, which returned all columns instead of the chosen subset (:issue:`44821`)
- Bug in :meth:`Groupby.rolling` when non-monotonic data passed, fails to correctly raise ``ValueError`` (:issue:`43909`)
- Bug where grouping by a :class:`Series` that has a ``categorical`` data type and length unequal to the axis of grouping raised ``ValueError`` (:issue:`44179`)
Reshaping
^^^^^^^^^
- Improved error message when creating a :class:`DataFrame` column from a multi-dimensional :class:`numpy.ndarray` (:issue:`42463`)
- Bug in :func:`concat` creating :class:`MultiIndex` with duplicate level entries when concatenating a :class:`DataFrame` with duplicates in :class:`Index` and multiple keys (:issue:`42651`)
- Bug in :meth:`pandas.cut` on :class:`Series` with duplicate indices and non-exact :meth:`pandas.CategoricalIndex` (:issue:`42185`, :issue:`42425`)
- Bug in :meth:`DataFrame.append` failing to retain dtypes when appended columns do not match (:issue:`43392`)
- Bug in :func:`concat` of ``bool`` and ``boolean`` dtypes resulting in ``object`` dtype instead of ``boolean`` dtype (:issue:`42800`)
- Bug in :func:`crosstab` when inputs are categorical :class:`Series`, there are categories that are not present in one or both of the :class:`Series`, and ``margins=True``. Previously the margin value for missing categories was ``NaN``. It is now correctly reported as 0 (:issue:`43505`)
- Bug in :func:`concat` would fail when the ``objs`` argument all had the same index and the ``keys`` argument contained duplicates (:issue:`43595`)
- Bug in :func:`concat` which ignored the ``sort`` parameter (:issue:`43375`)
- Bug in :func:`merge` with :class:`MultiIndex` as column index for the ``on`` argument returning an error when assigning a column internally (:issue:`43734`)
- Bug in :func:`crosstab` would fail when inputs are lists or tuples (:issue:`44076`)
- Bug in :meth:`DataFrame.append` failing to retain ``index.name`` when appending a list of :class:`Series` objects (:issue:`44109`)
- Fixed metadata propagation in :meth:`Dataframe.apply` method, consequently fixing the same issue for :meth:`Dataframe.transform`, :meth:`Dataframe.nunique` and :meth:`Dataframe.mode` (:issue:`28283`)
- Bug in :func:`concat` casting levels of :class:`MultiIndex` to float if all levels only consist of missing values (:issue:`44900`)
- Bug in :meth:`DataFrame.stack` with ``ExtensionDtype`` columns incorrectly raising (:issue:`43561`)
- Bug in :func:`merge` raising ``KeyError`` when joining over differently named indexes with on keywords (:issue:`45094`)
- Bug in :meth:`Series.unstack` with object doing unwanted type inference on resulting columns (:issue:`44595`)
- Bug in :meth:`MultiIndex.join()` with overlapping ``IntervalIndex`` levels (:issue:`44096`)
- Bug in :meth:`DataFrame.replace` and :meth:`Series.replace` results is different ``dtype`` based on ``regex`` parameter (:issue:`44864`)
- Bug in :meth:`DataFrame.pivot` with ``index=None`` when the :class:`DataFrame` index was a :class:`MultiIndex` (:issue:`23955`)
Sparse
^^^^^^
- Bug in :meth:`DataFrame.sparse.to_coo` raising ``AttributeError`` when column names are not unique (:issue:`29564`)
- Bug in :meth:`SparseArray.max` and :meth:`SparseArray.min` raising ``ValueError`` for arrays with 0 non-null elements (:issue:`43527`)
- Bug in :meth:`DataFrame.sparse.to_coo` silently converting non-zero fill values to zero (:issue:`24817`)
- Bug in :class:`SparseArray` comparison methods with an array-like operand of mismatched length raising ``AssertionError`` or unclear ``ValueError`` depending on the input (:issue:`43863`)
- Bug in :class:`SparseArray` arithmetic methods ``floordiv`` and ``mod`` behaviors when dividing by zero not matching the non-sparse :class:`Series` behavior (:issue:`38172`)
- Bug in :class:`SparseArray` unary methods as well as :meth:`SparseArray.isna` doesn't recalculate indexes (:issue:`44955`)
ExtensionArray
^^^^^^^^^^^^^^
- Bug in :func:`array` failing to preserve :class:`PandasArray` (:issue:`43887`)
- NumPy ufuncs ``np.abs``, ``np.positive``, ``np.negative`` now correctly preserve dtype when called on ExtensionArrays that implement ``__abs__, __pos__, __neg__``, respectively. In particular this is fixed for :class:`TimedeltaArray` (:issue:`43899`, :issue:`23316`)
- NumPy ufuncs ``np.minimum.reduce`` ``np.maximum.reduce``, ``np.add.reduce``, and ``np.prod.reduce`` now work correctly instead of raising ``NotImplementedError`` on :class:`Series` with ``IntegerDtype`` or ``FloatDtype`` (:issue:`43923`, :issue:`44793`)
- NumPy ufuncs with ``out`` keyword are now supported by arrays with ``IntegerDtype`` and ``FloatingDtype`` (:issue:`45122`)
