File: v1.4.0.rst

package info (click to toggle)
pandas 2.2.3%2Bdfsg-9
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 66,784 kB
  • sloc: python: 422,228; ansic: 9,190; sh: 270; xml: 102; makefile: 83
file content (1112 lines) | stat: -rw-r--r-- 77,053 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
.. _whatsnew_140:

What's new in 1.4.0 (January 22, 2022)
--------------------------------------

These are the changes in pandas 1.4.0. See :ref:`release` for a full changelog
including other versions of pandas.

{{ header }}

.. ---------------------------------------------------------------------------

.. _whatsnew_140.enhancements:

Enhancements
~~~~~~~~~~~~

.. _whatsnew_140.enhancements.warning_lineno:

Improved warning messages
^^^^^^^^^^^^^^^^^^^^^^^^^

Previously, warning messages may have pointed to lines within the pandas
library. Running the script ``setting_with_copy_warning.py``

.. code-block:: python

    import pandas as pd

    df = pd.DataFrame({'a': [1, 2, 3]})
    df[:2].loc[:, 'a'] = 5

with pandas 1.3 resulted in::

    .../site-packages/pandas/core/indexing.py:1951: SettingWithCopyWarning:
    A value is trying to be set on a copy of a slice from a DataFrame.

This made it difficult to determine where the warning was being generated from.
Now pandas will inspect the call stack, reporting the first line outside of the
pandas library that gave rise to the warning. The output of the above script is
now::

    setting_with_copy_warning.py:4: SettingWithCopyWarning:
    A value is trying to be set on a copy of a slice from a DataFrame.




.. _whatsnew_140.enhancements.ExtensionIndex:

Index can hold arbitrary ExtensionArrays
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Until now, passing a custom :class:`ExtensionArray` to ``pd.Index`` would cast
the array to ``object`` dtype. Now :class:`Index` can directly hold arbitrary
ExtensionArrays (:issue:`43930`).

*Previous behavior*:

.. ipython:: python

   arr = pd.array([1, 2, pd.NA])
   idx = pd.Index(arr)

In the old behavior, ``idx`` would be object-dtype:

*Previous behavior*:

.. code-block:: ipython

   In [1]: idx
   Out[1]: Index([1, 2, <NA>], dtype='object')

With the new behavior, we keep the original dtype:

*New behavior*:

.. ipython:: python

   idx

One exception to this is ``SparseArray``, which will continue to cast to numpy
dtype until pandas 2.0. At that point it will retain its dtype like other
ExtensionArrays.

.. _whatsnew_140.enhancements.styler:

Styler
^^^^^^

:class:`.Styler` has been further developed in 1.4.0. The following general enhancements have been made:

  - Styling and formatting of indexes has been added, with :meth:`.Styler.apply_index`, :meth:`.Styler.applymap_index` and :meth:`.Styler.format_index`. These mirror the signature of the methods already used to style and format data values, and work with both HTML, LaTeX and Excel format (:issue:`41893`, :issue:`43101`, :issue:`41993`, :issue:`41995`)
  - The new method :meth:`.Styler.hide` deprecates :meth:`.Styler.hide_index` and :meth:`.Styler.hide_columns` (:issue:`43758`)
  - The keyword arguments ``level`` and ``names`` have been added to :meth:`.Styler.hide` (and implicitly to the deprecated methods :meth:`.Styler.hide_index` and :meth:`.Styler.hide_columns`) for additional control of visibility of MultiIndexes and of Index names (:issue:`25475`, :issue:`43404`, :issue:`43346`)
  - The :meth:`.Styler.export` and :meth:`.Styler.use` have been updated to address all of the added functionality from v1.2.0 and v1.3.0 (:issue:`40675`)
  - Global options under the category ``pd.options.styler`` have been extended to configure default ``Styler`` properties which address formatting, encoding, and HTML and LaTeX rendering. Note that formerly ``Styler`` relied on ``display.html.use_mathjax``, which has now been replaced by ``styler.html.mathjax`` (:issue:`41395`)
  - Validation of certain keyword arguments, e.g. ``caption`` (:issue:`43368`)
  - Various bug fixes as recorded below

Additionally there are specific enhancements to the HTML specific rendering:

  - :meth:`.Styler.bar` introduces additional arguments to control alignment and display (:issue:`26070`, :issue:`36419`), and it also validates the input arguments ``width`` and ``height`` (:issue:`42511`)
  - :meth:`.Styler.to_html` introduces keyword arguments ``sparse_index``, ``sparse_columns``, ``bold_headers``, ``caption``, ``max_rows`` and ``max_columns`` (:issue:`41946`, :issue:`43149`, :issue:`42972`)
  - :meth:`.Styler.to_html` omits CSSStyle rules for hidden table elements as a performance enhancement (:issue:`43619`)
  - Custom CSS classes can now be directly specified without string replacement (:issue:`43686`)
  - Ability to render hyperlinks automatically via a new ``hyperlinks`` formatting keyword argument (:issue:`45058`)

There are also some LaTeX specific enhancements:

  - :meth:`.Styler.to_latex` introduces keyword argument ``environment``, which also allows a specific "longtable" entry through a separate jinja2 template (:issue:`41866`)
  - Naive sparsification is now possible for LaTeX without the necessity of including the multirow package (:issue:`43369`)
  - *cline* support has been added for :class:`MultiIndex` row sparsification through a keyword argument (:issue:`45138`)

.. _whatsnew_140.enhancements.pyarrow_csv_engine:

Multi-threaded CSV reading with a new CSV Engine based on pyarrow
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

:func:`pandas.read_csv` now accepts ``engine="pyarrow"`` (requires at least
``pyarrow`` 1.0.1) as an argument, allowing for faster csv parsing on multicore
machines with pyarrow installed. See the :doc:`I/O docs </user_guide/io>` for
more info. (:issue:`23697`, :issue:`43706`)

.. _whatsnew_140.enhancements.window_rank:

Rank function for rolling and expanding windows
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Added ``rank`` function to :class:`Rolling` and :class:`Expanding`. The new
function supports the ``method``, ``ascending``, and ``pct`` flags of
:meth:`DataFrame.rank`. The ``method`` argument supports ``min``, ``max``, and
``average`` ranking methods.
Example:

.. ipython:: python

    s = pd.Series([1, 4, 2, 3, 5, 3])
    s.rolling(3).rank()

    s.rolling(3).rank(method="max")

.. _whatsnew_140.enhancements.groupby_indexing:

Groupby positional indexing
^^^^^^^^^^^^^^^^^^^^^^^^^^^

It is now possible to specify positional ranges relative to the ends of each
group.

Negative arguments for :meth:`.DataFrameGroupBy.head`, :meth:`.SeriesGroupBy.head`, :meth:`.DataFrameGroupBy.tail`, and :meth:`.SeriesGroupBy.tail` now work
correctly and result in ranges relative to the end and start of each group,
respectively. Previously, negative arguments returned empty frames.

.. ipython:: python

    df = pd.DataFrame([["g", "g0"], ["g", "g1"], ["g", "g2"], ["g", "g3"],
                       ["h", "h0"], ["h", "h1"]], columns=["A", "B"])
    df.groupby("A").head(-1)


:meth:`.DataFrameGroupBy.nth` and :meth:`.SeriesGroupBy.nth` now accept a slice or list of integers and slices.

.. ipython:: python

    df.groupby("A").nth(slice(1, -1))
    df.groupby("A").nth([slice(None, 1), slice(-1, None)])

:meth:`.DataFrameGroupBy.nth` and :meth:`.SeriesGroupBy.nth` now accept index notation.

.. ipython:: python

    df.groupby("A").nth[1, -1]
    df.groupby("A").nth[1:-1]
    df.groupby("A").nth[:1, -1:]

.. _whatsnew_140.dict_tight:

DataFrame.from_dict and DataFrame.to_dict have new ``'tight'`` option
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

A new ``'tight'`` dictionary format that preserves :class:`MultiIndex` entries
and names is now available with the :meth:`DataFrame.from_dict` and
:meth:`DataFrame.to_dict` methods and can be used with the standard ``json``
library to produce a tight representation of :class:`DataFrame` objects
(:issue:`4889`).

.. ipython:: python

    df = pd.DataFrame.from_records(
        [[1, 3], [2, 4]],
        index=pd.MultiIndex.from_tuples([("a", "b"), ("a", "c")],
                                        names=["n1", "n2"]),
        columns=pd.MultiIndex.from_tuples([("x", 1), ("y", 2)],
                                          names=["z1", "z2"]),
    )
    df
    df.to_dict(orient='tight')

.. _whatsnew_140.enhancements.other:

Other enhancements
^^^^^^^^^^^^^^^^^^
- :meth:`concat` will preserve the ``attrs`` when it is the same for all objects and discard the ``attrs`` when they are different (:issue:`41828`)
- :class:`DataFrameGroupBy` operations with ``as_index=False`` now correctly retain ``ExtensionDtype`` dtypes for columns being grouped on (:issue:`41373`)
- Add support for assigning values to ``by`` argument in :meth:`DataFrame.plot.hist` and :meth:`DataFrame.plot.box` (:issue:`15079`)
- :meth:`Series.sample`, :meth:`DataFrame.sample`, :meth:`.DataFrameGroupBy.sample`, and :meth:`.SeriesGroupBy.sample` now accept a ``np.random.Generator`` as input to ``random_state``. A generator will be more performant, especially with ``replace=False`` (:issue:`38100`)
- :meth:`Series.ewm` and :meth:`DataFrame.ewm` now support a ``method`` argument with a ``'table'`` option that performs the windowing operation over an entire :class:`DataFrame`. See :ref:`Window Overview <window.overview>` for performance and functional benefits (:issue:`42273`)
- :meth:`.DataFrameGroupBy.cummin`, :meth:`.SeriesGroupBy.cummin`, :meth:`.DataFrameGroupBy.cummax`, and :meth:`.SeriesGroupBy.cummax` now support the argument ``skipna`` (:issue:`34047`)
- :meth:`read_table` now supports the argument ``storage_options`` (:issue:`39167`)
- :meth:`DataFrame.to_stata` and :meth:`StataWriter` now accept the keyword only argument ``value_labels`` to save labels for non-categorical columns (:issue:`38454`)
- Methods that relied on hashmap based algos such as :meth:`DataFrameGroupBy.value_counts`, :meth:`DataFrameGroupBy.count` and :func:`factorize` ignored imaginary component for complex numbers (:issue:`17927`)
- Add :meth:`Series.str.removeprefix` and :meth:`Series.str.removesuffix` introduced in Python 3.9 to remove pre-/suffixes from string-type :class:`Series` (:issue:`36944`)
- Attempting to write into a file in missing parent directory with :meth:`DataFrame.to_csv`, :meth:`DataFrame.to_html`, :meth:`DataFrame.to_excel`, :meth:`DataFrame.to_feather`, :meth:`DataFrame.to_parquet`, :meth:`DataFrame.to_stata`, :meth:`DataFrame.to_json`, :meth:`DataFrame.to_pickle`, and :meth:`DataFrame.to_xml` now explicitly mentions missing parent directory, the same is true for :class:`Series` counterparts (:issue:`24306`)
- Indexing with ``.loc`` and ``.iloc`` now supports ``Ellipsis`` (:issue:`37750`)
- :meth:`IntegerArray.all` , :meth:`IntegerArray.any`, :meth:`FloatingArray.any`, and :meth:`FloatingArray.all` use Kleene logic (:issue:`41967`)
- Added support for nullable boolean and integer types in :meth:`DataFrame.to_stata`, :class:`~pandas.io.stata.StataWriter`, :class:`~pandas.io.stata.StataWriter117`, and :class:`~pandas.io.stata.StataWriterUTF8` (:issue:`40855`)
- :meth:`DataFrame.__pos__` and :meth:`DataFrame.__neg__` now retain ``ExtensionDtype`` dtypes (:issue:`43883`)
- The error raised when an optional dependency can't be imported now includes the original exception, for easier investigation (:issue:`43882`)
- Added :meth:`.ExponentialMovingWindow.sum` (:issue:`13297`)
- :meth:`Series.str.split` now supports a ``regex`` argument that explicitly specifies whether the pattern is a regular expression. Default is ``None`` (:issue:`43563`, :issue:`32835`, :issue:`25549`)
- :meth:`DataFrame.dropna` now accepts a single label as ``subset`` along with array-like (:issue:`41021`)
- Added :meth:`DataFrameGroupBy.value_counts` (:issue:`43564`)
- :func:`read_csv` now accepts a ``callable`` function in ``on_bad_lines`` when ``engine="python"`` for custom handling of bad lines (:issue:`5686`)
- :class:`ExcelWriter` argument ``if_sheet_exists="overlay"`` option added (:issue:`40231`)
- :meth:`read_excel` now accepts a ``decimal`` argument that allow the user to specify the decimal point when parsing string columns to numeric (:issue:`14403`)
- :meth:`.DataFrameGroupBy.mean`, :meth:`.SeriesGroupBy.mean`, :meth:`.DataFrameGroupBy.std`, :meth:`.SeriesGroupBy.std`, :meth:`.DataFrameGroupBy.var`, :meth:`.SeriesGroupBy.var`, :meth:`.DataFrameGroupBy.sum`, and :meth:`.SeriesGroupBy.sum` now support `Numba <http://numba.pydata.org/>`_ execution with the ``engine`` keyword (:issue:`43731`, :issue:`44862`, :issue:`44939`)
- :meth:`Timestamp.isoformat` now handles the ``timespec`` argument from the base ``datetime`` class (:issue:`26131`)
- :meth:`NaT.to_numpy` ``dtype`` argument is now respected, so ``np.timedelta64`` can be returned (:issue:`44460`)
- New option ``display.max_dir_items`` customizes the number of columns added to :meth:`Dataframe.__dir__` and suggested for tab completion (:issue:`37996`)
- Added "Juneteenth National Independence Day" to ``USFederalHolidayCalendar`` (:issue:`44574`)
- :meth:`.Rolling.var`, :meth:`.Expanding.var`, :meth:`.Rolling.std`, and :meth:`.Expanding.std` now support `Numba <http://numba.pydata.org/>`_ execution with the ``engine`` keyword (:issue:`44461`)
- :meth:`Series.info` has been added, for compatibility with :meth:`DataFrame.info` (:issue:`5167`)
- Implemented :meth:`IntervalArray.min` and :meth:`IntervalArray.max`, as a result of which ``min`` and ``max`` now work for :class:`IntervalIndex`, :class:`Series` and :class:`DataFrame` with ``IntervalDtype`` (:issue:`44746`)
- :meth:`UInt64Index.map` now retains ``dtype`` where possible (:issue:`44609`)
- :meth:`read_json` can now parse unsigned long long integers (:issue:`26068`)
- :meth:`DataFrame.take` now raises a ``TypeError`` when passed a scalar for the indexer (:issue:`42875`)
- :meth:`is_list_like` now identifies duck-arrays as list-like unless ``.ndim == 0`` (:issue:`35131`)
- :class:`ExtensionDtype` and :class:`ExtensionArray` are now (de)serialized when exporting a :class:`DataFrame` with :meth:`DataFrame.to_json` using ``orient='table'`` (:issue:`20612`, :issue:`44705`)
- Add support for `Zstandard <http://facebook.github.io/zstd/>`_ compression to :meth:`DataFrame.to_pickle`/:meth:`read_pickle` and friends (:issue:`43925`)
- :meth:`DataFrame.to_sql` now returns an ``int`` of the number of written rows (:issue:`23998`)

.. ---------------------------------------------------------------------------

.. _whatsnew_140.notable_bug_fixes:

Notable bug fixes
~~~~~~~~~~~~~~~~~

