1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416
|
.. _whatsnew_200:
What's new in 2.0.0 (April 3, 2023)
-----------------------------------
These are the changes in pandas 2.0.0. See :ref:`release` for a full changelog
including other versions of pandas.
{{ header }}
.. ---------------------------------------------------------------------------
.. _whatsnew_200.enhancements:
Enhancements
~~~~~~~~~~~~
.. _whatsnew_200.enhancements.optional_dependency_management_pip:
Installing optional dependencies with pip extras
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
When installing pandas using pip, sets of optional dependencies can also be installed by specifying extras.
.. code-block:: bash
pip install "pandas[performance, aws]>=2.0.0"
The available extras, found in the :ref:`installation guide<install.dependencies>`, are
``[all, performance, computation, fss, aws, gcp, excel, parquet, feather, hdf5, spss, postgresql, mysql,
sql-other, html, xml, plot, output_formatting, clipboard, compression, test]`` (:issue:`39164`).
.. _whatsnew_200.enhancements.index_can_hold_numpy_numeric_dtypes:
:class:`Index` can now hold numpy numeric dtypes
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
It is now possible to use any numpy numeric dtype in a :class:`Index` (:issue:`42717`).
Previously it was only possible to use ``int64``, ``uint64`` & ``float64`` dtypes:
.. code-block:: ipython
In [1]: pd.Index([1, 2, 3], dtype=np.int8)
Out[1]: Int64Index([1, 2, 3], dtype="int64")
In [2]: pd.Index([1, 2, 3], dtype=np.uint16)
Out[2]: UInt64Index([1, 2, 3], dtype="uint64")
In [3]: pd.Index([1, 2, 3], dtype=np.float32)
Out[3]: Float64Index([1.0, 2.0, 3.0], dtype="float64")
:class:`Int64Index`, :class:`UInt64Index` & :class:`Float64Index` were deprecated in pandas
version 1.4 and have now been removed. Instead :class:`Index` should be used directly, and
can it now take all numpy numeric dtypes, i.e.
``int8``/ ``int16``/``int32``/``int64``/``uint8``/``uint16``/``uint32``/``uint64``/``float32``/``float64`` dtypes:
.. ipython:: python
pd.Index([1, 2, 3], dtype=np.int8)
pd.Index([1, 2, 3], dtype=np.uint16)
pd.Index([1, 2, 3], dtype=np.float32)
The ability for :class:`Index` to hold the numpy numeric dtypes has meant some changes in Pandas
functionality. In particular, operations that previously were forced to create 64-bit indexes,
can now create indexes with lower bit sizes, e.g. 32-bit indexes.
Below is a possibly non-exhaustive list of changes:
1. Instantiating using a numpy numeric array now follows the dtype of the numpy array.
Previously, all indexes created from numpy numeric arrays were forced to 64-bit. Now,
for example, ``Index(np.array([1, 2, 3]))`` will be ``int32`` on 32-bit systems, where
it previously would have been ``int64`` even on 32-bit systems.
Instantiating :class:`Index` using a list of numbers will still return 64bit dtypes,
e.g. ``Index([1, 2, 3])`` will have a ``int64`` dtype, which is the same as previously.
2. The various numeric datetime attributes of :class:`DatetimeIndex` (:attr:`~DatetimeIndex.day`,
:attr:`~DatetimeIndex.month`, :attr:`~DatetimeIndex.year` etc.) were previously in of
dtype ``int64``, while they were ``int32`` for :class:`arrays.DatetimeArray`. They are now
``int32`` on :class:`DatetimeIndex` also:
.. ipython:: python
idx = pd.date_range(start='1/1/2018', periods=3, freq='ME')
idx.array.year
idx.year
3. Level dtypes on Indexes from :meth:`Series.sparse.from_coo` are now of dtype ``int32``,
the same as they are on the ``rows``/``cols`` on a scipy sparse matrix. Previously they
were of dtype ``int64``.
.. ipython:: python
from scipy import sparse
A = sparse.coo_matrix(
([3.0, 1.0, 2.0], ([1, 0, 0], [0, 2, 3])), shape=(3, 4)
)
ser = pd.Series.sparse.from_coo(A)
ser.index.dtypes
4. :class:`Index` cannot be instantiated using a float16 dtype. Previously instantiating
an :class:`Index` using dtype ``float16`` resulted in a :class:`Float64Index` with a
``float64`` dtype. It now raises a ``NotImplementedError``:
.. ipython:: python
:okexcept:
pd.Index([1, 2, 3], dtype=np.float16)
.. _whatsnew_200.enhancements.io_dtype_backend:
Argument ``dtype_backend``, to return pyarrow-backed or numpy-backed nullable dtypes
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
The following functions gained a new keyword ``dtype_backend`` (:issue:`36712`)
* :func:`read_csv`
* :func:`read_clipboard`
* :func:`read_fwf`
* :func:`read_excel`
* :func:`read_html`
* :func:`read_xml`
* :func:`read_json`
* :func:`read_sql`
* :func:`read_sql_query`
* :func:`read_sql_table`
* :func:`read_parquet`
* :func:`read_orc`
* :func:`read_feather`
* :func:`read_spss`
* :func:`to_numeric`
* :meth:`DataFrame.convert_dtypes`
* :meth:`Series.convert_dtypes`
When this option is set to ``"numpy_nullable"`` it will return a :class:`DataFrame` that is
backed by nullable dtypes.
When this keyword is set to ``"pyarrow"``, then these functions will return pyarrow-backed nullable :class:`ArrowDtype` DataFrames (:issue:`48957`, :issue:`49997`):
* :func:`read_csv`
* :func:`read_clipboard`
* :func:`read_fwf`
* :func:`read_excel`
* :func:`read_html`
* :func:`read_xml`
* :func:`read_json`
* :func:`read_sql`
* :func:`read_sql_query`
* :func:`read_sql_table`
* :func:`read_parquet`
* :func:`read_orc`
* :func:`read_feather`
* :func:`read_spss`
* :func:`to_numeric`
* :meth:`DataFrame.convert_dtypes`
* :meth:`Series.convert_dtypes`
.. ipython:: python
import io
data = io.StringIO("""a,b,c,d,e,f,g,h,i
1,2.5,True,a,,,,,
3,4.5,False,b,6,7.5,True,a,
""")
df = pd.read_csv(data, dtype_backend="pyarrow")
df.dtypes
data.seek(0)
df_pyarrow = pd.read_csv(data, dtype_backend="pyarrow", engine="pyarrow")
df_pyarrow.dtypes
Copy-on-Write improvements
^^^^^^^^^^^^^^^^^^^^^^^^^^
- A new lazy copy mechanism that defers the copy until the object in question is modified
was added to the methods listed in
:ref:`Copy-on-Write optimizations <copy_on_write.optimizations>`.
These methods return views when Copy-on-Write is enabled, which provides a significant
performance improvement compared to the regular execution (:issue:`49473`).
- Accessing a single column of a DataFrame as a Series (e.g. ``df["col"]``) now always
returns a new object every time it is constructed when Copy-on-Write is enabled (not
returning multiple times an identical, cached Series object). This ensures that those
Series objects correctly follow the Copy-on-Write rules (:issue:`49450`)
- The :class:`Series` constructor will now create a lazy copy (deferring the copy until
a modification to the data happens) when constructing a Series from an existing
Series with the default of ``copy=False`` (:issue:`50471`)
- The :class:`DataFrame` constructor will now create a lazy copy (deferring the copy until
a modification to the data happens) when constructing from an existing
:class:`DataFrame` with the default of ``copy=False`` (:issue:`51239`)
- The :class:`DataFrame` constructor, when constructing a DataFrame from a dictionary
of Series objects and specifying ``copy=False``, will now use a lazy copy
of those Series objects for the columns of the DataFrame (:issue:`50777`)
- The :class:`DataFrame` constructor, when constructing a DataFrame from a
:class:`Series` or :class:`Index` and specifying ``copy=False``, will
now respect Copy-on-Write.
- The :class:`DataFrame` and :class:`Series` constructors, when constructing from
a NumPy array, will now copy the array by default to avoid mutating
the :class:`DataFrame` / :class:`Series`
when mutating the array. Specify ``copy=False`` to get the old behavior.
When setting ``copy=False`` pandas does not guarantee correct Copy-on-Write
behavior when the NumPy array is modified after creation of the
:class:`DataFrame` / :class:`Series`.
- The :meth:`DataFrame.from_records` will now respect Copy-on-Write when called
with a :class:`DataFrame`.
- Trying to set values using chained assignment (for example, ``df["a"][1:3] = 0``)
will now always raise a warning when Copy-on-Write is enabled. In this mode,
chained assignment can never work because we are always setting into a temporary
object that is the result of an indexing operation (getitem), which under
Copy-on-Write always behaves as a copy. Thus, assigning through a chain
can never update the original Series or DataFrame. Therefore, an informative
warning is raised to the user to avoid silently doing nothing (:issue:`49467`)
- :meth:`DataFrame.replace` will now respect the Copy-on-Write mechanism
when ``inplace=True``.
- :meth:`DataFrame.transpose` will now respect the Copy-on-Write mechanism.
- Arithmetic operations that can be inplace, e.g. ``ser *= 2`` will now respect the
Copy-on-Write mechanism.
- :meth:`DataFrame.__getitem__` will now respect the Copy-on-Write mechanism when the
:class:`DataFrame` has :class:`MultiIndex` columns.
- :meth:`Series.__getitem__` will now respect the Copy-on-Write mechanism when the
:class:`Series` has a :class:`MultiIndex`.
- :meth:`Series.view` will now respect the Copy-on-Write mechanism.
Copy-on-Write can be enabled through one of
.. code-block:: python
pd.set_option("mode.copy_on_write", True)
.. code-block:: python
pd.options.mode.copy_on_write = True
Alternatively, copy on write can be enabled locally through:
.. code-block:: python
with pd.option_context("mode.copy_on_write", True):
...