- Avoid raising ``PerformanceWarning`` about fragmented :class:`DataFrame` when using many columns with an extension dtype (:issue:`44098`)
- Bug in :class:`IntegerArray` and :class:`FloatingArray` construction incorrectly coercing mismatched NA values (e.g. ``np.timedelta64("NaT")``) to numeric NA (:issue:`44514`)
- Bug in :meth:`BooleanArray.__eq__` and :meth:`BooleanArray.__ne__` raising ``TypeError`` on comparison with an incompatible type (like a string). This caused :meth:`DataFrame.replace` to sometimes raise a ``TypeError`` if a nullable boolean column was included (:issue:`44499`)
- Bug in :func:`array` incorrectly raising when passed a ``ndarray`` with ``float16`` dtype (:issue:`44715`)
- Bug in calling ``np.sqrt`` on :class:`BooleanArray` returning a malformed :class:`FloatingArray` (:issue:`44715`)
- Bug in :meth:`Series.where` with ``ExtensionDtype`` when ``other`` is a NA scalar incompatible with the :class:`Series` dtype (e.g. ``NaT`` with a numeric dtype) incorrectly casting to a compatible NA value (:issue:`44697`)
- Bug in :meth:`Series.replace` where explicitly passing ``value=None`` is treated as if no ``value`` was passed, and ``None`` not being in the result (:issue:`36984`, :issue:`19998`)
- Bug in :meth:`Series.replace` with unwanted downcasting being done in no-op replacements (:issue:`44498`)
- Bug in :meth:`Series.replace` with ``FloatDtype``, ``string[python]``, or ``string[pyarrow]`` dtype not being preserved when possible (:issue:`33484`, :issue:`40732`, :issue:`31644`, :issue:`41215`, :issue:`25438`)
Styler
^^^^^^
- Bug in :class:`.Styler` where the ``uuid`` at initialization maintained a floating underscore (:issue:`43037`)
- Bug in :meth:`.Styler.to_html` where the ``Styler`` object was updated if the ``to_html`` method was called with some args (:issue:`43034`)
- Bug in :meth:`.Styler.copy` where ``uuid`` was not previously copied (:issue:`40675`)
- Bug in :meth:`Styler.apply` where functions which returned :class:`Series` objects were not correctly handled in terms of aligning their index labels (:issue:`13657`, :issue:`42014`)
- Bug when rendering an empty :class:`DataFrame` with a named :class:`Index` (:issue:`43305`)
- Bug when rendering a single level :class:`MultiIndex` (:issue:`43383`)
- Bug when combining non-sparse rendering and :meth:`.Styler.hide_columns` or :meth:`.Styler.hide_index` (:issue:`43464`)
- Bug setting a table style when using multiple selectors in :class:`.Styler` (:issue:`44011`)
- Bugs where row trimming and column trimming failed to reflect hidden rows (:issue:`43703`, :issue:`44247`)
Other
^^^^^
- Bug in :meth:`DataFrame.astype` with non-unique columns and a :class:`Series` ``dtype`` argument (:issue:`44417`)
- Bug in :meth:`CustomBusinessMonthBegin.__add__` (:meth:`CustomBusinessMonthEnd.__add__`) not applying the extra ``offset`` parameter when beginning (end) of the target month is already a business day (:issue:`41356`)
- Bug in :meth:`RangeIndex.union` with another ``RangeIndex`` with matching (even) ``step`` and starts differing by strictly less than ``step / 2`` (:issue:`44019`)
- Bug in :meth:`RangeIndex.difference` with ``sort=None`` and ``step<0`` failing to sort (:issue:`44085`)
- Bug in :meth:`Series.replace` and :meth:`DataFrame.replace` with ``value=None`` and ExtensionDtypes (:issue:`44270`, :issue:`37899`)
- Bug in :meth:`FloatingArray.equals` failing to consider two arrays equal if they contain ``np.nan`` values (:issue:`44382`)
- Bug in :meth:`DataFrame.shift` with ``axis=1`` and ``ExtensionDtype`` columns incorrectly raising when an incompatible ``fill_value`` is passed (:issue:`44564`)
- Bug in :meth:`DataFrame.shift` with ``axis=1`` and ``periods`` larger than ``len(frame.columns)`` producing an invalid :class:`DataFrame` (:issue:`44978`)
- Bug in :meth:`DataFrame.diff` when passing a NumPy integer object instead of an ``int`` object (:issue:`44572`)
- Bug in :meth:`Series.replace` raising ``ValueError`` when using ``regex=True`` with a :class:`Series` containing ``np.nan`` values (:issue:`43344`)
- Bug in :meth:`DataFrame.to_records` where an incorrect ``n`` was used when missing names were replaced by ``level_n`` (:issue:`44818`)
- Bug in :meth:`DataFrame.eval` where ``resolvers`` argument was overriding the default resolvers (:issue:`34966`)
- :meth:`Series.__repr__` and :meth:`DataFrame.__repr__` no longer replace all null-values in indexes with "NaN" but use their real string-representations. "NaN" is used only for ``float("nan")`` (:issue:`45263`)
.. ---------------------------------------------------------------------------
.. _whatsnew_140.contributors:
Contributors
~~~~~~~~~~~~
.. contributors:: v1.3.5..v1.4.0
|