These are bug fixes that might have notable behavior changes.

.. _whatsnew_140.notable_bug_fixes.inconsistent_date_string_parsing:

Inconsistent date string parsing
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

The ``dayfirst`` option of :func:`to_datetime` isn't strict, and this can lead
to surprising behavior:

.. ipython:: python
    :okwarning:

    pd.to_datetime(["31-12-2021"], dayfirst=False)

Now, a warning will be raised if a date string cannot be parsed accordance to
the given ``dayfirst`` value when the value is a delimited date string (e.g.
``31-12-2012``).

.. _whatsnew_140.notable_bug_fixes.concat_with_empty_or_all_na:

Ignoring dtypes in concat with empty or all-NA columns
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.. note::
    This behaviour change has been reverted in pandas 1.4.3.

When using :func:`concat` to concatenate two or more :class:`DataFrame` objects,
if one of the DataFrames was empty or had all-NA values, its dtype was
*sometimes* ignored when finding the concatenated dtype.  These are now
consistently *not* ignored (:issue:`43507`).

.. code-block:: ipython

    In [3]: df1 = pd.DataFrame({"bar": [pd.Timestamp("2013-01-01")]}, index=range(1))
    In [4]: df2 = pd.DataFrame({"bar": np.nan}, index=range(1, 2))
    In [5]: res = pd.concat([df1, df2])

Previously, the float-dtype in ``df2`` would be ignored so the result dtype
would be ``datetime64[ns]``. As a result, the ``np.nan`` would be cast to
``NaT``.

*Previous behavior*:

.. code-block:: ipython

    In [6]: res
    Out[6]:
             bar
    0 2013-01-01
    1        NaT

Now the float-dtype is respected. Since the common dtype for these DataFrames is
object, the ``np.nan`` is retained.

*New behavior*:

.. code-block:: ipython

    In [6]: res
    Out[6]:
                       bar
    0  2013-01-01 00:00:00
    1                  NaN



.. _whatsnew_140.notable_bug_fixes.value_counts_and_mode_do_not_coerce_to_nan:

Null-values are no longer coerced to NaN-value in value_counts and mode
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

:meth:`Series.value_counts` and :meth:`Series.mode` no longer coerce ``None``,
``NaT`` and other null-values to a NaN-value for ``np.object_``-dtype. This
behavior is now consistent with ``unique``, ``isin`` and others
(:issue:`42688`).

.. ipython:: python

    s = pd.Series([True, None, pd.NaT, None, pd.NaT, None])
    res = s.value_counts(dropna=False)

Previously, all null-values were replaced by a NaN-value.

*Previous behavior*:

.. code-block:: ipython

    In [3]: res
    Out[3]:
    NaN     5
    True    1
    dtype: int64

Now null-values are no longer mangled.

*New behavior*:

.. ipython:: python

    res

.. _whatsnew_140.notable_bug_fixes.read_csv_mangle_dup_cols:

mangle_dupe_cols in read_csv no longer renames unique columns conflicting with target names
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

:func:`read_csv` no longer renames unique column labels which conflict with the target
names of duplicated columns. Already existing columns are skipped, i.e. the next
available index is used for the target column name (:issue:`14704`).

.. ipython:: python

    import io

    data = "a,a,a.1\n1,2,3"
    res = pd.read_csv(io.StringIO(data))

Previously, the second column was called ``a.1``, while the third column was
also renamed to ``a.1.1``.

*Previous behavior*:

.. code-block:: ipython

    In [3]: res
    Out[3]:
        a  a.1  a.1.1
    0   1    2      3

Now the renaming checks if ``a.1`` already exists when changing the name of the
second column and jumps this index. The second column is instead renamed to
``a.2``.

*New behavior*:

.. ipython:: python

    res

.. _whatsnew_140.notable_bug_fixes.unstack_pivot_int32_limit:

unstack and pivot_table no longer raises ValueError for result that would exceed int32 limit
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Previously :meth:`DataFrame.pivot_table` and :meth:`DataFrame.unstack` would
raise a ``ValueError`` if the operation could produce a result with more than
``2**31 - 1`` elements. This operation now raises a
:class:`errors.PerformanceWarning` instead (:issue:`26314`).

*Previous behavior*:

.. code-block:: ipython

    In [3]: df = DataFrame({"ind1": np.arange(2 ** 16), "ind2": np.arange(2 ** 16), "count": 0})
    In [4]: df.pivot_table(index="ind1", columns="ind2", values="count", aggfunc="count")
    ValueError: Unstacked DataFrame is too big, causing int32 overflow

*New behavior*:

.. code-block:: python

    In [4]: df.pivot_table(index="ind1", columns="ind2", values="count", aggfunc="count")
    PerformanceWarning: The following operation may generate 4294967296 cells in the resulting pandas object.