.. _whatsnew_200.enhancements.other:
Other enhancements
^^^^^^^^^^^^^^^^^^
- Added support for ``str`` accessor methods when using :class:`ArrowDtype` with a ``pyarrow.string`` type (:issue:`50325`)
- Added support for ``dt`` accessor methods when using :class:`ArrowDtype` with a ``pyarrow.timestamp`` type (:issue:`50954`)
- :func:`read_sas` now supports using ``encoding='infer'`` to correctly read and use the encoding specified by the sas file. (:issue:`48048`)
- :meth:`.DataFrameGroupBy.quantile`, :meth:`.SeriesGroupBy.quantile` and :meth:`.DataFrameGroupBy.std` now preserve nullable dtypes instead of casting to numpy dtypes (:issue:`37493`)
- :meth:`.DataFrameGroupBy.std`, :meth:`.SeriesGroupBy.std` now support datetime64, timedelta64, and :class:`DatetimeTZDtype` dtypes (:issue:`48481`)
- :meth:`Series.add_suffix`, :meth:`DataFrame.add_suffix`, :meth:`Series.add_prefix` and :meth:`DataFrame.add_prefix` support an ``axis`` argument. If ``axis`` is set, the default behaviour of which axis to consider can be overwritten (:issue:`47819`)
- :func:`.testing.assert_frame_equal` now shows the first element where the DataFrames differ, analogously to ``pytest``'s output (:issue:`47910`)
- Added ``index`` parameter to :meth:`DataFrame.to_dict` (:issue:`46398`)
- Added support for extension array dtypes in :func:`merge` (:issue:`44240`)
- Added metadata propagation for binary operators on :class:`DataFrame` (:issue:`28283`)
- Added ``cumsum``, ``cumprod``, ``cummin`` and ``cummax`` to the ``ExtensionArray`` interface via ``_accumulate`` (:issue:`28385`)
- :class:`.CategoricalConversionWarning`, :class:`.InvalidComparison`, :class:`.InvalidVersion`, :class:`.LossySetitemError`, and :class:`.NoBufferPresent` are now exposed in ``pandas.errors`` (:issue:`27656`)
- Fix ``test`` optional_extra by adding missing test package ``pytest-asyncio`` (:issue:`48361`)
- :func:`DataFrame.astype` exception message thrown improved to include column name when type conversion is not possible. (:issue:`47571`)
- :func:`date_range` now supports a ``unit`` keyword ("s", "ms", "us", or "ns") to specify the desired resolution of the output index (:issue:`49106`)
- :func:`timedelta_range` now supports a ``unit`` keyword ("s", "ms", "us", or "ns") to specify the desired resolution of the output index (:issue:`49824`)
- :meth:`DataFrame.to_json` now supports a ``mode`` keyword with supported inputs 'w' and 'a'. Defaulting to 'w', 'a' can be used when lines=True and orient='records' to append record oriented json lines to an existing json file. (:issue:`35849`)
- Added ``name`` parameter to :meth:`IntervalIndex.from_breaks`, :meth:`IntervalIndex.from_arrays` and :meth:`IntervalIndex.from_tuples` (:issue:`48911`)
- Improve exception message when using :func:`.testing.assert_frame_equal` on a :class:`DataFrame` to include the column that is compared (:issue:`50323`)
- Improved error message for :func:`merge_asof` when join-columns were duplicated (:issue:`50102`)
- Added support for extension array dtypes to :func:`get_dummies` (:issue:`32430`)
- Added :meth:`Index.infer_objects` analogous to :meth:`Series.infer_objects` (:issue:`50034`)
- Added ``copy`` parameter to :meth:`Series.infer_objects` and :meth:`DataFrame.infer_objects`, passing ``False`` will avoid making copies for series or columns that are already non-object or where no better dtype can be inferred (:issue:`50096`)
- :meth:`DataFrame.plot.hist` now recognizes ``xlabel`` and ``ylabel`` arguments (:issue:`49793`)
- :meth:`Series.drop_duplicates` has gained ``ignore_index`` keyword to reset index (:issue:`48304`)
- :meth:`Series.dropna` and :meth:`DataFrame.dropna` has gained ``ignore_index`` keyword to reset index (:issue:`31725`)
- Improved error message in :func:`to_datetime` for non-ISO8601 formats, informing users about the position of the first error (:issue:`50361`)
- Improved error message when trying to align :class:`DataFrame` objects (for example, in :func:`DataFrame.compare`) to clarify that "identically labelled" refers to both index and columns (:issue:`50083`)
- Added support for :meth:`Index.min` and :meth:`Index.max` for pyarrow string dtypes (:issue:`51397`)
- Added :meth:`DatetimeIndex.as_unit` and :meth:`TimedeltaIndex.as_unit` to convert to different resolutions; supported resolutions are "s", "ms", "us", and "ns" (:issue:`50616`)
- Added :meth:`Series.dt.unit` and :meth:`Series.dt.as_unit` to convert to different resolutions; supported resolutions are "s", "ms", "us", and "ns" (:issue:`51223`)
- Added new argument ``dtype`` to :func:`read_sql` to be consistent with :func:`read_sql_query` (:issue:`50797`)
- :func:`read_csv`, :func:`read_table`, :func:`read_fwf` and :func:`read_excel` now accept ``date_format`` (:issue:`50601`)
- :func:`to_datetime` now accepts ``"ISO8601"`` as an argument to ``format``, which will match any ISO8601 string (but possibly not identically-formatted) (:issue:`50411`)
- :func:`to_datetime` now accepts ``"mixed"`` as an argument to ``format``, which will infer the format for each element individually (:issue:`50972`)
- Added new argument ``engine`` to :func:`read_json` to support parsing JSON with pyarrow by specifying ``engine="pyarrow"`` (:issue:`48893`)
- Added support for SQLAlchemy 2.0 (:issue:`40686`)
- Added support for ``decimal`` parameter when ``engine="pyarrow"`` in :func:`read_csv` (:issue:`51302`)
- :class:`Index` set operations :meth:`Index.union`, :meth:`Index.intersection`, :meth:`Index.difference`, and :meth:`Index.symmetric_difference` now support ``sort=True``, which will always return a sorted result, unlike the default ``sort=None`` which does not sort in some cases (:issue:`25151`)
- Added new escape mode "latex-math" to avoid escaping "$" in formatter (:issue:`50040`)
.. ---------------------------------------------------------------------------
.. _whatsnew_200.notable_bug_fixes:
Notable bug fixes
~~~~~~~~~~~~~~~~~
These are bug fixes that might have notable behavior changes.
.. _whatsnew_200.notable_bug_fixes.cumsum_cumprod_overflow:
:meth:`.DataFrameGroupBy.cumsum` and :meth:`.DataFrameGroupBy.cumprod` overflow instead of lossy casting to float
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
In previous versions we cast to float when applying ``cumsum`` and ``cumprod`` which
lead to incorrect results even if the result could be hold by ``int64`` dtype.
Additionally, the aggregation overflows consistent with numpy and the regular
:meth:`DataFrame.cumprod` and :meth:`DataFrame.cumsum` methods when the limit of
``int64`` is reached (:issue:`37493`).
*Old Behavior*
.. code-block:: ipython
In [1]: df = pd.DataFrame({"key": ["b"] * 7, "value": 625})
In [2]: df.groupby("key")["value"].cumprod()[5]
Out[2]: 5.960464477539062e+16
We return incorrect results with the 6th value.
*New Behavior*
.. ipython:: python
df = pd.DataFrame({"key": ["b"] * 7, "value": 625})
df.groupby("key")["value"].cumprod()
We overflow with the 7th value, but the 6th value is still correct.
.. _whatsnew_200.notable_bug_fixes.groupby_nth_filter:
:meth:`.DataFrameGroupBy.nth` and :meth:`.SeriesGroupBy.nth` now behave as filtrations
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
In previous versions of pandas, :meth:`.DataFrameGroupBy.nth` and
:meth:`.SeriesGroupBy.nth` acted as if they were aggregations. However, for most
inputs ``n``, they may return either zero or multiple rows per group. This means
that they are filtrations, similar to e.g. :meth:`.DataFrameGroupBy.head`. pandas
now treats them as filtrations (:issue:`13666`).
.. ipython:: python
df = pd.DataFrame({"a": [1, 1, 2, 1, 2], "b": [np.nan, 2.0, 3.0, 4.0, 5.0]})
gb = df.groupby("a")
*Old Behavior*
.. code-block:: ipython
In [5]: gb.nth(n=1)
Out[5]:
A B
1 1 2.0
4 2 5.0
*New Behavior*
.. ipython:: python
gb.nth(n=1)
In particular, the index of the result is derived from the input by selecting
the appropriate rows. Also, when ``n`` is larger than the group, no rows instead of
``NaN`` is returned.
*Old Behavior*
.. code-block:: ipython
In [5]: gb.nth(n=3, dropna="any")
Out[5]:
B
A
1 NaN
2 NaN
*New Behavior*
.. ipython:: python
gb.nth(n=3, dropna="any")
.. ---------------------------------------------------------------------------
.. _whatsnew_200.api_breaking:
Backwards incompatible API changes
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. _whatsnew_200.api_breaking.unsupported_datetimelike_dtype_arg:
Construction with datetime64 or timedelta64 dtype with unsupported resolution
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
In past versions, when constructing a :class:`Series` or :class:`DataFrame` and
passing a "datetime64" or "timedelta64" dtype with unsupported resolution
(i.e. anything other than "ns"), pandas would silently replace the given dtype
with its nanosecond analogue:
*Previous behavior*:
.. code-block:: ipython
In [5]: pd.Series(["2016-01-01"], dtype="datetime64[s]")
Out[5]:
0 2016-01-01
dtype: datetime64[ns]
In [6] pd.Series(["2016-01-01"], dtype="datetime64[D]")
Out[6]:
0 2016-01-01
dtype: datetime64[ns]
In pandas 2.0 we support resolutions "s", "ms", "us", and "ns". When passing
a supported dtype (e.g. "datetime64[s]"), the result now has exactly
the requested dtype:
*New behavior*:
.. ipython:: python
pd.Series(["2016-01-01"], dtype="datetime64[s]")
With an un-supported dtype, pandas now raises instead of silently swapping in
a supported dtype:
*New behavior*:
.. ipython:: python
:okexcept:
pd.Series(["2016-01-01"], dtype="datetime64[D]")
.. _whatsnew_200.api_breaking.value_counts:
Value counts sets the resulting name to ``count``
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
In past versions, when running :meth:`Series.value_counts`, the result would inherit
the original object's name, and the result index would be nameless. This would cause
confusion when resetting the index, and the column names would not correspond with the
column values.
Now, the result name will be ``'count'`` (or ``'proportion'`` if ``normalize=True`` was passed),
and the index will be named after the original object (:issue:`49497`).