.. ---------------------------------------------------------------------------

.. _whatsnew_140.notable_bug_fixes.groupby_apply_mutation:

groupby.apply consistent transform detection
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

:meth:`.DataFrameGroupBy.apply` and :meth:`.SeriesGroupBy.apply` are designed to be flexible, allowing users to perform
aggregations, transformations, filters, and use it with user-defined functions
that might not fall into any of these categories. As part of this, apply will
attempt to detect when an operation is a transform, and in such a case, the
result will have the same index as the input. In order to determine if the
operation is a transform, pandas compares the input's index to the result's and
determines if it has been mutated. Previously in pandas 1.3, different code
paths used different definitions of "mutated": some would use Python's ``is``
whereas others would test only up to equality.

This inconsistency has been removed, pandas now tests up to equality.

.. ipython:: python

    def func(x):
        return x.copy()

    df = pd.DataFrame({'a': [1, 2], 'b': [3, 4], 'c': [5, 6]})
    df

*Previous behavior*:

.. code-block:: ipython

    In [3]: df.groupby(['a']).apply(func)
    Out[3]:
         a  b  c
    a
    1 0  1  3  5
    2 1  2  4  6

    In [4]: df.set_index(['a', 'b']).groupby(['a']).apply(func)
    Out[4]:
         c
    a b
    1 3  5
    2 4  6

In the examples above, the first uses a code path where pandas uses ``is`` and
determines that ``func`` is not a transform whereas the second tests up to
equality and determines that ``func`` is a transform. In the first case, the
result's index is not the same as the input's.

*New behavior*:

.. code-block:: ipython

    In [5]: df.groupby(['a']).apply(func)
    Out[5]:
       a  b  c
    0  1  3  5
    1  2  4  6

    In [6]: df.set_index(['a', 'b']).groupby(['a']).apply(func)
    Out[6]:
         c
    a b
    1 3  5
    2 4  6

Now in both cases it is determined that ``func`` is a transform. In each case,
the result has the same index as the input.

.. _whatsnew_140.api_breaking:

Backwards incompatible API changes
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

.. _whatsnew_140.api_breaking.python:

Increased minimum version for Python
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

pandas 1.4.0 supports Python 3.8 and higher.

.. _whatsnew_140.api_breaking.deps:

Increased minimum versions for dependencies
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Some minimum supported versions of dependencies were updated.
If installed, we now require:

+-----------------+-----------------+----------+---------+
| Package         | Minimum Version | Required | Changed |
+=================+=================+==========+=========+
| numpy           | 1.18.5          |    X     |    X    |
+-----------------+-----------------+----------+---------+
| pytz            | 2020.1          |    X     |    X    |
+-----------------+-----------------+----------+---------+
| python-dateutil | 2.8.1           |    X     |    X    |
+-----------------+-----------------+----------+---------+
| bottleneck      | 1.3.1           |          |    X    |
+-----------------+-----------------+----------+---------+
| numexpr         | 2.7.1           |          |    X    |
+-----------------+-----------------+----------+---------+
| pytest (dev)    | 6.0             |          |         |
+-----------------+-----------------+----------+---------+
| mypy (dev)      | 0.930           |          |    X    |
+-----------------+-----------------+----------+---------+

For `optional libraries
<https://pandas.pydata.org/docs/getting_started/install.html>`_ the general
recommendation is to use the latest version. The following table lists the
lowest version per library that is currently being tested throughout the
development of pandas. Optional libraries below the lowest tested version may
still work, but are not considered supported.

+-----------------+-----------------+---------+
| Package         | Minimum Version | Changed |
+=================+=================+=========+
| beautifulsoup4  | 4.8.2           |    X    |
+-----------------+-----------------+---------+
| fastparquet     | 0.4.0           |         |
+-----------------+-----------------+---------+
| fsspec          | 0.7.4           |         |
+-----------------+-----------------+---------+
| gcsfs           | 0.6.0           |         |
+-----------------+-----------------+---------+
| lxml            | 4.5.0           |    X    |
+-----------------+-----------------+---------+
| matplotlib      | 3.3.2           |    X    |
+-----------------+-----------------+---------+
| numba           | 0.50.1          |    X    |
+-----------------+-----------------+---------+
| openpyxl        | 3.0.3           |    X    |
+-----------------+-----------------+---------+
| pandas-gbq      | 0.14.0          |    X    |
+-----------------+-----------------+---------+
| pyarrow         | 1.0.1           |    X    |
+-----------------+-----------------+---------+
| pymysql         | 0.10.1          |    X    |
+-----------------+-----------------+---------+
| pytables        | 3.6.1           |    X    |
+-----------------+-----------------+---------+
| s3fs            | 0.4.0           |         |
+-----------------+-----------------+---------+
| scipy           | 1.4.1           |    X    |
+-----------------+-----------------+---------+
| sqlalchemy      | 1.4.0           |    X    |
+-----------------+-----------------+---------+
| tabulate        | 0.8.7           |         |
+-----------------+-----------------+---------+
| xarray          | 0.15.1          |    X    |
+-----------------+-----------------+---------+
| xlrd            | 2.0.1           |    X    |
+-----------------+-----------------+---------+
| xlsxwriter      | 1.2.2           |    X    |
+-----------------+-----------------+---------+
| xlwt            | 1.3.0           |         |
+-----------------+-----------------+---------+

See :ref:`install.dependencies` and :ref:`install.optional_dependencies` for more.

.. _whatsnew_140.api_breaking.other:

Other API changes
^^^^^^^^^^^^^^^^^
- :meth:`Index.get_indexer_for` no longer accepts keyword arguments (other than ``target``); in the past these would be silently ignored if the index was not unique (:issue:`42310`)
- Change in the position of the ``min_rows`` argument in :meth:`DataFrame.to_string` due to change in the docstring (:issue:`44304`)
- Reduction operations for :class:`DataFrame` or :class:`Series` now raising a ``ValueError`` when ``None`` is passed for ``skipna`` (:issue:`44178`)
- :func:`read_csv` and :func:`read_html` no longer raising an error when one of the header rows consists only of ``Unnamed:`` columns (:issue:`13054`)
- Changed the ``name`` attribute of several holidays in
  ``USFederalHolidayCalendar`` to match `official federal holiday
  names <https://www.opm.gov/policy-data-oversight/pay-leave/federal-holidays/>`_
  specifically:

   - "New Year's Day" gains the possessive apostrophe
   - "Presidents Day" becomes "Washington's Birthday"
   - "Martin Luther King Jr. Day" is now "Birthday of Martin Luther King, Jr."
   - "July 4th" is now "Independence Day"
   - "Thanksgiving" is now "Thanksgiving Day"
   - "Christmas" is now "Christmas Day"
   - Added "Juneteenth National Independence Day"

.. ---------------------------------------------------------------------------

.. _whatsnew_140.deprecations:

Deprecations
~~~~~~~~~~~~

.. _whatsnew_140.deprecations.int64_uint64_float64index:

Deprecated Int64Index, UInt64Index & Float64Index
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

:class:`Int64Index`, :class:`UInt64Index` and :class:`Float64Index` have been
deprecated in favor of the base :class:`Index` class and will be removed in
Pandas 2.0 (:issue:`43028`).

For constructing a numeric index, you can use the base :class:`Index` class
instead specifying the data type (which will also work on older pandas
releases):

.. code-block:: python

    # replace
    pd.Int64Index([1, 2, 3])
    # with
    pd.Index([1, 2, 3], dtype="int64")

For checking the data type of an index object, you can replace ``isinstance``
checks with checking the ``dtype``:

.. code-block:: python

    # replace
    isinstance(idx, pd.Int64Index)
    # with
    idx.dtype == "int64"

Currently, in order to maintain backward compatibility, calls to :class:`Index`
will continue to return :class:`Int64Index`, :class:`UInt64Index` and
:class:`Float64Index` when given numeric data, but in the future, an
:class:`Index` will be returned.

*Current behavior*:

.. code-block:: ipython

    In [1]: pd.Index([1, 2, 3], dtype="int32")
    Out [1]: Int64Index([1, 2, 3], dtype='int64')
    In [1]: pd.Index([1, 2, 3], dtype="uint64")
    Out [1]: UInt64Index([1, 2, 3], dtype='uint64')

*Future behavior*:

.. code-block:: ipython

    In [3]: pd.Index([1, 2, 3], dtype="int32")
    Out [3]: Index([1, 2, 3], dtype='int32')
    In [4]: pd.Index([1, 2, 3], dtype="uint64")
    Out [4]: Index([1, 2, 3], dtype='uint64')


.. _whatsnew_140.deprecations.frame_series_append:

Deprecated DataFrame.append and Series.append
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

:meth:`DataFrame.append` and :meth:`Series.append` have been deprecated and will
be removed in a future version. Use :func:`pandas.concat` instead (:issue:`35407`).

*Deprecated syntax*

.. code-block:: ipython

    In [1]: pd.Series([1, 2]).append(pd.Series([3, 4])
    Out [1]:
    <stdin>:1: FutureWarning: The series.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.
    0    1
    1    2
    0    3
    1    4
    dtype: int64

    In [2]: df1 = pd.DataFrame([[1, 2], [3, 4]], columns=list('AB'))
    In [3]: df2 = pd.DataFrame([[5, 6], [7, 8]], columns=list('AB'))
    In [4]: df1.append(df2)
    Out [4]:
    <stdin>:1: FutureWarning: The series.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.
       A  B
    0  1  2
    1  3  4
    0  5  6
    1  7  8

*Recommended syntax*

.. ipython:: python

    pd.concat([pd.Series([1, 2]), pd.Series([3, 4])])

    df1 = pd.DataFrame([[1, 2], [3, 4]], columns=list('AB'))
    df2 = pd.DataFrame([[5, 6], [7, 8]], columns=list('AB'))
    pd.concat([df1, df2])


.. _whatsnew_140.deprecations.other:

Other Deprecations
^^^^^^^^^^^^^^^^^^
- Deprecated :meth:`Index.is_type_compatible` (:issue:`42113`)
- Deprecated ``method`` argument in :meth:`Index.get_loc`, use ``index.get_indexer([label], method=...)`` instead (:issue:`42269`)
- Deprecated treating integer keys in :meth:`Series.__setitem__` as positional when the index is a :class:`Float64Index` not containing the key, a :class:`IntervalIndex` with no entries containing the key, or a :class:`MultiIndex` with leading :class:`Float64Index` level not containing the key (:issue:`33469`)
- Deprecated treating ``numpy.datetime64`` objects as UTC times when passed to the :class:`Timestamp` constructor along with a timezone. In a future version, these will be treated as wall-times. To retain the old behavior, use ``Timestamp(dt64).tz_localize("UTC").tz_convert(tz)`` (:issue:`24559`)
- Deprecated ignoring missing labels when indexing with a sequence of labels on a level of a :class:`MultiIndex` (:issue:`42351`)
- Creating an empty :class:`Series` without a ``dtype`` will now raise a more visible ``FutureWarning`` instead of a ``DeprecationWarning`` (:issue:`30017`)
- Deprecated the ``kind`` argument in :meth:`Index.get_slice_bound`, :meth:`Index.slice_indexer`, and :meth:`Index.slice_locs`; in a future version passing ``kind`` will raise (:issue:`42857`)
- Deprecated dropping of nuisance columns in :class:`Rolling`, :class:`Expanding`, and :class:`EWM` aggregations (:issue:`42738`)
- Deprecated :meth:`Index.reindex` with a non-unique :class:`Index` (:issue:`42568`)
- Deprecated :meth:`.Styler.render` in favor of :meth:`.Styler.to_html` (:issue:`42140`)
- Deprecated :meth:`.Styler.hide_index` and :meth:`.Styler.hide_columns` in favor of :meth:`.Styler.hide` (:issue:`43758`)
- Deprecated passing in a string column label into ``times`` in :meth:`DataFrame.ewm` (:issue:`43265`)
- Deprecated the ``include_start`` and ``include_end`` arguments in :meth:`DataFrame.between_time`; in a future version passing ``include_start`` or ``include_end`` will raise (:issue:`40245`)
- Deprecated the ``squeeze`` argument to :meth:`read_csv`, :meth:`read_table`, and :meth:`read_excel`. Users should squeeze the :class:`DataFrame` afterwards with ``.squeeze("columns")`` instead (:issue:`43242`)
- Deprecated the ``index`` argument to :class:`SparseArray` construction (:issue:`23089`)
- Deprecated the ``closed`` argument in :meth:`date_range` and :meth:`bdate_range` in favor of ``inclusive`` argument; In a future version passing ``closed`` will raise (:issue:`40245`)
- Deprecated :meth:`.Rolling.validate`, :meth:`.Expanding.validate`, and :meth:`.ExponentialMovingWindow.validate` (:issue:`43665`)
- Deprecated silent dropping of columns that raised a ``TypeError`` in :class:`Series.transform` and :class:`DataFrame.transform` when used with a dictionary (:issue:`43740`)
- Deprecated silent dropping of columns that raised a ``TypeError``, ``DataError``, and some cases of ``ValueError`` in :meth:`Series.aggregate`, :meth:`DataFrame.aggregate`, :meth:`Series.groupby.aggregate`, and :meth:`DataFrame.groupby.aggregate` when used with a list (:issue:`43740`)
- Deprecated casting behavior when setting timezone-aware value(s) into a timezone-aware :class:`Series` or :class:`DataFrame` column when the timezones do not match. Previously this cast to object dtype. In a future version, the values being inserted will be converted to the series or column's existing timezone (:issue:`37605`)
- Deprecated casting behavior when passing an item with mismatched-timezone to :meth:`DatetimeIndex.insert`, :meth:`DatetimeIndex.putmask`, :meth:`DatetimeIndex.where` :meth:`DatetimeIndex.fillna`, :meth:`Series.mask`, :meth:`Series.where`, :meth:`Series.fillna`, :meth:`Series.shift`, :meth:`Series.replace`, :meth:`Series.reindex` (and :class:`DataFrame` column analogues). In the past this has cast to object ``dtype``. In a future version, these will cast the passed item to the index or series's timezone (:issue:`37605`, :issue:`44940`)
- Deprecated the ``prefix`` keyword argument in :func:`read_csv` and :func:`read_table`, in a future version the argument will be removed (:issue:`43396`)
- Deprecated passing non boolean argument to ``sort`` in :func:`concat` (:issue:`41518`)
- Deprecated passing arguments as positional for :func:`read_fwf` other than ``filepath_or_buffer`` (:issue:`41485`)
- Deprecated passing arguments as positional for :func:`read_xml` other than ``path_or_buffer`` (:issue:`45133`)
- Deprecated passing ``skipna=None`` for :meth:`DataFrame.mad` and :meth:`Series.mad`, pass ``skipna=True`` instead (:issue:`44580`)
- Deprecated the behavior of :func:`to_datetime` with the string "now" with ``utc=False``; in a future version this will match ``Timestamp("now")``, which in turn matches :meth:`Timestamp.now` returning the local time (:issue:`18705`)
- Deprecated :meth:`DateOffset.apply`, use ``offset + other`` instead (:issue:`44522`)
- Deprecated parameter ``names`` in :meth:`Index.copy` (:issue:`44916`)
- A deprecation warning is now shown for :meth:`DataFrame.to_latex` indicating the arguments signature may change and emulate more the arguments to :meth:`.Styler.to_latex` in future versions (:issue:`44411`)
- Deprecated behavior of :func:`concat` between objects with bool-dtype and numeric-dtypes; in a future version these will cast to object dtype instead of coercing bools to numeric values (:issue:`39817`)
- Deprecated :meth:`Categorical.replace`, use :meth:`Series.replace` instead (:issue:`44929`)
- Deprecated passing ``set`` or ``dict`` as indexer for :meth:`DataFrame.loc.__setitem__`, :meth:`DataFrame.loc.__getitem__`, :meth:`Series.loc.__setitem__`, :meth:`Series.loc.__getitem__`, :meth:`DataFrame.__getitem__`, :meth:`Series.__getitem__` and :meth:`Series.__setitem__` (:issue:`42825`)
- Deprecated :meth:`Index.__getitem__` with a bool key; use ``index.values[key]`` to get the old behavior (:issue:`44051`)
- Deprecated downcasting column-by-column in :meth:`DataFrame.where` with integer-dtypes (:issue:`44597`)
- Deprecated :meth:`DatetimeIndex.union_many`, use :meth:`DatetimeIndex.union` instead (:issue:`44091`)
- Deprecated :meth:`.Groupby.pad` in favor of :meth:`.Groupby.ffill` (:issue:`33396`)
- Deprecated :meth:`.Groupby.backfill` in favor of :meth:`.Groupby.bfill` (:issue:`33396`)
- Deprecated :meth:`.Resample.pad` in favor of :meth:`.Resample.ffill` (:issue:`33396`)
- Deprecated :meth:`.Resample.backfill` in favor of :meth:`.Resample.bfill` (:issue:`33396`)
- Deprecated ``numeric_only=None`` in :meth:`DataFrame.rank`; in a future version ``numeric_only`` must be either ``True`` or ``False`` (the default) (:issue:`45036`)
- Deprecated the behavior of :meth:`Timestamp.utcfromtimestamp`, in the future it will return a timezone-aware UTC :class:`Timestamp` (:issue:`22451`)
- Deprecated :meth:`NaT.freq` (:issue:`45071`)
- Deprecated behavior of :class:`Series` and :class:`DataFrame` construction when passed float-dtype data containing ``NaN`` and an integer dtype ignoring the dtype argument; in a future version this will raise (:issue:`40110`)
- Deprecated the behaviour of :meth:`Series.to_frame` and :meth:`Index.to_frame` to ignore the ``name`` argument when ``name=None``. Currently, this means to preserve the existing name, but in the future explicitly passing ``name=None`` will set ``None`` as the name of the column in the resulting DataFrame (:issue:`44212`)

.. ---------------------------------------------------------------------------

.. _whatsnew_140.performance:

Performance improvements
~~~~~~~~~~~~~~~~~~~~~~~~
- Performance improvement in :meth:`.DataFrameGroupBy.sample` and :meth:`.SeriesGroupBy.sample`, especially when ``weights`` argument provided (:issue:`34483`)
- Performance improvement when converting non-string arrays to string arrays (:issue:`34483`)
- Performance improvement in :meth:`.DataFrameGroupBy.transform` and :meth:`.SeriesGroupBy.transform` for user-defined functions (:issue:`41598`)
- Performance improvement in constructing :class:`DataFrame` objects (:issue:`42631`, :issue:`43142`, :issue:`43147`, :issue:`43307`, :issue:`43144`, :issue:`44826`)
- Performance improvement in :meth:`.DataFrameGroupBy.shift` and :meth:`.SeriesGroupBy.shift` when ``fill_value`` argument is provided (:issue:`26615`)
- Performance improvement in :meth:`DataFrame.corr` for ``method=pearson`` on data without missing values (:issue:`40956`)
- Performance improvement in some :meth:`.DataFrameGroupBy.apply` and :meth:`.SeriesGroupBy.apply` operations (:issue:`42992`, :issue:`43578`)
- Performance improvement in :func:`read_stata` (:issue:`43059`, :issue:`43227`)
- Performance improvement in :func:`read_sas` (:issue:`43333`)
- Performance improvement in :meth:`to_datetime` with ``uint`` dtypes (:issue:`42606`)
- Performance improvement in :meth:`to_datetime` with ``infer_datetime_format`` set to ``True`` (:issue:`43901`)
- Performance improvement in :meth:`Series.sparse.to_coo` (:issue:`42880`)
- Performance improvement in indexing with a :class:`UInt64Index` (:issue:`43862`)
- Performance improvement in indexing with a :class:`Float64Index` (:issue:`43705`)
- Performance improvement in indexing with a non-unique :class:`Index` (:issue:`43792`)
- Performance improvement in indexing with a listlike indexer on a :class:`MultiIndex` (:issue:`43370`)
- Performance improvement in indexing with a :class:`MultiIndex` indexer on another :class:`MultiIndex` (:issue:`43370`)
- Performance improvement in :meth:`.DataFrameGroupBy.quantile` and :meth:`.SeriesGroupBy.quantile` (:issue:`43469`, :issue:`43725`)
- Performance improvement in :meth:`.DataFrameGroupBy.count` and :meth:`.SeriesGroupBy.count` (:issue:`43730`, :issue:`43694`)
- Performance improvement in :meth:`.DataFrameGroupBy.any`, :meth:`.SeriesGroupBy.any`, :meth:`.DataFrameGroupBy.all`, and :meth:`.SeriesGroupBy.all` (:issue:`43675`, :issue:`42841`)
- Performance improvement in :meth:`.DataFrameGroupBy.std` and :meth:`.SeriesGroupBy.std` (:issue:`43115`, :issue:`43576`)
- Performance improvement in :meth:`.DataFrameGroupBy.cumsum` and :meth:`.SeriesGroupBy.cumsum` (:issue:`43309`)
- :meth:`SparseArray.min` and :meth:`SparseArray.max` no longer require converting to a dense array (:issue:`43526`)
- Indexing into a :class:`SparseArray` with a ``slice`` with ``step=1`` no longer requires converting to a dense array (:issue:`43777`)
- Performance improvement in :meth:`SparseArray.take` with ``allow_fill=False`` (:issue:`43654`)
- Performance improvement in :meth:`.Rolling.mean`, :meth:`.Expanding.mean`, :meth:`.Rolling.sum`, :meth:`.Expanding.sum`, :meth:`.Rolling.max`, :meth:`.Expanding.max`, :meth:`.Rolling.min` and :meth:`.Expanding.min` with ``engine="numba"`` (:issue:`43612`, :issue:`44176`, :issue:`45170`)
- Improved performance of :meth:`pandas.read_csv` with ``memory_map=True`` when file encoding is UTF-8 (:issue:`43787`)
- Performance improvement in :meth:`RangeIndex.sort_values` overriding :meth:`Index.sort_values` (:issue:`43666`)
- Performance improvement in :meth:`RangeIndex.insert` (:issue:`43988`)
- Performance improvement in :meth:`Index.insert` (:issue:`43953`)
- Performance improvement in :meth:`DatetimeIndex.tolist` (:issue:`43823`)
- Performance improvement in :meth:`DatetimeIndex.union` (:issue:`42353`)
- Performance improvement in :meth:`Series.nsmallest` (:issue:`43696`)
- Performance improvement in :meth:`DataFrame.insert` (:issue:`42998`)
- Performance improvement in :meth:`DataFrame.dropna` (:issue:`43683`)
- Performance improvement in :meth:`DataFrame.fillna` (:issue:`43316`)
- Performance improvement in :meth:`DataFrame.values` (:issue:`43160`)
- Performance improvement in :meth:`DataFrame.select_dtypes` (:issue:`42611`)
- Performance improvement in :class:`DataFrame` reductions (:issue:`43185`, :issue:`43243`, :issue:`43311`, :issue:`43609`)
- Performance improvement in :meth:`Series.unstack` and :meth:`DataFrame.unstack` (:issue:`43335`, :issue:`43352`, :issue:`42704`, :issue:`43025`)
- Performance improvement in :meth:`Series.to_frame` (:issue:`43558`)
- Performance improvement in :meth:`Series.mad` (:issue:`43010`)
- Performance improvement in :func:`merge` (:issue:`43332`)
- Performance improvement in :func:`to_csv` when index column is a datetime and is formatted (:issue:`39413`)
- Performance improvement in :func:`to_csv` when :class:`MultiIndex` contains a lot of unused levels (:issue:`37484`)
- Performance improvement in :func:`read_csv` when ``index_col`` was set with a numeric column (:issue:`44158`)
- Performance improvement in :func:`concat` (:issue:`43354`)
- Performance improvement in :meth:`SparseArray.__getitem__` (:issue:`23122`)
- Performance improvement in constructing a :class:`DataFrame` from array-like objects like a ``Pytorch`` tensor (:issue:`44616`)