*Previous behavior*:
.. code-block:: ipython
In [8]: pd.Series(['quetzal', 'quetzal', 'elk'], name='animal').value_counts()
Out[2]:
quetzal 2
elk 1
Name: animal, dtype: int64
*New behavior*:
.. ipython:: python
pd.Series(['quetzal', 'quetzal', 'elk'], name='animal').value_counts()
Likewise for other ``value_counts`` methods (for example, :meth:`DataFrame.value_counts`).
.. _whatsnew_200.api_breaking.astype_to_unsupported_datetimelike:
Disallow astype conversion to non-supported datetime64/timedelta64 dtypes
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
In previous versions, converting a :class:`Series` or :class:`DataFrame`
from ``datetime64[ns]`` to a different ``datetime64[X]`` dtype would return
with ``datetime64[ns]`` dtype instead of the requested dtype. In pandas 2.0,
support is added for "datetime64[s]", "datetime64[ms]", and "datetime64[us]" dtypes,
so converting to those dtypes gives exactly the requested dtype:
*Previous behavior*:
.. ipython:: python
idx = pd.date_range("2016-01-01", periods=3)
ser = pd.Series(idx)
*Previous behavior*:
.. code-block:: ipython
In [4]: ser.astype("datetime64[s]")
Out[4]:
0 2016-01-01
1 2016-01-02
2 2016-01-03
dtype: datetime64[ns]
With the new behavior, we get exactly the requested dtype:
*New behavior*:
.. ipython:: python
ser.astype("datetime64[s]")
For non-supported resolutions e.g. "datetime64[D]", we raise instead of silently
ignoring the requested dtype:
*New behavior*:
.. ipython:: python
:okexcept:
ser.astype("datetime64[D]")
For conversion from ``timedelta64[ns]`` dtypes, the old behavior converted
to a floating point format.
*Previous behavior*:
.. ipython:: python
idx = pd.timedelta_range("1 Day", periods=3)
ser = pd.Series(idx)
*Previous behavior*:
.. code-block:: ipython
In [7]: ser.astype("timedelta64[s]")
Out[7]:
0 86400.0
1 172800.0
2 259200.0
dtype: float64
In [8]: ser.astype("timedelta64[D]")
Out[8]:
0 1.0
1 2.0
2 3.0
dtype: float64
The new behavior, as for datetime64, either gives exactly the requested dtype or raises:
*New behavior*:
.. ipython:: python
:okexcept:
ser.astype("timedelta64[s]")
ser.astype("timedelta64[D]")
.. _whatsnew_200.api_breaking.default_to_stdlib_tzinfos:
UTC and fixed-offset timezones default to standard-library tzinfo objects
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
In previous versions, the default ``tzinfo`` object used to represent UTC
was ``pytz.UTC``. In pandas 2.0, we default to ``datetime.timezone.utc`` instead.
Similarly, for timezones represent fixed UTC offsets, we use ``datetime.timezone``
objects instead of ``pytz.FixedOffset`` objects. See (:issue:`34916`)
*Previous behavior*:
.. code-block:: ipython
In [2]: ts = pd.Timestamp("2016-01-01", tz="UTC")
In [3]: type(ts.tzinfo)
Out[3]: pytz.UTC
In [4]: ts2 = pd.Timestamp("2016-01-01 04:05:06-07:00")
In [3]: type(ts2.tzinfo)
Out[5]: pytz._FixedOffset
*New behavior*:
.. ipython:: python
ts = pd.Timestamp("2016-01-01", tz="UTC")
type(ts.tzinfo)
ts2 = pd.Timestamp("2016-01-01 04:05:06-07:00")
type(ts2.tzinfo)
For timezones that are neither UTC nor fixed offsets, e.g. "US/Pacific", we
continue to default to ``pytz`` objects.
.. _whatsnew_200.api_breaking.zero_len_indexes:
Empty DataFrames/Series will now default to have a ``RangeIndex``
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Before, constructing an empty (where ``data`` is ``None`` or an empty list-like argument) :class:`Series` or :class:`DataFrame` without
specifying the axes (``index=None``, ``columns=None``) would return the axes as empty :class:`Index` with object dtype.
Now, the axes return an empty :class:`RangeIndex` (:issue:`49572`).
*Previous behavior*:
.. code-block:: ipython
In [8]: pd.Series().index
Out[8]:
Index([], dtype='object')
In [9] pd.DataFrame().axes
Out[9]:
[Index([], dtype='object'), Index([], dtype='object')]
*New behavior*:
.. ipython:: python
pd.Series().index
pd.DataFrame().axes
.. _whatsnew_200.api_breaking.to_latex:
DataFrame to LaTeX has a new render engine
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
The existing :meth:`DataFrame.to_latex` has been restructured to utilise the
extended implementation previously available under :meth:`.Styler.to_latex`.
The arguments signature is similar, albeit ``col_space`` has been removed since
it is ignored by LaTeX engines. This render engine also requires ``jinja2`` as a
dependency which needs to be installed, since rendering is based upon jinja2 templates.
The pandas latex options below are no longer used and have been removed. The generic
max rows and columns arguments remain but for this functionality should be replaced
by the Styler equivalents.
The alternative options giving similar functionality are indicated below:
- ``display.latex.escape``: replaced with ``styler.format.escape``,
- ``display.latex.longtable``: replaced with ``styler.latex.environment``,
- ``display.latex.multicolumn``, ``display.latex.multicolumn_format`` and
``display.latex.multirow``: replaced with ``styler.sparse.rows``,
``styler.sparse.columns``, ``styler.latex.multirow_align`` and
``styler.latex.multicol_align``,
- ``display.latex.repr``: replaced with ``styler.render.repr``,
- ``display.max_rows`` and ``display.max_columns``: replace with
``styler.render.max_rows``, ``styler.render.max_columns`` and
``styler.render.max_elements``.
Note that due to this change some defaults have also changed:
- ``multirow`` now defaults to *True*.
- ``multirow_align`` defaults to *"r"* instead of *"l"*.
- ``multicol_align`` defaults to *"r"* instead of *"l"*.
- ``escape`` now defaults to *False*.
Note that the behaviour of ``_repr_latex_`` is also changed. Previously
setting ``display.latex.repr`` would generate LaTeX only when using nbconvert for a
JupyterNotebook, and not when the user is running the notebook. Now the
``styler.render.repr`` option allows control of the specific output
within JupyterNotebooks for operations (not just on nbconvert). See :issue:`39911`.
.. _whatsnew_200.api_breaking.deps:
Increased minimum versions for dependencies
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Some minimum supported versions of dependencies were updated.
If installed, we now require:
+-------------------+-----------------+----------+---------+
| Package | Minimum Version | Required | Changed |
+===================+=================+==========+=========+
| mypy (dev) | 1.0 | | X |
+-------------------+-----------------+----------+---------+
| pytest (dev) | 7.0.0 | | X |
+-------------------+-----------------+----------+---------+
| pytest-xdist (dev)| 2.2.0 | | X |
+-------------------+-----------------+----------+---------+
| hypothesis (dev) | 6.34.2 | | X |
+-------------------+-----------------+----------+---------+
| python-dateutil | 2.8.2 | X | X |
+-------------------+-----------------+----------+---------+
| tzdata | 2022.1 | X | X |
+-------------------+-----------------+----------+---------+
For `optional libraries <https://pandas.pydata.org/docs/getting_started/install.html>`_ the general recommendation is to use the latest version.
The following table lists the lowest version per library that is currently being tested throughout the development of pandas.
Optional libraries below the lowest tested version may still work, but are not considered supported.
+-----------------+-----------------+---------+
| Package | Minimum Version | Changed |
+=================+=================+=========+
| pyarrow | 7.0.0 | X |
+-----------------+-----------------+---------+
| matplotlib | 3.6.1 | X |
+-----------------+-----------------+---------+
| fastparquet | 0.6.3 | X |
+-----------------+-----------------+---------+
| xarray | 0.21.0 | X |
+-----------------+-----------------+---------+
See :ref:`install.dependencies` and :ref:`install.optional_dependencies` for more.
Datetimes are now parsed with a consistent format
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
In the past, :func:`to_datetime` guessed the format for each element independently. This was appropriate for some cases where elements had mixed date formats - however, it would regularly cause problems when users expected a consistent format but the function would switch formats between elements. As of version 2.0.0, parsing will use a consistent format, determined by the first non-NA value (unless the user specifies a format, in which case that is used).
*Old behavior*:
.. code-block:: ipython
In [1]: ser = pd.Series(['13-01-2000', '12-01-2000'])
In [2]: pd.to_datetime(ser)
Out[2]:
0 2000-01-13
1 2000-12-01
dtype: datetime64[ns]
*New behavior*:
.. ipython:: python
:okwarning:
ser = pd.Series(['13-01-2000', '12-01-2000'])
pd.to_datetime(ser)
Note that this affects :func:`read_csv` as well.
If you still need to parse dates with inconsistent formats, you can use
``format='mixed'`` (possibly alongside ``dayfirst``) ::
ser = pd.Series(['13-01-2000', '12 January 2000'])
pd.to_datetime(ser, format='mixed', dayfirst=True)
or, if your formats are all ISO8601 (but possibly not identically-formatted) ::
ser = pd.Series(['2020-01-01', '2020-01-01 03:00'])
pd.to_datetime(ser, format='ISO8601')
.. _whatsnew_200.api_breaking.other:
Other API changes
^^^^^^^^^^^^^^^^^
- The ``freq``, ``tz``, ``nanosecond``, and ``unit`` keywords in the :class:`Timestamp` constructor are now keyword-only (:issue:`45307`, :issue:`32526`)
- Passing ``nanoseconds`` greater than 999 or less than 0 in :class:`Timestamp` now raises a ``ValueError`` (:issue:`48538`, :issue:`48255`)
- :func:`read_csv`: specifying an incorrect number of columns with ``index_col`` of now raises ``ParserError`` instead of ``IndexError`` when using the c parser.