.. ---------------------------------------------------------------------------

.. _whatsnew_140.bug_fixes:

Bug fixes
~~~~~~~~~

Categorical
^^^^^^^^^^^
- Bug in setting dtype-incompatible values into a :class:`Categorical` (or ``Series`` or ``DataFrame`` backed by ``Categorical``) raising ``ValueError`` instead of ``TypeError`` (:issue:`41919`)
- Bug in :meth:`Categorical.searchsorted` when passing a dtype-incompatible value raising ``KeyError`` instead of ``TypeError`` (:issue:`41919`)
- Bug in :meth:`Categorical.astype` casting datetimes and :class:`Timestamp` to int for dtype ``object`` (:issue:`44930`)
- Bug in :meth:`Series.where` with ``CategoricalDtype`` when passing a dtype-incompatible value raising ``ValueError`` instead of ``TypeError`` (:issue:`41919`)
- Bug in :meth:`Categorical.fillna` when passing a dtype-incompatible value raising ``ValueError`` instead of ``TypeError`` (:issue:`41919`)
- Bug in :meth:`Categorical.fillna` with a tuple-like category raising ``ValueError`` instead of ``TypeError`` when filling with a non-category tuple (:issue:`41919`)

Datetimelike
^^^^^^^^^^^^
- Bug in :class:`DataFrame` constructor unnecessarily copying non-datetimelike 2D object arrays (:issue:`39272`)
- Bug in :func:`to_datetime` with ``format`` and ``pandas.NA`` was raising ``ValueError`` (:issue:`42957`)
- :func:`to_datetime` would silently swap ``MM/DD/YYYY`` and ``DD/MM/YYYY`` formats if the given ``dayfirst`` option could not be respected - now, a warning is raised in the case of delimited date strings (e.g. ``31-12-2012``) (:issue:`12585`)
- Bug in :meth:`date_range` and :meth:`bdate_range` do not return right bound when ``start`` = ``end`` and set is closed on one side (:issue:`43394`)
- Bug in inplace addition and subtraction of :class:`DatetimeIndex` or :class:`TimedeltaIndex` with :class:`DatetimeArray` or :class:`TimedeltaArray` (:issue:`43904`)
- Bug in calling ``np.isnan``, ``np.isfinite``, or ``np.isinf`` on a timezone-aware :class:`DatetimeIndex` incorrectly raising ``TypeError`` (:issue:`43917`)
- Bug in constructing a :class:`Series` from datetime-like strings with mixed timezones incorrectly partially-inferring datetime values (:issue:`40111`)
- Bug in addition of a :class:`Tick` object and a ``np.timedelta64`` object incorrectly raising instead of returning :class:`Timedelta` (:issue:`44474`)
- ``np.maximum.reduce`` and ``np.minimum.reduce`` now correctly return :class:`Timestamp` and :class:`Timedelta` objects when operating on :class:`Series`, :class:`DataFrame`, or :class:`Index` with ``datetime64[ns]`` or ``timedelta64[ns]`` dtype (:issue:`43923`)
- Bug in adding a ``np.timedelta64`` object to a :class:`BusinessDay` or :class:`CustomBusinessDay` object incorrectly raising (:issue:`44532`)
- Bug in :meth:`Index.insert` for inserting ``np.datetime64``, ``np.timedelta64`` or ``tuple`` into :class:`Index` with ``dtype='object'`` with negative loc adding ``None`` and replacing existing value (:issue:`44509`)
- Bug in :meth:`Timestamp.to_pydatetime` failing to retain the ``fold`` attribute (:issue:`45087`)
- Bug in :meth:`Series.mode` with ``DatetimeTZDtype`` incorrectly returning timezone-naive and ``PeriodDtype`` incorrectly raising (:issue:`41927`)
- Fixed regression in :meth:`~Series.reindex` raising an error when using an incompatible fill value with a datetime-like dtype (or not raising a deprecation warning for using a ``datetime.date`` as fill value) (:issue:`42921`)
- Bug in :class:`DateOffset` addition with :class:`Timestamp` where ``offset.nanoseconds`` would not be included in the result (:issue:`43968`, :issue:`36589`)
- Bug in :meth:`Timestamp.fromtimestamp` not supporting the ``tz`` argument (:issue:`45083`)
- Bug in :class:`DataFrame` construction from dict of :class:`Series` with mismatched index dtypes sometimes raising depending on the ordering of the passed dict (:issue:`44091`)
- Bug in :class:`Timestamp` hashing during some DST transitions caused a segmentation fault (:issue:`33931` and :issue:`40817`)

Timedelta
^^^^^^^^^
- Bug in division of all-``NaT`` :class:`TimeDeltaIndex`, :class:`Series` or :class:`DataFrame` column with object-dtype array like of numbers failing to infer the result as timedelta64-dtype (:issue:`39750`)
- Bug in floor division of ``timedelta64[ns]`` data with a scalar returning garbage values (:issue:`44466`)
- Bug in :class:`Timedelta` now properly taking into account any nanoseconds contribution of any kwarg (:issue:`43764`, :issue:`45227`)

Time Zones
^^^^^^^^^^
- Bug in :func:`to_datetime` with ``infer_datetime_format=True`` failing to parse zero UTC offset (``Z``) correctly (:issue:`41047`)
- Bug in :meth:`Series.dt.tz_convert` resetting index in a :class:`Series` with :class:`CategoricalIndex` (:issue:`43080`)
- Bug in ``Timestamp`` and ``DatetimeIndex`` incorrectly raising a ``TypeError`` when subtracting two timezone-aware objects with mismatched timezones (:issue:`31793`)

Numeric
^^^^^^^
- Bug in floor-dividing a list or tuple of integers by a :class:`Series` incorrectly raising (:issue:`44674`)
- Bug in :meth:`DataFrame.rank` raising ``ValueError`` with ``object`` columns and ``method="first"`` (:issue:`41931`)
- Bug in :meth:`DataFrame.rank` treating missing values and extreme values as equal (for example ``np.nan`` and ``np.inf``), causing incorrect results when ``na_option="bottom"`` or ``na_option="top`` used (:issue:`41931`)
- Bug in ``numexpr`` engine still being used when the option ``compute.use_numexpr`` is set to ``False`` (:issue:`32556`)
- Bug in :class:`DataFrame` arithmetic ops with a subclass whose :meth:`_constructor` attribute is a callable other than the subclass itself (:issue:`43201`)
- Bug in arithmetic operations involving :class:`RangeIndex` where the result would have the incorrect ``name`` (:issue:`43962`)
- Bug in arithmetic operations involving :class:`Series` where the result could have the incorrect ``name`` when the operands having matching NA or matching tuple names (:issue:`44459`)
- Bug in division with ``IntegerDtype`` or ``BooleanDtype`` array and NA scalar incorrectly raising (:issue:`44685`)
- Bug in multiplying a :class:`Series` with ``FloatingDtype`` with a timedelta-like scalar incorrectly raising (:issue:`44772`)

Conversion
^^^^^^^^^^
- Bug in :class:`UInt64Index` constructor when passing a list containing both positive integers small enough to cast to int64 and integers too large to hold in int64 (:issue:`42201`)
- Bug in :class:`Series` constructor returning 0 for missing values with dtype ``int64`` and ``False`` for dtype ``bool`` (:issue:`43017`, :issue:`43018`)
- Bug in constructing a :class:`DataFrame` from a :class:`PandasArray` containing :class:`Series` objects behaving differently than an equivalent ``np.ndarray`` (:issue:`43986`)
- Bug in :class:`IntegerDtype` not allowing coercion from string dtype (:issue:`25472`)
- Bug in :func:`to_datetime` with ``arg:xr.DataArray`` and ``unit="ns"`` specified raises ``TypeError`` (:issue:`44053`)
- Bug in :meth:`DataFrame.convert_dtypes` not returning the correct type when a subclass does not overload :meth:`_constructor_sliced` (:issue:`43201`)
- Bug in :meth:`DataFrame.astype` not propagating ``attrs`` from the original :class:`DataFrame` (:issue:`44414`)
- Bug in :meth:`DataFrame.convert_dtypes` result losing ``columns.names`` (:issue:`41435`)
- Bug in constructing a ``IntegerArray`` from pyarrow data failing to validate dtypes (:issue:`44891`)
- Bug in :meth:`Series.astype` not allowing converting from a ``PeriodDtype`` to ``datetime64`` dtype, inconsistent with the :class:`PeriodIndex` behavior (:issue:`45038`)

Strings
^^^^^^^
- Bug in checking for ``string[pyarrow]`` dtype incorrectly raising an ``ImportError`` when pyarrow is not installed (:issue:`44276`)

Interval
^^^^^^^^
- Bug in :meth:`Series.where` with ``IntervalDtype`` incorrectly raising when the ``where`` call should not replace anything (:issue:`44181`)

Indexing
^^^^^^^^
- Bug in :meth:`Series.rename` with :class:`MultiIndex` and ``level`` is provided (:issue:`43659`)
- Bug in :meth:`DataFrame.truncate` and :meth:`Series.truncate` when the object's :class:`Index` has a length greater than one but only one unique value (:issue:`42365`)
- Bug in :meth:`Series.loc` and :meth:`DataFrame.loc` with a :class:`MultiIndex` when indexing with a tuple in which one of the levels is also a tuple (:issue:`27591`)
- Bug in :meth:`Series.loc` with a :class:`MultiIndex` whose first level contains only ``np.nan`` values (:issue:`42055`)
- Bug in indexing on a :class:`Series` or :class:`DataFrame` with a :class:`DatetimeIndex` when passing a string, the return type depended on whether the index was monotonic (:issue:`24892`)
- Bug in indexing on a :class:`MultiIndex` failing to drop scalar levels when the indexer is a tuple containing a datetime-like string (:issue:`42476`)
- Bug in :meth:`DataFrame.sort_values` and :meth:`Series.sort_values` when passing an ascending value, failed to raise or incorrectly raising ``ValueError`` (:issue:`41634`)
- Bug in updating values of :class:`pandas.Series` using boolean index, created by using :meth:`pandas.DataFrame.pop` (:issue:`42530`)
- Bug in :meth:`Index.get_indexer_non_unique` when index contains multiple ``np.nan`` (:issue:`35392`)
- Bug in :meth:`DataFrame.query` did not handle the degree sign in a backticked column name, such as \`Temp(°C)\`, used in an expression to query a :class:`DataFrame` (:issue:`42826`)
- Bug in :meth:`DataFrame.drop` where the error message did not show missing labels with commas when raising ``KeyError`` (:issue:`42881`)
- Bug in :meth:`DataFrame.query` where method calls in query strings led to errors when the ``numexpr`` package was installed (:issue:`22435`)
- Bug in :meth:`DataFrame.nlargest` and :meth:`Series.nlargest` where sorted result did not count indexes containing ``np.nan`` (:issue:`28984`)
- Bug in indexing on a non-unique object-dtype :class:`Index` with an NA scalar (e.g. ``np.nan``) (:issue:`43711`)
- Bug in :meth:`DataFrame.__setitem__` incorrectly writing into an existing column's array rather than setting a new array when the new dtype and the old dtype match (:issue:`43406`)
- Bug in setting floating-dtype values into a :class:`Series` with integer dtype failing to set inplace when those values can be losslessly converted to integers (:issue:`44316`)
- Bug in :meth:`Series.__setitem__` with object dtype when setting an array with matching size and dtype='datetime64[ns]' or dtype='timedelta64[ns]' incorrectly converting the datetime/timedeltas to integers (:issue:`43868`)
- Bug in :meth:`DataFrame.sort_index` where ``ignore_index=True`` was not being respected when the index was already sorted (:issue:`43591`)
- Bug in :meth:`Index.get_indexer_non_unique` when index contains multiple ``np.datetime64("NaT")`` and ``np.timedelta64("NaT")`` (:issue:`43869`)
- Bug in setting a scalar :class:`Interval` value into a :class:`Series` with ``IntervalDtype`` when the scalar's sides are floats and the values' sides are integers (:issue:`44201`)
- Bug when setting string-backed :class:`Categorical` values that can be parsed to datetimes into a :class:`DatetimeArray` or :class:`Series` or :class:`DataFrame` column backed by :class:`DatetimeArray` failing to parse these strings (:issue:`44236`)
- Bug in :meth:`Series.__setitem__` with an integer dtype other than ``int64`` setting with a ``range`` object unnecessarily upcasting to ``int64`` (:issue:`44261`)
- Bug in :meth:`Series.__setitem__` with a boolean mask indexer setting a listlike value of length 1 incorrectly broadcasting that value (:issue:`44265`)
- Bug in :meth:`Series.reset_index` not ignoring ``name`` argument when ``drop`` and ``inplace`` are set to ``True`` (:issue:`44575`)
- Bug in :meth:`DataFrame.loc.__setitem__` and :meth:`DataFrame.iloc.__setitem__` with mixed dtypes sometimes failing to operate in-place (:issue:`44345`)
- Bug in :meth:`DataFrame.loc.__getitem__` incorrectly raising ``KeyError`` when selecting a single column with a boolean key (:issue:`44322`).
- Bug in setting :meth:`DataFrame.iloc` with a single ``ExtensionDtype`` column and setting 2D values e.g. ``df.iloc[:] = df.values`` incorrectly raising (:issue:`44514`)
- Bug in setting values with :meth:`DataFrame.iloc` with a single ``ExtensionDtype`` column and a tuple of arrays as the indexer (:issue:`44703`)
- Bug in indexing on columns with ``loc`` or ``iloc`` using a slice with a negative step with ``ExtensionDtype`` columns incorrectly raising (:issue:`44551`)
- Bug in :meth:`DataFrame.loc.__setitem__` changing dtype when indexer was completely ``False`` (:issue:`37550`)
- Bug in :meth:`IntervalIndex.get_indexer_non_unique` returning boolean mask instead of array of integers for a non unique and non monotonic index (:issue:`44084`)
- Bug in :meth:`IntervalIndex.get_indexer_non_unique` not handling targets of ``dtype`` 'object' with NaNs correctly (:issue:`44482`)
- Fixed regression where a single column ``np.matrix`` was no longer coerced to a 1d ``np.ndarray`` when added to a :class:`DataFrame` (:issue:`42376`)
- Bug in :meth:`Series.__getitem__` with a :class:`CategoricalIndex` of integers treating lists of integers as positional indexers, inconsistent with the behavior with a single scalar integer (:issue:`15470`, :issue:`14865`)
- Bug in :meth:`Series.__setitem__` when setting floats or integers into integer-dtype :class:`Series` failing to upcast when necessary to retain precision (:issue:`45121`)
- Bug in :meth:`DataFrame.iloc.__setitem__` ignores axis argument (:issue:`45032`)

Missing
^^^^^^^
- Bug in :meth:`DataFrame.fillna` with ``limit`` and no ``method`` ignores ``axis='columns'`` or ``axis = 1`` (:issue:`40989`, :issue:`17399`)
- Bug in :meth:`DataFrame.fillna` not replacing missing values when using a dict-like ``value`` and duplicate column names (:issue:`43476`)
- Bug in constructing a :class:`DataFrame` with a dictionary ``np.datetime64`` as a value and ``dtype='timedelta64[ns]'``, or vice-versa, incorrectly casting instead of raising (:issue:`44428`)
- Bug in :meth:`Series.interpolate` and :meth:`DataFrame.interpolate` with ``inplace=True`` not writing to the underlying array(s) in-place (:issue:`44749`)
- Bug in :meth:`Index.fillna` incorrectly returning an unfilled :class:`Index` when NA values are present and ``downcast`` argument is specified. This now raises ``NotImplementedError`` instead; do not pass ``downcast`` argument (:issue:`44873`)
- Bug in :meth:`DataFrame.dropna` changing :class:`Index` even if no entries were dropped (:issue:`41965`)
- Bug in :meth:`Series.fillna` with an object-dtype incorrectly ignoring ``downcast="infer"`` (:issue:`44241`)

MultiIndex
^^^^^^^^^^
- Bug in :meth:`MultiIndex.get_loc` where the first level is a :class:`DatetimeIndex` and a string key is passed (:issue:`42465`)
- Bug in :meth:`MultiIndex.reindex` when passing a ``level`` that corresponds to an ``ExtensionDtype`` level (:issue:`42043`)
- Bug in :meth:`MultiIndex.get_loc` raising ``TypeError`` instead of ``KeyError`` on nested tuple (:issue:`42440`)
- Bug in :meth:`MultiIndex.union` setting wrong ``sortorder`` causing errors in subsequent indexing operations with slices (:issue:`44752`)
- Bug in :meth:`MultiIndex.putmask` where the other value was also a :class:`MultiIndex` (:issue:`43212`)
- Bug in :meth:`MultiIndex.dtypes` duplicate level names returned only one dtype per name (:issue:`45174`)

I/O
^^^
- Bug in :func:`read_excel` attempting to read chart sheets from .xlsx files (:issue:`41448`)
- Bug in :func:`json_normalize` where ``errors=ignore`` could fail to ignore missing values of ``meta`` when ``record_path`` has a length greater than one (:issue:`41876`)
- Bug in :func:`read_csv` with multi-header input and arguments referencing column names as tuples (:issue:`42446`)
- Bug in :func:`read_fwf`, where difference in lengths of ``colspecs`` and ``names`` was not raising ``ValueError`` (:issue:`40830`)
- Bug in :func:`Series.to_json` and :func:`DataFrame.to_json` where some attributes were skipped when serializing plain Python objects to JSON (:issue:`42768`, :issue:`33043`)
- Column headers are dropped when constructing a :class:`DataFrame` from a sqlalchemy's ``Row`` object (:issue:`40682`)
- Bug in unpickling an :class:`Index` with object dtype incorrectly inferring numeric dtypes (:issue:`43188`)
- Bug in :func:`read_csv` where reading multi-header input with unequal lengths incorrectly raised ``IndexError`` (:issue:`43102`)
- Bug in :func:`read_csv` raising ``ParserError`` when reading file in chunks and some chunk blocks have fewer columns than header for ``engine="c"`` (:issue:`21211`)
- Bug in :func:`read_csv`, changed exception class when expecting a file path name or file-like object from ``OSError`` to ``TypeError`` (:issue:`43366`)
- Bug in :func:`read_csv` and :func:`read_fwf` ignoring all ``skiprows`` except first when ``nrows`` is specified for ``engine='python'`` (:issue:`44021`, :issue:`10261`)
- Bug in :func:`read_csv` keeping the original column in object format when ``keep_date_col=True`` is set (:issue:`13378`)
- Bug in :func:`read_json` not handling non-numpy dtypes correctly (especially ``category``) (:issue:`21892`, :issue:`33205`)
- Bug in :func:`json_normalize` where multi-character ``sep`` parameter is incorrectly prefixed to every key (:issue:`43831`)