- Default value of ``dtype`` in :func:`get_dummies` is changed to ``bool`` from ``uint8`` (:issue:`45848`)
- :meth:`DataFrame.astype`, :meth:`Series.astype`, and :meth:`DatetimeIndex.astype` casting datetime64 data to any of "datetime64[s]", "datetime64[ms]", "datetime64[us]" will return an object with the given resolution instead of coercing back to "datetime64[ns]" (:issue:`48928`)
- :meth:`DataFrame.astype`, :meth:`Series.astype`, and :meth:`DatetimeIndex.astype` casting timedelta64 data to any of "timedelta64[s]", "timedelta64[ms]", "timedelta64[us]" will return an object with the given resolution instead of coercing to "float64" dtype (:issue:`48963`)
- :meth:`DatetimeIndex.astype`, :meth:`TimedeltaIndex.astype`, :meth:`PeriodIndex.astype` :meth:`Series.astype`, :meth:`DataFrame.astype` with ``datetime64``, ``timedelta64`` or :class:`PeriodDtype` dtypes no longer allow converting to integer dtypes other than "int64", do ``obj.astype('int64', copy=False).astype(dtype)`` instead (:issue:`49715`)
- :meth:`Index.astype` now allows casting from ``float64`` dtype to datetime-like dtypes, matching :class:`Series` behavior (:issue:`49660`)
- Passing data with dtype of "timedelta64[s]", "timedelta64[ms]", or "timedelta64[us]" to :class:`TimedeltaIndex`, :class:`Series`, or :class:`DataFrame` constructors will now retain that dtype instead of casting to "timedelta64[ns]"; timedelta64 data with lower resolution will be cast to the lowest supported resolution "timedelta64[s]" (:issue:`49014`)
- Passing ``dtype`` of "timedelta64[s]", "timedelta64[ms]", or "timedelta64[us]" to :class:`TimedeltaIndex`, :class:`Series`, or :class:`DataFrame` constructors will now retain that dtype instead of casting to "timedelta64[ns]"; passing a dtype with lower resolution for :class:`Series` or :class:`DataFrame` will be cast to the lowest supported resolution "timedelta64[s]" (:issue:`49014`)
- Passing a ``np.datetime64`` object with non-nanosecond resolution to :class:`Timestamp` will retain the input resolution if it is "s", "ms", "us", or "ns"; otherwise it will be cast to the closest supported resolution (:issue:`49008`)
- Passing ``datetime64`` values with resolution other than nanosecond to :func:`to_datetime` will retain the input resolution if it is "s", "ms", "us", or "ns"; otherwise it will be cast to the closest supported resolution (:issue:`50369`)
- Passing integer values and a non-nanosecond datetime64 dtype (e.g. "datetime64[s]") :class:`DataFrame`, :class:`Series`, or :class:`Index` will treat the values as multiples of the dtype's unit, matching the behavior of e.g. ``Series(np.array(values, dtype="M8[s]"))`` (:issue:`51092`)
- Passing a string in ISO-8601 format to :class:`Timestamp` will retain the resolution of the parsed input if it is "s", "ms", "us", or "ns"; otherwise it will be cast to the closest supported resolution (:issue:`49737`)
- The ``other`` argument in :meth:`DataFrame.mask` and :meth:`Series.mask` now defaults to ``no_default`` instead of ``np.nan`` consistent with :meth:`DataFrame.where` and :meth:`Series.where`. Entries will be filled with the corresponding NULL value (``np.nan`` for numpy dtypes, ``pd.NA`` for extension dtypes). (:issue:`49111`)
- Changed behavior of :meth:`Series.quantile` and :meth:`DataFrame.quantile` with :class:`SparseDtype` to retain sparse dtype (:issue:`49583`)
- When creating a :class:`Series` with a object-dtype :class:`Index` of datetime objects, pandas no longer silently converts the index to a :class:`DatetimeIndex` (:issue:`39307`, :issue:`23598`)
- :func:`pandas.testing.assert_index_equal` with parameter ``exact="equiv"`` now considers two indexes equal when both are either a :class:`RangeIndex` or :class:`Index` with an ``int64`` dtype. Previously it meant either a :class:`RangeIndex` or a :class:`Int64Index` (:issue:`51098`)
- :meth:`Series.unique` with dtype "timedelta64[ns]" or "datetime64[ns]" now returns :class:`TimedeltaArray` or :class:`DatetimeArray` instead of ``numpy.ndarray`` (:issue:`49176`)
- :func:`to_datetime` and :class:`DatetimeIndex` now allow sequences containing both ``datetime`` objects and numeric entries, matching :class:`Series` behavior (:issue:`49037`, :issue:`50453`)
- :func:`pandas.api.types.is_string_dtype` now only returns ``True`` for array-likes with ``dtype=object`` when the elements are inferred to be strings (:issue:`15585`)
- Passing a sequence containing ``datetime`` objects and ``date`` objects to :class:`Series` constructor will return with ``object`` dtype instead of ``datetime64[ns]`` dtype, consistent with :class:`Index` behavior (:issue:`49341`)
- Passing strings that cannot be parsed as datetimes to :class:`Series` or :class:`DataFrame` with ``dtype="datetime64[ns]"`` will raise instead of silently ignoring the keyword and returning ``object`` dtype (:issue:`24435`)
- Passing a sequence containing a type that cannot be converted to :class:`Timedelta` to :func:`to_timedelta` or to the :class:`Series` or :class:`DataFrame` constructor with ``dtype="timedelta64[ns]"`` or to :class:`TimedeltaIndex` now raises ``TypeError`` instead of ``ValueError`` (:issue:`49525`)
- Changed behavior of :class:`Index` constructor with sequence containing at least one ``NaT`` and everything else either ``None`` or ``NaN`` to infer ``datetime64[ns]`` dtype instead of ``object``, matching :class:`Series` behavior (:issue:`49340`)
- :func:`read_stata` with parameter ``index_col`` set to ``None`` (the default) will now set the index on the returned :class:`DataFrame` to a :class:`RangeIndex` instead of a :class:`Int64Index` (:issue:`49745`)
- Changed behavior of :class:`Index`, :class:`Series`, and :class:`DataFrame` arithmetic methods when working with object-dtypes, the results no longer do type inference on the result of the array operations, use ``result.infer_objects(copy=False)`` to do type inference on the result (:issue:`49999`, :issue:`49714`)
- Changed behavior of :class:`Index` constructor with an object-dtype ``numpy.ndarray`` containing all-``bool`` values or all-complex values, this will now retain object dtype, consistent with the :class:`Series` behavior (:issue:`49594`)
- Changed behavior of :meth:`Series.astype` from object-dtype containing ``bytes`` objects to string dtypes; this now does ``val.decode()`` on bytes objects instead of ``str(val)``, matching :meth:`Index.astype` behavior (:issue:`45326`)
- Added ``"None"`` to default ``na_values`` in :func:`read_csv` (:issue:`50286`)
- Changed behavior of :class:`Series` and :class:`DataFrame` constructors when given an integer dtype and floating-point data that is not round numbers, this now raises ``ValueError`` instead of silently retaining the float dtype; do ``Series(data)`` or ``DataFrame(data)`` to get the old behavior, and ``Series(data).astype(dtype)`` or ``DataFrame(data).astype(dtype)`` to get the specified dtype (:issue:`49599`)
- Changed behavior of :meth:`DataFrame.shift` with ``axis=1``, an integer ``fill_value``, and homogeneous datetime-like dtype, this now fills new columns with integer dtypes instead of casting to datetimelike (:issue:`49842`)
- Files are now closed when encountering an exception in :func:`read_json` (:issue:`49921`)
- Changed behavior of :func:`read_csv`, :func:`read_json` & :func:`read_fwf`, where the index will now always be a :class:`RangeIndex`, when no index is specified. Previously the index would be a :class:`Index` with dtype ``object`` if the new DataFrame/Series has length 0 (:issue:`49572`)
- :meth:`DataFrame.values`, :meth:`DataFrame.to_numpy`, :meth:`DataFrame.xs`, :meth:`DataFrame.reindex`, :meth:`DataFrame.fillna`, and :meth:`DataFrame.replace` no longer silently consolidate the underlying arrays; do ``df = df.copy()`` to ensure consolidation (:issue:`49356`)
- Creating a new DataFrame using a full slice on both axes with :attr:`~DataFrame.loc`
or :attr:`~DataFrame.iloc` (thus, ``df.loc[:, :]`` or ``df.iloc[:, :]``) now returns a
new DataFrame (shallow copy) instead of the original DataFrame, consistent with other
methods to get a full slice (for example ``df.loc[:]`` or ``df[:]``) (:issue:`49469`)
- The :class:`Series` and :class:`DataFrame` constructors will now return a shallow copy
(i.e. share data, but not attributes) when passed a Series and DataFrame,
respectively, and with the default of ``copy=False`` (and if no other keyword triggers
a copy). Previously, the new Series or DataFrame would share the index attribute (e.g.
``df.index = ...`` would also update the index of the parent or child) (:issue:`49523`)
- Disallow computing ``cumprod`` for :class:`Timedelta` object; previously this returned incorrect values (:issue:`50246`)
- :class:`DataFrame` objects read from a :class:`HDFStore` file without an index now have a :class:`RangeIndex` instead of an ``int64`` index (:issue:`51076`)
- Instantiating an :class:`Index` with an numeric numpy dtype with data containing :class:`NA` and/or :class:`NaT` now raises a ``ValueError``. Previously a ``TypeError`` was raised (:issue:`51050`)
- Loading a JSON file with duplicate columns using ``read_json(orient='split')`` renames columns to avoid duplicates, as :func:`read_csv` and the other readers do (:issue:`50370`)
- The levels of the index of the :class:`Series` returned from ``Series.sparse.from_coo`` now always have dtype ``int32``. Previously they had dtype ``int64`` (:issue:`50926`)
- :func:`to_datetime` with ``unit`` of either "Y" or "M" will now raise if a sequence contains a non-round ``float`` value, matching the ``Timestamp`` behavior (:issue:`50301`)
- The methods :meth:`Series.round`, :meth:`DataFrame.__invert__`, :meth:`Series.__invert__`, :meth:`DataFrame.swapaxes`, :meth:`DataFrame.first`, :meth:`DataFrame.last`, :meth:`Series.first`, :meth:`Series.last` and :meth:`DataFrame.align` will now always return new objects (:issue:`51032`)
- :class:`DataFrame` and :class:`DataFrameGroupBy` aggregations (e.g. "sum") with object-dtype columns no longer infer non-object dtypes for their results, explicitly call ``result.infer_objects(copy=False)`` on the result to obtain the old behavior (:issue:`51205`, :issue:`49603`)
- Division by zero with :class:`ArrowDtype` dtypes returns ``-inf``, ``nan``, or ``inf`` depending on the numerator, instead of raising (:issue:`51541`)
- Added :func:`pandas.api.types.is_any_real_numeric_dtype` to check for real numeric dtypes (:issue:`51152`)
- :meth:`~arrays.ArrowExtensionArray.value_counts` now returns data with :class:`ArrowDtype` with ``pyarrow.int64`` type instead of ``"Int64"`` type (:issue:`51462`)
- :func:`factorize` and :func:`unique` preserve the original dtype when passed numpy timedelta64 or datetime64 with non-nanosecond resolution (:issue:`48670`)
.. note::
A current PDEP proposes the deprecation and removal of the keywords ``inplace`` and ``copy``
for all but a small subset of methods from the pandas API. The current discussion takes place
at `here <https://github.com/pandas-dev/pandas/pull/51466>`_. The keywords won't be necessary
anymore in the context of Copy-on-Write. If this proposal is accepted, both
keywords would be deprecated in the next release of pandas and removed in pandas 3.0.