- Bug in :func:`json_normalize` where reading data with missing multi-level metadata would not respect ``errors="ignore"`` (:issue:`44312`)
- Bug in :func:`read_csv` used second row to guess implicit index if ``header`` was set to ``None`` for ``engine="python"`` (:issue:`22144`)
- Bug in :func:`read_csv` not recognizing bad lines when ``names`` were given for ``engine="c"`` (:issue:`22144`)
- Bug in :func:`read_csv` with :code:`float_precision="round_trip"` which did not skip initial/trailing whitespace (:issue:`43713`)
- Bug when Python is built without the lzma module: a warning was raised at the pandas import time, even if the lzma capability isn't used (:issue:`43495`)
- Bug in :func:`read_csv` not applying dtype for ``index_col`` (:issue:`9435`)
- Bug in dumping/loading a :class:`DataFrame` with ``yaml.dump(frame)`` (:issue:`42748`)
- Bug in :func:`read_csv` raising ``ValueError`` when ``names`` was longer than ``header`` but equal to data rows for ``engine="python"`` (:issue:`38453`)
- Bug in :class:`ExcelWriter`, where ``engine_kwargs`` were not passed through to all engines (:issue:`43442`)
- Bug in :func:`read_csv` raising ``ValueError`` when ``parse_dates`` was used with :class:`MultiIndex` columns (:issue:`8991`)
- Bug in :func:`read_csv` not raising an ``ValueError`` when ``\n`` was specified as ``delimiter`` or ``sep`` which conflicts with ``lineterminator`` (:issue:`43528`)
- Bug in :func:`to_csv` converting datetimes in categorical :class:`Series` to integers (:issue:`40754`)
- Bug in :func:`read_csv` converting columns to numeric after date parsing failed (:issue:`11019`)
- Bug in :func:`read_csv` not replacing ``NaN`` values with ``np.nan`` before attempting date conversion (:issue:`26203`)
- Bug in :func:`read_csv` raising ``AttributeError`` when attempting to read a .csv file and infer index column dtype from an nullable integer type (:issue:`44079`)
- Bug in :func:`to_csv` always coercing datetime columns with different formats to the same format (:issue:`21734`)
- :meth:`DataFrame.to_csv` and :meth:`Series.to_csv` with ``compression`` set to ``'zip'`` no longer create a zip file containing a file ending with ".zip". Instead, they try to infer the inner file name more smartly (:issue:`39465`)
- Bug in :func:`read_csv` where reading a mixed column of booleans and missing values to a float type results in the missing values becoming 1.0 rather than NaN (:issue:`42808`, :issue:`34120`)
- Bug in :func:`to_xml` raising error for ``pd.NA`` with extension array dtype (:issue:`43903`)
- Bug in :func:`read_csv` when passing simultaneously a parser in ``date_parser`` and ``parse_dates=False``, the parsing was still called (:issue:`44366`)
- Bug in :func:`read_csv` not setting name of :class:`MultiIndex` columns correctly when ``index_col`` is not the first column (:issue:`38549`)
- Bug in :func:`read_csv` silently ignoring errors when failing to create a memory-mapped file (:issue:`44766`)
- Bug in :func:`read_csv` when passing a ``tempfile.SpooledTemporaryFile`` opened in binary mode (:issue:`44748`)
- Bug in :func:`read_json` raising ``ValueError`` when attempting to parse json strings containing "://" (:issue:`36271`)
- Bug in :func:`read_csv` when ``engine="c"`` and ``encoding_errors=None`` which caused a segfault (:issue:`45180`)
- Bug in :func:`read_csv` an invalid value of ``usecols`` leading to an unclosed file handle (:issue:`45384`)
- Bug in :meth:`DataFrame.to_json` fix memory leak (:issue:`43877`)

Period
^^^^^^
- Bug in adding a :class:`Period` object to a ``np.timedelta64`` object incorrectly raising ``TypeError`` (:issue:`44182`)
- Bug in :meth:`PeriodIndex.to_timestamp` when the index has ``freq="B"`` inferring ``freq="D"`` for its result instead of ``freq="B"`` (:issue:`44105`)
- Bug in :class:`Period` constructor incorrectly allowing ``np.timedelta64("NaT")`` (:issue:`44507`)
- Bug in :meth:`PeriodIndex.to_timestamp` giving incorrect values for indexes with non-contiguous data (:issue:`44100`)
- Bug in :meth:`Series.where` with ``PeriodDtype`` incorrectly raising when the ``where`` call should not replace anything (:issue:`45135`)

Plotting
^^^^^^^^
- When given non-numeric data, :meth:`DataFrame.boxplot` now raises a ``ValueError`` rather than a cryptic ``KeyError`` or ``ZeroDivisionError``, in line with other plotting functions like :meth:`DataFrame.hist` (:issue:`43480`)

Groupby/resample/rolling
^^^^^^^^^^^^^^^^^^^^^^^^
- Bug in :meth:`SeriesGroupBy.apply` where passing an unrecognized string argument failed to raise ``TypeError`` when the underlying ``Series`` is empty (:issue:`42021`)
- Bug in :meth:`Series.rolling.apply`, :meth:`DataFrame.rolling.apply`, :meth:`Series.expanding.apply` and :meth:`DataFrame.expanding.apply` with ``engine="numba"`` where ``*args`` were being cached with the user passed function (:issue:`42287`)
- Bug in :meth:`.DataFrameGroupBy.max`, :meth:`.SeriesGroupBy.max`, :meth:`.DataFrameGroupBy.min`, and :meth:`.SeriesGroupBy.min` with nullable integer dtypes losing precision (:issue:`41743`)
- Bug in :meth:`DataFrame.groupby.rolling.var` would calculate the rolling variance only on the first group (:issue:`42442`)
- Bug in :meth:`.DataFrameGroupBy.shift` and :meth:`.SeriesGroupBy.shift` that would return the grouping columns if ``fill_value`` was not ``None`` (:issue:`41556`)
- Bug in :meth:`SeriesGroupBy.nlargest` and :meth:`SeriesGroupBy.nsmallest` would have an inconsistent index when the input :class:`Series` was sorted and ``n`` was greater than or equal to all group sizes (:issue:`15272`, :issue:`16345`, :issue:`29129`)
- Bug in :meth:`pandas.DataFrame.ewm`, where non-float64 dtypes were silently failing (:issue:`42452`)
- Bug in :meth:`pandas.DataFrame.rolling` operation along rows (``axis=1``) incorrectly omits columns containing ``float16`` and ``float32`` (:issue:`41779`)
- Bug in :meth:`Resampler.aggregate` did not allow the use of Named Aggregation (:issue:`32803`)
- Bug in :meth:`Series.rolling` when the :class:`Series` ``dtype`` was ``Int64`` (:issue:`43016`)
- Bug in :meth:`DataFrame.rolling.corr` when the :class:`DataFrame` columns was a :class:`MultiIndex` (:issue:`21157`)
- Bug in :meth:`DataFrame.groupby.rolling` when specifying ``on`` and calling ``__getitem__`` would subsequently return incorrect results (:issue:`43355`)
- Bug in :meth:`.DataFrameGroupBy.apply` and :meth:`.SeriesGroupBy.apply` with time-based :class:`Grouper` objects incorrectly raising ``ValueError`` in corner cases where the grouping vector contains a ``NaT`` (:issue:`43500`, :issue:`43515`)
- Bug in :meth:`.DataFrameGroupBy.mean` and :meth:`.SeriesGroupBy.mean` failing with ``complex`` dtype (:issue:`43701`)
- Bug in :meth:`Series.rolling` and :meth:`DataFrame.rolling` not calculating window bounds correctly for the first row when ``center=True`` and index is decreasing (:issue:`43927`)
- Bug in :meth:`Series.rolling` and :meth:`DataFrame.rolling` for centered datetimelike windows with uneven nanosecond (:issue:`43997`)
- Bug in :meth:`.DataFrameGroupBy.mean` and :meth:`.SeriesGroupBy.mean` raising ``KeyError`` when column was selected at least twice (:issue:`44924`)
- Bug in :meth:`.DataFrameGroupBy.nth` and :meth:`.SeriesGroupBy.nth` failing on ``axis=1`` (:issue:`43926`)
- Bug in :meth:`Series.rolling` and :meth:`DataFrame.rolling` not respecting right bound on centered datetime-like windows, if the index contain duplicates (:issue:`3944`)
- Bug in :meth:`Series.rolling` and :meth:`DataFrame.rolling` when using a :class:`pandas.api.indexers.BaseIndexer` subclass that returned unequal start and end arrays would segfault instead of raising a ``ValueError`` (:issue:`44470`)
- Bug in :meth:`Groupby.nunique` not respecting ``observed=True`` for ``categorical`` grouping columns (:issue:`45128`)
- Bug in :meth:`.DataFrameGroupBy.head`, :meth:`.SeriesGroupBy.head`, :meth:`.DataFrameGroupBy.tail`, and :meth:`.SeriesGroupBy.tail` not dropping groups with ``NaN`` when ``dropna=True`` (:issue:`45089`)
- Bug in :meth:`GroupBy.__iter__` after selecting a subset of columns in a :class:`GroupBy` object, which returned all columns instead of the chosen subset (:issue:`44821`)
- Bug in :meth:`Groupby.rolling` when non-monotonic data passed, fails to correctly raise ``ValueError`` (:issue:`43909`)
- Bug where grouping by a :class:`Series` that has a ``categorical`` data type and length unequal to the axis of grouping raised ``ValueError`` (:issue:`44179`)

Reshaping
^^^^^^^^^
- Improved error message when creating a :class:`DataFrame` column from a multi-dimensional :class:`numpy.ndarray` (:issue:`42463`)
- Bug in :func:`concat` creating :class:`MultiIndex` with duplicate level entries when concatenating a :class:`DataFrame` with duplicates in :class:`Index` and multiple keys (:issue:`42651`)