.. ---------------------------------------------------------------------------
.. _whatsnew_200.deprecations:
Deprecations
~~~~~~~~~~~~
- Deprecated parsing datetime strings with system-local timezone to ``tzlocal``, pass a ``tz`` keyword or explicitly call ``tz_localize`` instead (:issue:`50791`)
- Deprecated argument ``infer_datetime_format`` in :func:`to_datetime` and :func:`read_csv`, as a strict version of it is now the default (:issue:`48621`)
- Deprecated behavior of :func:`to_datetime` with ``unit`` when parsing strings, in a future version these will be parsed as datetimes (matching unit-less behavior) instead of cast to floats. To retain the old behavior, cast strings to numeric types before calling :func:`to_datetime` (:issue:`50735`)
- Deprecated :func:`pandas.io.sql.execute` (:issue:`50185`)
- :meth:`Index.is_boolean` has been deprecated. Use :func:`pandas.api.types.is_bool_dtype` instead (:issue:`50042`)
- :meth:`Index.is_integer` has been deprecated. Use :func:`pandas.api.types.is_integer_dtype` instead (:issue:`50042`)
- :meth:`Index.is_floating` has been deprecated. Use :func:`pandas.api.types.is_float_dtype` instead (:issue:`50042`)
- :meth:`Index.holds_integer` has been deprecated. Use :func:`pandas.api.types.infer_dtype` instead (:issue:`50243`)
- :meth:`Index.is_numeric` has been deprecated. Use :func:`pandas.api.types.is_any_real_numeric_dtype` instead (:issue:`50042`,:issue:`51152`)
- :meth:`Index.is_categorical` has been deprecated. Use :func:`pandas.api.types.is_categorical_dtype` instead (:issue:`50042`)
- :meth:`Index.is_object` has been deprecated. Use :func:`pandas.api.types.is_object_dtype` instead (:issue:`50042`)
- :meth:`Index.is_interval` has been deprecated. Use :func:`pandas.api.types.is_interval_dtype` instead (:issue:`50042`)
- Deprecated argument ``date_parser`` in :func:`read_csv`, :func:`read_table`, :func:`read_fwf`, and :func:`read_excel` in favour of ``date_format`` (:issue:`50601`)
- Deprecated ``all`` and ``any`` reductions with ``datetime64`` and :class:`DatetimeTZDtype` dtypes, use e.g. ``(obj != pd.Timestamp(0), tz=obj.tz).all()`` instead (:issue:`34479`)
- Deprecated unused arguments ``*args`` and ``**kwargs`` in :class:`Resampler` (:issue:`50977`)
- Deprecated calling ``float`` or ``int`` on a single element :class:`Series` to return a ``float`` or ``int`` respectively. Extract the element before calling ``float`` or ``int`` instead (:issue:`51101`)
- Deprecated :meth:`Grouper.groups`, use :meth:`Groupby.groups` instead (:issue:`51182`)
- Deprecated :meth:`Grouper.grouper`, use :meth:`Groupby.grouper` instead (:issue:`51182`)
- Deprecated :meth:`Grouper.obj`, use :meth:`Groupby.obj` instead (:issue:`51206`)
- Deprecated :meth:`Grouper.indexer`, use :meth:`Resampler.indexer` instead (:issue:`51206`)
- Deprecated :meth:`Grouper.ax`, use :meth:`Resampler.ax` instead (:issue:`51206`)
- Deprecated keyword ``use_nullable_dtypes`` in :func:`read_parquet`, use ``dtype_backend`` instead (:issue:`51853`)
- Deprecated :meth:`Series.pad` in favor of :meth:`Series.ffill` (:issue:`33396`)
- Deprecated :meth:`Series.backfill` in favor of :meth:`Series.bfill` (:issue:`33396`)
- Deprecated :meth:`DataFrame.pad` in favor of :meth:`DataFrame.ffill` (:issue:`33396`)
- Deprecated :meth:`DataFrame.backfill` in favor of :meth:`DataFrame.bfill` (:issue:`33396`)
- Deprecated :meth:`~pandas.io.stata.StataReader.close`. Use :class:`~pandas.io.stata.StataReader` as a context manager instead (:issue:`49228`)
- Deprecated producing a scalar when iterating over a :class:`.DataFrameGroupBy` or a :class:`.SeriesGroupBy` that has been grouped by a ``level`` parameter that is a list of length 1; a tuple of length one will be returned instead (:issue:`51583`)
.. ---------------------------------------------------------------------------
.. _whatsnew_200.prior_deprecations:
Removal of prior version deprecations/changes
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
- Removed :class:`Int64Index`, :class:`UInt64Index` and :class:`Float64Index`. See also :ref:`here <whatsnew_200.enhancements.index_can_hold_numpy_numeric_dtypes>` for more information (:issue:`42717`)
- Removed deprecated :attr:`Timestamp.freq`, :attr:`Timestamp.freqstr` and argument ``freq`` from the :class:`Timestamp` constructor and :meth:`Timestamp.fromordinal` (:issue:`14146`)
- Removed deprecated :class:`CategoricalBlock`, :meth:`Block.is_categorical`, require datetime64 and timedelta64 values to be wrapped in :class:`DatetimeArray` or :class:`TimedeltaArray` before passing to :meth:`Block.make_block_same_class`, require ``DatetimeTZBlock.values`` to have the correct ndim when passing to the :class:`BlockManager` constructor, and removed the "fastpath" keyword from the :class:`SingleBlockManager` constructor (:issue:`40226`, :issue:`40571`)
- Removed deprecated global option ``use_inf_as_null`` in favor of ``use_inf_as_na`` (:issue:`17126`)
- Removed deprecated module ``pandas.core.index`` (:issue:`30193`)
- Removed deprecated alias ``pandas.core.tools.datetimes.to_time``, import the function directly from ``pandas.core.tools.times`` instead (:issue:`34145`)
- Removed deprecated alias ``pandas.io.json.json_normalize``, import the function directly from ``pandas.json_normalize`` instead (:issue:`27615`)
- Removed deprecated :meth:`Categorical.to_dense`, use ``np.asarray(cat)`` instead (:issue:`32639`)
- Removed deprecated :meth:`Categorical.take_nd` (:issue:`27745`)
- Removed deprecated :meth:`Categorical.mode`, use ``Series(cat).mode()`` instead (:issue:`45033`)
- Removed deprecated :meth:`Categorical.is_dtype_equal` and :meth:`CategoricalIndex.is_dtype_equal` (:issue:`37545`)
- Removed deprecated :meth:`CategoricalIndex.take_nd` (:issue:`30702`)
- Removed deprecated :meth:`Index.is_type_compatible` (:issue:`42113`)
- Removed deprecated :meth:`Index.is_mixed`, check ``index.inferred_type`` directly instead (:issue:`32922`)
- Removed deprecated :func:`pandas.api.types.is_categorical`; use :func:`pandas.api.types.is_categorical_dtype` instead (:issue:`33385`)
- Removed deprecated :meth:`Index.asi8` (:issue:`37877`)
- Enforced deprecation changing behavior when passing ``datetime64[ns]`` dtype data and timezone-aware dtype to :class:`Series`, interpreting the values as wall-times instead of UTC times, matching :class:`DatetimeIndex` behavior (:issue:`41662`)
- Enforced deprecation changing behavior when applying a numpy ufunc on multiple non-aligned (on the index or columns) :class:`DataFrame` that will now align the inputs first (:issue:`39239`)
- Removed deprecated :meth:`DataFrame._AXIS_NUMBERS`, :meth:`DataFrame._AXIS_NAMES`, :meth:`Series._AXIS_NUMBERS`, :meth:`Series._AXIS_NAMES` (:issue:`33637`)
- Removed deprecated :meth:`Index.to_native_types`, use ``obj.astype(str)`` instead (:issue:`36418`)
- Removed deprecated :meth:`Series.iteritems`, :meth:`DataFrame.iteritems`, use ``obj.items`` instead (:issue:`45321`)
- Removed deprecated :meth:`DataFrame.lookup` (:issue:`35224`)
- Removed deprecated :meth:`Series.append`, :meth:`DataFrame.append`, use :func:`concat` instead (:issue:`35407`)
- Removed deprecated :meth:`Series.iteritems`, :meth:`DataFrame.iteritems` and :meth:`HDFStore.iteritems` use ``obj.items`` instead (:issue:`45321`)
- Removed deprecated :meth:`DatetimeIndex.union_many` (:issue:`45018`)
- Removed deprecated ``weekofyear`` and ``week`` attributes of :class:`DatetimeArray`, :class:`DatetimeIndex` and ``dt`` accessor in favor of ``isocalendar().week`` (:issue:`33595`)
- Removed deprecated :meth:`RangeIndex._start`, :meth:`RangeIndex._stop`, :meth:`RangeIndex._step`, use ``start``, ``stop``, ``step`` instead (:issue:`30482`)
- Removed deprecated :meth:`DatetimeIndex.to_perioddelta`, Use ``dtindex - dtindex.to_period(freq).to_timestamp()`` instead (:issue:`34853`)
- Removed deprecated :meth:`.Styler.hide_index` and :meth:`.Styler.hide_columns` (:issue:`49397`)
- Removed deprecated :meth:`.Styler.set_na_rep` and :meth:`.Styler.set_precision` (:issue:`49397`)
- Removed deprecated :meth:`.Styler.where` (:issue:`49397`)
- Removed deprecated :meth:`.Styler.render` (:issue:`49397`)
- Removed deprecated argument ``col_space`` in :meth:`DataFrame.to_latex` (:issue:`47970`)
- Removed deprecated argument ``null_color`` in :meth:`.Styler.highlight_null` (:issue:`49397`)
- Removed deprecated argument ``check_less_precise`` in :meth:`.testing.assert_frame_equal`, :meth:`.testing.assert_extension_array_equal`, :meth:`.testing.assert_series_equal`, :meth:`.testing.assert_index_equal` (:issue:`30562`)
- Removed deprecated ``null_counts`` argument in :meth:`DataFrame.info`. Use ``show_counts`` instead (:issue:`37999`)
- Removed deprecated :meth:`Index.is_monotonic`, and :meth:`Series.is_monotonic`; use ``obj.is_monotonic_increasing`` instead (:issue:`45422`)
- Removed deprecated :meth:`Index.is_all_dates` (:issue:`36697`)
- Enforced deprecation disallowing passing a timezone-aware :class:`Timestamp` and ``dtype="datetime64[ns]"`` to :class:`Series` or :class:`DataFrame` constructors (:issue:`41555`)
- Enforced deprecation disallowing passing a sequence of timezone-aware values and ``dtype="datetime64[ns]"`` to to :class:`Series` or :class:`DataFrame` constructors (:issue:`41555`)
- Enforced deprecation disallowing ``numpy.ma.mrecords.MaskedRecords`` in the :class:`DataFrame` constructor; pass ``"{name: data[name] for name in data.dtype.names}`` instead (:issue:`40363`)
- Enforced deprecation disallowing unit-less "datetime64" dtype in :meth:`Series.astype` and :meth:`DataFrame.astype` (:issue:`47844`)
- Enforced deprecation disallowing using ``.astype`` to convert a ``datetime64[ns]`` :class:`Series`, :class:`DataFrame`, or :class:`DatetimeIndex` to timezone-aware dtype, use ``obj.tz_localize`` or ``ser.dt.tz_localize`` instead (:issue:`39258`)
- Enforced deprecation disallowing using ``.astype`` to convert a timezone-aware :class:`Series`, :class:`DataFrame`, or :class:`DatetimeIndex` to timezone-naive ``datetime64[ns]`` dtype, use ``obj.tz_localize(None)`` or ``obj.tz_convert("UTC").tz_localize(None)`` instead (:issue:`39258`)
- Enforced deprecation disallowing passing non boolean argument to sort in :func:`concat` (:issue:`44629`)
- Removed Date parser functions :func:`~pandas.io.date_converters.parse_date_time`,
:func:`~pandas.io.date_converters.parse_date_fields`, :func:`~pandas.io.date_converters.parse_all_fields`
and :func:`~pandas.io.date_converters.generic_parser` (:issue:`24518`)
- Removed argument ``index`` from the :class:`core.arrays.SparseArray` constructor (:issue:`43523`)
- Remove argument ``squeeze`` from :meth:`DataFrame.groupby` and :meth:`Series.groupby` (:issue:`32380`)
- Removed deprecated ``apply``, ``apply_index``, ``__call__``, ``onOffset``, and ``isAnchored`` attributes from :class:`DateOffset` (:issue:`34171`)
- Removed ``keep_tz`` argument in :meth:`DatetimeIndex.to_series` (:issue:`29731`)
- Remove arguments ``names`` and ``dtype`` from :meth:`Index.copy` and ``levels`` and ``codes`` from :meth:`MultiIndex.copy` (:issue:`35853`, :issue:`36685`)
- Remove argument ``inplace`` from :meth:`MultiIndex.set_levels` and :meth:`MultiIndex.set_codes` (:issue:`35626`)
- Removed arguments ``verbose`` and ``encoding`` from :meth:`DataFrame.to_excel` and :meth:`Series.to_excel` (:issue:`47912`)
- Removed argument ``line_terminator`` from :meth:`DataFrame.to_csv` and :meth:`Series.to_csv`, use ``lineterminator`` instead (:issue:`45302`)
- Removed argument ``inplace`` from :meth:`DataFrame.set_axis` and :meth:`Series.set_axis`, use ``obj = obj.set_axis(..., copy=False)`` instead (:issue:`48130`)
- Disallow passing positional arguments to :meth:`MultiIndex.set_levels` and :meth:`MultiIndex.set_codes` (:issue:`41485`)
- Disallow parsing to Timedelta strings with components with units "Y", "y", or "M", as these do not represent unambiguous durations (:issue:`36838`)
- Removed :meth:`MultiIndex.is_lexsorted` and :meth:`MultiIndex.lexsort_depth` (:issue:`38701`)
- Removed argument ``how`` from :meth:`PeriodIndex.astype`, use :meth:`PeriodIndex.to_timestamp` instead (:issue:`37982`)
- Removed argument ``try_cast`` from :meth:`DataFrame.mask`, :meth:`DataFrame.where`, :meth:`Series.mask` and :meth:`Series.where` (:issue:`38836`)
- Removed argument ``tz`` from :meth:`Period.to_timestamp`, use ``obj.to_timestamp(...).tz_localize(tz)`` instead (:issue:`34522`)
- Removed argument ``sort_columns`` in :meth:`DataFrame.plot` and :meth:`Series.plot` (:issue:`47563`)
- Removed argument ``is_copy`` from :meth:`DataFrame.take` and :meth:`Series.take` (:issue:`30615`)
- Removed argument ``kind`` from :meth:`Index.get_slice_bound`, :meth:`Index.slice_indexer` and :meth:`Index.slice_locs` (:issue:`41378`)
- Removed arguments ``prefix``, ``squeeze``, ``error_bad_lines`` and ``warn_bad_lines`` from :func:`read_csv` (:issue:`40413`, :issue:`43427`)
- Removed arguments ``squeeze`` from :func:`read_excel` (:issue:`43427`)
- Removed argument ``datetime_is_numeric`` from :meth:`DataFrame.describe` and :meth:`Series.describe` as datetime data will always be summarized as numeric data (:issue:`34798`)
- Disallow passing list ``key`` to :meth:`Series.xs` and :meth:`DataFrame.xs`, pass a tuple instead (:issue:`41789`)
- Disallow subclass-specific keywords (e.g. "freq", "tz", "names", "closed") in the :class:`Index` constructor (:issue:`38597`)
- Removed argument ``inplace`` from :meth:`Categorical.remove_unused_categories` (:issue:`37918`)
- Disallow passing non-round floats to :class:`Timestamp` with ``unit="M"`` or ``unit="Y"`` (:issue:`47266`)
- Remove keywords ``convert_float`` and ``mangle_dupe_cols`` from :func:`read_excel` (:issue:`41176`)
- Remove keyword ``mangle_dupe_cols`` from :func:`read_csv` and :func:`read_table` (:issue:`48137`)
- Removed ``errors`` keyword from :meth:`DataFrame.where`, :meth:`Series.where`, :meth:`DataFrame.mask` and :meth:`Series.mask` (:issue:`47728`)
- Disallow passing non-keyword arguments to :func:`read_excel` except ``io`` and ``sheet_name`` (:issue:`34418`)
- Disallow passing non-keyword arguments to :meth:`DataFrame.drop` and :meth:`Series.drop` except ``labels`` (:issue:`41486`)
- Disallow passing non-keyword arguments to :meth:`DataFrame.fillna` and :meth:`Series.fillna` except ``value`` (:issue:`41485`)
- Disallow passing non-keyword arguments to :meth:`StringMethods.split` and :meth:`StringMethods.rsplit` except for ``pat`` (:issue:`47448`)
- Disallow passing non-keyword arguments to :meth:`DataFrame.set_index` except ``keys`` (:issue:`41495`)
- Disallow passing non-keyword arguments to :meth:`Resampler.interpolate` except ``method`` (:issue:`41699`)
- Disallow passing non-keyword arguments to :meth:`DataFrame.reset_index` and :meth:`Series.reset_index` except ``level`` (:issue:`41496`)
- Disallow passing non-keyword arguments to :meth:`DataFrame.dropna` and :meth:`Series.dropna` (:issue:`41504`)
- Disallow passing non-keyword arguments to :meth:`ExtensionArray.argsort` (:issue:`46134`)
- Disallow passing non-keyword arguments to :meth:`Categorical.sort_values` (:issue:`47618`)
- Disallow passing non-keyword arguments to :meth:`Index.drop_duplicates` and :meth:`Series.drop_duplicates` (:issue:`41485`)
- Disallow passing non-keyword arguments to :meth:`DataFrame.drop_duplicates` except for ``subset`` (:issue:`41485`)
- Disallow passing non-keyword arguments to :meth:`DataFrame.sort_index` and :meth:`Series.sort_index` (:issue:`41506`)
- Disallow passing non-keyword arguments to :meth:`DataFrame.interpolate` and :meth:`Series.interpolate` except for ``method`` (:issue:`41510`)
- Disallow passing non-keyword arguments to :meth:`DataFrame.any` and :meth:`Series.any` (:issue:`44896`)
- Disallow passing non-keyword arguments to :meth:`Index.set_names` except for ``names`` (:issue:`41551`)
- Disallow passing non-keyword arguments to :meth:`Index.join` except for ``other`` (:issue:`46518`)
- Disallow passing non-keyword arguments to :func:`concat` except for ``objs`` (:issue:`41485`)
- Disallow passing non-keyword arguments to :func:`pivot` except for ``data`` (:issue:`48301`)
- Disallow passing non-keyword arguments to :meth:`DataFrame.pivot` (:issue:`48301`)
- Disallow passing non-keyword arguments to :func:`read_html` except for ``io`` (:issue:`27573`)
- Disallow passing non-keyword arguments to :func:`read_json` except for ``path_or_buf`` (:issue:`27573`)
- Disallow passing non-keyword arguments to :func:`read_sas` except for ``filepath_or_buffer`` (:issue:`47154`)
- Disallow passing non-keyword arguments to :func:`read_stata` except for ``filepath_or_buffer`` (:issue:`48128`)
- Disallow passing non-keyword arguments to :func:`read_csv` except ``filepath_or_buffer`` (:issue:`41485`)
- Disallow passing non-keyword arguments to :func:`read_table` except ``filepath_or_buffer`` (:issue:`41485`)
- Disallow passing non-keyword arguments to :func:`read_fwf` except ``filepath_or_buffer`` (:issue:`44710`)
- Disallow passing non-keyword arguments to :func:`read_xml` except for ``path_or_buffer`` (:issue:`45133`)
- Disallow passing non-keyword arguments to :meth:`Series.mask` and :meth:`DataFrame.mask` except ``cond`` and ``other`` (:issue:`41580`)
- Disallow passing non-keyword arguments to :meth:`DataFrame.to_stata` except for ``path`` (:issue:`48128`)
- Disallow passing non-keyword arguments to :meth:`DataFrame.where` and :meth:`Series.where` except for ``cond`` and ``other`` (:issue:`41523`)
- Disallow passing non-keyword arguments to :meth:`Series.set_axis` and :meth:`DataFrame.set_axis` except for ``labels`` (:issue:`41491`)
- Disallow passing non-keyword arguments to :meth:`Series.rename_axis` and :meth:`DataFrame.rename_axis` except for ``mapper`` (:issue:`47587`)
- Disallow passing non-keyword arguments to :meth:`Series.clip` and :meth:`DataFrame.clip` except ``lower`` and ``upper`` (:issue:`41511`)
- Disallow passing non-keyword arguments to :meth:`Series.bfill`, :meth:`Series.ffill`, :meth:`DataFrame.bfill` and :meth:`DataFrame.ffill` (:issue:`41508`)