- Bug in :meth:`pandas.cut` on :class:`Series` with duplicate indices and non-exact :meth:`pandas.CategoricalIndex` (:issue:`42185`, :issue:`42425`)
- Bug in :meth:`DataFrame.append` failing to retain dtypes when appended columns do not match (:issue:`43392`)
- Bug in :func:`concat` of ``bool`` and ``boolean`` dtypes resulting in ``object`` dtype instead of ``boolean`` dtype (:issue:`42800`)
- Bug in :func:`crosstab` when inputs are categorical :class:`Series`, there are categories that are not present in one or both of the :class:`Series`, and ``margins=True``. Previously the margin value for missing categories was ``NaN``. It is now correctly reported as 0 (:issue:`43505`)
- Bug in :func:`concat` would fail when the ``objs`` argument all had the same index and the ``keys`` argument contained duplicates (:issue:`43595`)
- Bug in :func:`concat` which ignored the ``sort`` parameter (:issue:`43375`)
- Bug in :func:`merge` with :class:`MultiIndex` as column index for the ``on`` argument returning an error when assigning a column internally (:issue:`43734`)
- Bug in :func:`crosstab` would fail when inputs are lists or tuples (:issue:`44076`)
- Bug in :meth:`DataFrame.append` failing to retain ``index.name`` when appending a list of :class:`Series` objects (:issue:`44109`)
- Fixed metadata propagation in :meth:`Dataframe.apply` method, consequently fixing the same issue for :meth:`Dataframe.transform`, :meth:`Dataframe.nunique` and :meth:`Dataframe.mode` (:issue:`28283`)
- Bug in :func:`concat` casting levels of :class:`MultiIndex` to float if all levels only consist of missing values (:issue:`44900`)
- Bug in :meth:`DataFrame.stack` with ``ExtensionDtype`` columns incorrectly raising (:issue:`43561`)
- Bug in :func:`merge` raising ``KeyError`` when joining over differently named indexes with on keywords (:issue:`45094`)
- Bug in :meth:`Series.unstack` with object doing unwanted type inference on resulting columns (:issue:`44595`)
- Bug in :meth:`MultiIndex.join()` with overlapping ``IntervalIndex`` levels (:issue:`44096`)
- Bug in :meth:`DataFrame.replace` and :meth:`Series.replace` results is different ``dtype`` based on ``regex`` parameter (:issue:`44864`)
- Bug in :meth:`DataFrame.pivot` with ``index=None`` when the :class:`DataFrame` index was a :class:`MultiIndex` (:issue:`23955`)

Sparse
^^^^^^
- Bug in :meth:`DataFrame.sparse.to_coo` raising ``AttributeError`` when column names are not unique (:issue:`29564`)
- Bug in :meth:`SparseArray.max` and :meth:`SparseArray.min` raising ``ValueError`` for arrays with 0 non-null elements (:issue:`43527`)
- Bug in :meth:`DataFrame.sparse.to_coo` silently converting non-zero fill values to zero (:issue:`24817`)
- Bug in :class:`SparseArray` comparison methods with an array-like operand of mismatched length raising ``AssertionError`` or unclear ``ValueError`` depending on the input (:issue:`43863`)
- Bug in :class:`SparseArray` arithmetic methods ``floordiv`` and ``mod`` behaviors when dividing by zero not matching the non-sparse :class:`Series` behavior (:issue:`38172`)
- Bug in :class:`SparseArray` unary methods as well as :meth:`SparseArray.isna` doesn't recalculate indexes (:issue:`44955`)

ExtensionArray
^^^^^^^^^^^^^^
- Bug in :func:`array` failing to preserve :class:`PandasArray` (:issue:`43887`)
- NumPy ufuncs ``np.abs``, ``np.positive``, ``np.negative`` now correctly preserve dtype when called on ExtensionArrays that implement ``__abs__, __pos__, __neg__``, respectively. In particular this is fixed for :class:`TimedeltaArray` (:issue:`43899`, :issue:`23316`)
- NumPy ufuncs ``np.minimum.reduce`` ``np.maximum.reduce``, ``np.add.reduce``, and ``np.prod.reduce`` now work correctly instead of raising ``NotImplementedError`` on :class:`Series` with ``IntegerDtype`` or ``FloatDtype`` (:issue:`43923`, :issue:`44793`)
- NumPy ufuncs with ``out`` keyword are now supported by arrays with ``IntegerDtype`` and ``FloatingDtype`` (:issue:`45122`)
- Avoid raising ``PerformanceWarning`` about fragmented :class:`DataFrame` when using many columns with an extension dtype (:issue:`44098`)
- Bug in :class:`IntegerArray` and :class:`FloatingArray` construction incorrectly coercing mismatched NA values (e.g. ``np.timedelta64("NaT")``) to numeric NA (:issue:`44514`)
- Bug in :meth:`BooleanArray.__eq__` and :meth:`BooleanArray.__ne__` raising ``TypeError`` on comparison with an incompatible type (like a string). This caused :meth:`DataFrame.replace` to sometimes raise a ``TypeError`` if a nullable boolean column was included (:issue:`44499`)
- Bug in :func:`array` incorrectly raising when passed a ``ndarray`` with ``float16`` dtype (:issue:`44715`)
- Bug in calling ``np.sqrt`` on :class:`BooleanArray` returning a malformed :class:`FloatingArray` (:issue:`44715`)
- Bug in :meth:`Series.where` with ``ExtensionDtype`` when ``other`` is a NA scalar incompatible with the :class:`Series` dtype (e.g. ``NaT`` with a numeric dtype) incorrectly casting to a compatible NA value (:issue:`44697`)
- Bug in :meth:`Series.replace` where explicitly passing ``value=None`` is treated as if no ``value`` was passed, and ``None`` not being in the result (:issue:`36984`, :issue:`19998`)
- Bug in :meth:`Series.replace` with unwanted downcasting being done in no-op replacements (:issue:`44498`)
- Bug in :meth:`Series.replace` with ``FloatDtype``, ``string[python]``, or ``string[pyarrow]`` dtype not being preserved when possible (:issue:`33484`, :issue:`40732`, :issue:`31644`, :issue:`41215`, :issue:`25438`)

Styler
^^^^^^
- Bug in :class:`.Styler` where the ``uuid`` at initialization maintained a floating underscore (:issue:`43037`)
- Bug in :meth:`.Styler.to_html` where the ``Styler`` object was updated if the ``to_html`` method was called with some args (:issue:`43034`)
- Bug in :meth:`.Styler.copy` where ``uuid`` was not previously copied (:issue:`40675`)
- Bug in :meth:`Styler.apply` where functions which returned :class:`Series` objects were not correctly handled in terms of aligning their index labels (:issue:`13657`, :issue:`42014`)
- Bug when rendering an empty :class:`DataFrame` with a named :class:`Index` (:issue:`43305`)
- Bug when rendering a single level :class:`MultiIndex` (:issue:`43383`)
- Bug when combining non-sparse rendering and :meth:`.Styler.hide_columns` or :meth:`.Styler.hide_index` (:issue:`43464`)
- Bug setting a table style when using multiple selectors in :class:`.Styler` (:issue:`44011`)
- Bugs where row trimming and column trimming failed to reflect hidden rows (:issue:`43703`, :issue:`44247`)

Other
^^^^^
- Bug in :meth:`DataFrame.astype` with non-unique columns and a :class:`Series` ``dtype`` argument (:issue:`44417`)
- Bug in :meth:`CustomBusinessMonthBegin.__add__` (:meth:`CustomBusinessMonthEnd.__add__`) not applying the extra ``offset`` parameter when beginning (end) of the target month is already a business day (:issue:`41356`)
- Bug in :meth:`RangeIndex.union` with another ``RangeIndex`` with matching (even) ``step`` and starts differing by strictly less than ``step / 2`` (:issue:`44019`)
- Bug in :meth:`RangeIndex.difference` with ``sort=None`` and ``step<0`` failing to sort (:issue:`44085`)
- Bug in :meth:`Series.replace` and :meth:`DataFrame.replace` with ``value=None`` and ExtensionDtypes (:issue:`44270`, :issue:`37899`)
- Bug in :meth:`FloatingArray.equals` failing to consider two arrays equal if they contain ``np.nan`` values (:issue:`44382`)
- Bug in :meth:`DataFrame.shift` with ``axis=1`` and ``ExtensionDtype`` columns incorrectly raising when an incompatible ``fill_value`` is passed (:issue:`44564`)
- Bug in :meth:`DataFrame.shift` with ``axis=1`` and ``periods`` larger than ``len(frame.columns)`` producing an invalid :class:`DataFrame` (:issue:`44978`)
- Bug in :meth:`DataFrame.diff` when passing a NumPy integer object instead of an ``int`` object (:issue:`44572`)
- Bug in :meth:`Series.replace` raising ``ValueError`` when using ``regex=True`` with a :class:`Series` containing ``np.nan`` values (:issue:`43344`)
- Bug in :meth:`DataFrame.to_records` where an incorrect ``n`` was used when missing names were replaced by ``level_n`` (:issue:`44818`)
- Bug in :meth:`DataFrame.eval` where ``resolvers`` argument was overriding the default resolvers (:issue:`34966`)
- :meth:`Series.__repr__` and :meth:`DataFrame.__repr__` no longer replace all null-values in indexes with "NaN" but use their real string-representations. "NaN" is used only for ``float("nan")`` (:issue:`45263`)

.. ---------------------------------------------------------------------------

.. _whatsnew_140.contributors:

Contributors
~~~~~~~~~~~~

.. contributors:: v1.3.5..v1.4.0