- Disallow passing non-keyword arguments to :meth:`DataFrame.replace`, :meth:`Series.replace` except for ``to_replace`` and ``value`` (:issue:`47587`)
- Disallow passing non-keyword arguments to :meth:`DataFrame.sort_values` except for ``by`` (:issue:`41505`)
- Disallow passing non-keyword arguments to :meth:`Series.sort_values` (:issue:`41505`)
- Disallow passing non-keyword arguments to :meth:`DataFrame.reindex` except for ``labels`` (:issue:`17966`)
- Disallow :meth:`Index.reindex` with non-unique :class:`Index` objects (:issue:`42568`)
- Disallowed constructing :class:`Categorical` with scalar ``data`` (:issue:`38433`)
- Disallowed constructing :class:`CategoricalIndex` without passing ``data`` (:issue:`38944`)
- Removed :meth:`.Rolling.validate`, :meth:`.Expanding.validate`, and :meth:`.ExponentialMovingWindow.validate` (:issue:`43665`)
- Removed :attr:`Rolling.win_type` returning ``"freq"`` (:issue:`38963`)
- Removed :attr:`Rolling.is_datetimelike` (:issue:`38963`)
- Removed the ``level`` keyword in :class:`DataFrame` and :class:`Series` aggregations; use ``groupby`` instead (:issue:`39983`)
- Removed deprecated :meth:`Timedelta.delta`, :meth:`Timedelta.is_populated`, and :attr:`Timedelta.freq` (:issue:`46430`, :issue:`46476`)
- Removed deprecated :attr:`NaT.freq` (:issue:`45071`)
- Removed deprecated :meth:`Categorical.replace`, use :meth:`Series.replace` instead (:issue:`44929`)
- Removed the ``numeric_only`` keyword from :meth:`Categorical.min` and :meth:`Categorical.max` in favor of ``skipna`` (:issue:`48821`)
- Changed behavior of :meth:`DataFrame.median` and :meth:`DataFrame.mean` with ``numeric_only=None`` to not exclude datetime-like columns THIS NOTE WILL BE IRRELEVANT ONCE ``numeric_only=None`` DEPRECATION IS ENFORCED (:issue:`29941`)
- Removed :func:`is_extension_type` in favor of :func:`is_extension_array_dtype` (:issue:`29457`)
- Removed ``.ExponentialMovingWindow.vol`` (:issue:`39220`)
- Removed :meth:`Index.get_value` and :meth:`Index.set_value` (:issue:`33907`, :issue:`28621`)
- Removed :meth:`Series.slice_shift` and :meth:`DataFrame.slice_shift` (:issue:`37601`)
- Remove :meth:`DataFrameGroupBy.pad` and :meth:`DataFrameGroupBy.backfill` (:issue:`45076`)
- Remove ``numpy`` argument from :func:`read_json` (:issue:`30636`)
- Disallow passing abbreviations for ``orient`` in :meth:`DataFrame.to_dict` (:issue:`32516`)
- Disallow partial slicing on an non-monotonic :class:`DatetimeIndex` with keys which are not in Index. This now raises a ``KeyError`` (:issue:`18531`)
- Removed ``get_offset`` in favor of :func:`to_offset` (:issue:`30340`)
- Removed the ``warn`` keyword in :func:`infer_freq` (:issue:`45947`)
- Removed the ``include_start`` and ``include_end`` arguments in :meth:`DataFrame.between_time` in favor of ``inclusive`` (:issue:`43248`)
- Removed the ``closed`` argument in :meth:`date_range` and :meth:`bdate_range` in favor of ``inclusive`` argument (:issue:`40245`)
- Removed the ``center`` keyword in :meth:`DataFrame.expanding` (:issue:`20647`)
- Removed the ``truediv`` keyword from :func:`eval` (:issue:`29812`)
- Removed the ``method`` and ``tolerance`` arguments in :meth:`Index.get_loc`. Use ``index.get_indexer([label], method=..., tolerance=...)`` instead (:issue:`42269`)
- Removed the ``pandas.datetime`` submodule (:issue:`30489`)
- Removed the ``pandas.np`` submodule (:issue:`30296`)
- Removed ``pandas.util.testing`` in favor of ``pandas.testing`` (:issue:`30745`)
- Removed :meth:`Series.str.__iter__` (:issue:`28277`)
- Removed ``pandas.SparseArray`` in favor of :class:`arrays.SparseArray` (:issue:`30642`)
- Removed ``pandas.SparseSeries`` and ``pandas.SparseDataFrame``, including pickle support. (:issue:`30642`)
- Enforced disallowing passing an integer ``fill_value`` to :meth:`DataFrame.shift` and :meth:`Series.shift`` with datetime64, timedelta64, or period dtypes (:issue:`32591`)
- Enforced disallowing a string column label into ``times`` in :meth:`DataFrame.ewm` (:issue:`43265`)
- Enforced disallowing passing ``True`` and ``False`` into ``inclusive`` in :meth:`Series.between` in favor of ``"both"`` and ``"neither"`` respectively (:issue:`40628`)
- Enforced disallowing using ``usecols`` with out of bounds indices for ``read_csv`` with ``engine="c"`` (:issue:`25623`)
- Enforced disallowing the use of ``**kwargs`` in :class:`.ExcelWriter`; use the keyword argument ``engine_kwargs`` instead (:issue:`40430`)
- Enforced disallowing a tuple of column labels into :meth:`.DataFrameGroupBy.__getitem__` (:issue:`30546`)
- Enforced disallowing missing labels when indexing with a sequence of labels on a level of a :class:`MultiIndex`. This now raises a ``KeyError`` (:issue:`42351`)
- Enforced disallowing setting values with ``.loc`` using a positional slice. Use ``.loc`` with labels or ``.iloc`` with positions instead (:issue:`31840`)
- Enforced disallowing positional indexing with a ``float`` key even if that key is a round number, manually cast to integer instead (:issue:`34193`)
- Enforced disallowing using a :class:`DataFrame` indexer with ``.iloc``, use ``.loc`` instead for automatic alignment (:issue:`39022`)
- Enforced disallowing ``set`` or ``dict`` indexers in ``__getitem__`` and ``__setitem__`` methods (:issue:`42825`)
- Enforced disallowing indexing on a :class:`Index` or positional indexing on a :class:`Series` producing multi-dimensional objects e.g. ``obj[:, None]``, convert to numpy before indexing instead (:issue:`35141`)
- Enforced disallowing ``dict`` or ``set`` objects in ``suffixes`` in :func:`merge` (:issue:`34810`)
- Enforced disallowing :func:`merge` to produce duplicated columns through the ``suffixes`` keyword and already existing columns (:issue:`22818`)
- Enforced disallowing using :func:`merge` or :func:`join` on a different number of levels (:issue:`34862`)
- Enforced disallowing ``value_name`` argument in :func:`DataFrame.melt` to match an element in the :class:`DataFrame` columns (:issue:`35003`)
- Enforced disallowing passing ``showindex`` into ``**kwargs`` in :func:`DataFrame.to_markdown` and :func:`Series.to_markdown` in favor of ``index`` (:issue:`33091`)
- Removed setting Categorical._codes directly (:issue:`41429`)
- Removed setting Categorical.categories directly (:issue:`47834`)
- Removed argument ``inplace`` from :meth:`Categorical.add_categories`, :meth:`Categorical.remove_categories`, :meth:`Categorical.set_categories`, :meth:`Categorical.rename_categories`, :meth:`Categorical.reorder_categories`, :meth:`Categorical.set_ordered`, :meth:`Categorical.as_ordered`, :meth:`Categorical.as_unordered` (:issue:`37981`, :issue:`41118`, :issue:`41133`, :issue:`47834`)
- Enforced :meth:`Rolling.count` with ``min_periods=None`` to default to the size of the window (:issue:`31302`)
- Renamed ``fname`` to ``path`` in :meth:`DataFrame.to_parquet`, :meth:`DataFrame.to_stata` and :meth:`DataFrame.to_feather` (:issue:`30338`)
- Enforced disallowing indexing a :class:`Series` with a single item list with a slice (e.g. ``ser[[slice(0, 2)]]``). Either convert the list to tuple, or pass the slice directly instead (:issue:`31333`)
- Changed behavior indexing on a :class:`DataFrame` with a :class:`DatetimeIndex` index using a string indexer, previously this operated as a slice on rows, now it operates like any other column key; use ``frame.loc[key]`` for the old behavior (:issue:`36179`)
- Enforced the ``display.max_colwidth`` option to not accept negative integers (:issue:`31569`)
- Removed the ``display.column_space`` option in favor of ``df.to_string(col_space=...)`` (:issue:`47280`)
- Removed the deprecated method ``mad`` from pandas classes (:issue:`11787`)
- Removed the deprecated method ``tshift`` from pandas classes (:issue:`11631`)
- Changed behavior of empty data passed into :class:`Series`; the default dtype will be ``object`` instead of ``float64`` (:issue:`29405`)
- Changed the behavior of :meth:`DatetimeIndex.union`, :meth:`DatetimeIndex.intersection`, and :meth:`DatetimeIndex.symmetric_difference` with mismatched timezones to convert to UTC instead of casting to object dtype (:issue:`39328`)
- Changed the behavior of :func:`to_datetime` with argument "now" with ``utc=False`` to match ``Timestamp("now")`` (:issue:`18705`)
- Changed the behavior of indexing on a timezone-aware :class:`DatetimeIndex` with a timezone-naive ``datetime`` object or vice-versa; these now behave like any other non-comparable type by raising ``KeyError`` (:issue:`36148`)
- Changed the behavior of :meth:`Index.reindex`, :meth:`Series.reindex`, and :meth:`DataFrame.reindex` with a ``datetime64`` dtype and a ``datetime.date`` object for ``fill_value``; these are no longer considered equivalent to ``datetime.datetime`` objects so the reindex casts to object dtype (:issue:`39767`)
- Changed behavior of :meth:`SparseArray.astype` when given a dtype that is not explicitly ``SparseDtype``, cast to the exact requested dtype rather than silently using a ``SparseDtype`` instead (:issue:`34457`)
- Changed behavior of :meth:`Index.ravel` to return a view on the original :class:`Index` instead of a ``np.ndarray`` (:issue:`36900`)
- Changed behavior of :meth:`Series.to_frame` and :meth:`Index.to_frame` with explicit ``name=None`` to use ``None`` for the column name instead of the index's name or default ``0`` (:issue:`45523`)
- Changed behavior of :func:`concat` with one array of ``bool``-dtype and another of integer dtype, this now returns ``object`` dtype instead of integer dtype; explicitly cast the bool object to integer before concatenating to get the old behavior (:issue:`45101`)
- Changed behavior of :class:`DataFrame` constructor given floating-point ``data`` and an integer ``dtype``, when the data cannot be cast losslessly, the floating point dtype is retained, matching :class:`Series` behavior (:issue:`41170`)
- Changed behavior of :class:`Index` constructor when given a ``np.ndarray`` with object-dtype containing numeric entries; this now retains object dtype rather than inferring a numeric dtype, consistent with :class:`Series` behavior (:issue:`42870`)
- Changed behavior of :meth:`Index.__and__`, :meth:`Index.__or__` and :meth:`Index.__xor__` to behave as logical operations (matching :class:`Series` behavior) instead of aliases for set operations (:issue:`37374`)
- Changed behavior of :class:`DataFrame` constructor when passed a list whose first element is a :class:`Categorical`, this now treats the elements as rows casting to ``object`` dtype, consistent with behavior for other types (:issue:`38845`)
- Changed behavior of :class:`DataFrame` constructor when passed a ``dtype`` (other than int) that the data cannot be cast to; it now raises instead of silently ignoring the dtype (:issue:`41733`)
- Changed the behavior of :class:`Series` constructor, it will no longer infer a datetime64 or timedelta64 dtype from string entries (:issue:`41731`)
- Changed behavior of :class:`Timestamp` constructor with a ``np.datetime64`` object and a ``tz`` passed to interpret the input as a wall-time as opposed to a UTC time (:issue:`42288`)
- Changed behavior of :meth:`Timestamp.utcfromtimestamp` to return a timezone-aware object satisfying ``Timestamp.utcfromtimestamp(val).timestamp() == val`` (:issue:`45083`)
- Changed behavior of :class:`Index` constructor when passed a ``SparseArray`` or ``SparseDtype`` to retain that dtype instead of casting to ``numpy.ndarray`` (:issue:`43930`)
- Changed behavior of setitem-like operations (``__setitem__``, ``fillna``, ``where``, ``mask``, ``replace``, ``insert``, fill_value for ``shift``) on an object with :class:`DatetimeTZDtype` when using a value with a non-matching timezone, the value will be cast to the object's timezone instead of casting both to object-dtype (:issue:`44243`)
- Changed behavior of :class:`Index`, :class:`Series`, :class:`DataFrame` constructors with floating-dtype data and a :class:`DatetimeTZDtype`, the data are now interpreted as UTC-times instead of wall-times, consistent with how integer-dtype data are treated (:issue:`45573`)
- Changed behavior of :class:`Series` and :class:`DataFrame` constructors with integer dtype and floating-point data containing ``NaN``, this now raises ``IntCastingNaNError`` (:issue:`40110`)
- Changed behavior of :class:`Series` and :class:`DataFrame` constructors with an integer ``dtype`` and values that are too large to losslessly cast to this dtype, this now raises ``ValueError`` (:issue:`41734`)
- Changed behavior of :class:`Series` and :class:`DataFrame` constructors with an integer ``dtype`` and values having either ``datetime64`` or ``timedelta64`` dtypes, this now raises ``TypeError``, use ``values.view("int64")`` instead (:issue:`41770`)
- Removed the deprecated ``base`` and ``loffset`` arguments from :meth:`pandas.DataFrame.resample`, :meth:`pandas.Series.resample` and :class:`pandas.Grouper`. Use ``offset`` or ``origin`` instead (:issue:`31809`)
- Changed behavior of :meth:`Series.fillna` and :meth:`DataFrame.fillna` with ``timedelta64[ns]`` dtype and an incompatible ``fill_value``; this now casts to ``object`` dtype instead of raising, consistent with the behavior with other dtypes (:issue:`45746`)
- Change the default argument of ``regex`` for :meth:`Series.str.replace` from ``True`` to ``False``. Additionally, a single character ``pat`` with ``regex=True`` is now treated as a regular expression instead of a string literal. (:issue:`36695`, :issue:`24804`)
- Changed behavior of :meth:`DataFrame.any` and :meth:`DataFrame.all` with ``bool_only=True``; object-dtype columns with all-bool values will no longer be included, manually cast to ``bool`` dtype first (:issue:`46188`)
- Changed behavior of :meth:`DataFrame.max`, :class:`DataFrame.min`, :class:`DataFrame.mean`, :class:`DataFrame.median`, :class:`DataFrame.skew`, :class:`DataFrame.kurt` with ``axis=None`` to return a scalar applying the aggregation across both axes (:issue:`45072`)
- Changed behavior of comparison of a :class:`Timestamp` with a ``datetime.date`` object; these now compare as un-equal and raise on inequality comparisons, matching the ``datetime.datetime`` behavior (:issue:`36131`)
- Changed behavior of comparison of ``NaT`` with a ``datetime.date`` object; these now raise on inequality comparisons (:issue:`39196`)
- Enforced deprecation of silently dropping columns that raised a ``TypeError`` in :class:`Series.transform` and :class:`DataFrame.transform` when used with a list or dictionary (:issue:`43740`)
- Changed behavior of :meth:`DataFrame.apply` with list-like so that any partial failure will raise an error (:issue:`43740`)
- Changed behaviour of :meth:`DataFrame.to_latex` to now use the Styler implementation via :meth:`.Styler.to_latex` (:issue:`47970`)
- Changed behavior of :meth:`Series.__setitem__` with an integer key and a :class:`Float64Index` when the key is not present in the index; previously we treated the key as positional (behaving like ``series.iloc[key] = val``), now we treat it is a label (behaving like ``series.loc[key] = val``), consistent with :meth:`Series.__getitem__`` behavior (:issue:`33469`)
- Removed ``na_sentinel`` argument from :func:`factorize`, :meth:`.Index.factorize`, and :meth:`.ExtensionArray.factorize` (:issue:`47157`)
- Changed behavior of :meth:`Series.diff` and :meth:`DataFrame.diff` with :class:`ExtensionDtype` dtypes whose arrays do not implement ``diff``, these now raise ``TypeError`` rather than casting to numpy (:issue:`31025`)
- Enforced deprecation of calling numpy "ufunc"s on :class:`DataFrame` with ``method="outer"``; this now raises ``NotImplementedError`` (:issue:`36955`)
- Enforced deprecation disallowing passing ``numeric_only=True`` to :class:`Series` reductions (``rank``, ``any``, ``all``, ...) with non-numeric dtype (:issue:`47500`)
- Changed behavior of :meth:`.DataFrameGroupBy.apply` and :meth:`.SeriesGroupBy.apply` so that ``group_keys`` is respected even if a transformer is detected (:issue:`34998`)
- Comparisons between a :class:`DataFrame` and a :class:`Series` where the frame's columns do not match the series's index raise ``ValueError`` instead of automatically aligning, do ``left, right = left.align(right, axis=1, copy=False)`` before comparing (:issue:`36795`)
- Enforced deprecation ``numeric_only=None`` (the default) in DataFrame reductions that would silently drop columns that raised; ``numeric_only`` now defaults to ``False`` (:issue:`41480`)
- Changed default of ``numeric_only`` to ``False`` in all DataFrame methods with that argument (:issue:`46096`, :issue:`46906`)
- Changed default of ``numeric_only`` to ``False`` in :meth:`Series.rank` (:issue:`47561`)
- Enforced deprecation of silently dropping nuisance columns in groupby and resample operations when ``numeric_only=False`` (:issue:`41475`)
- Enforced deprecation of silently dropping nuisance columns in :class:`Rolling`, :class:`Expanding`, and :class:`ExponentialMovingWindow` ops. This will now raise a :class:`.errors.DataError` (:issue:`42834`)
- Changed behavior in setting values with ``df.loc[:, foo] = bar`` or ``df.iloc[:, foo] = bar``, these now always attempt to set values inplace before falling back to casting (:issue:`45333`)
- Changed default of ``numeric_only`` in various :class:`.DataFrameGroupBy` methods; all methods now default to ``numeric_only=False`` (:issue:`46072`)
- Changed default of ``numeric_only`` to ``False`` in :class:`.Resampler` methods (:issue:`47177`)
- Using the method :meth:`.DataFrameGroupBy.transform` with a callable that returns DataFrames will align to the input's index (:issue:`47244`)
- When providing a list of columns of length one to :meth:`DataFrame.groupby`, the keys that are returned by iterating over the resulting :class:`DataFrameGroupBy` object will now be tuples of length one (:issue:`47761`)
- Removed deprecated methods :meth:`ExcelWriter.write_cells`, :meth:`ExcelWriter.save`, :meth:`ExcelWriter.cur_sheet`, :meth:`ExcelWriter.handles`, :meth:`ExcelWriter.path` (:issue:`45795`)
- The :class:`ExcelWriter` attribute ``book`` can no longer be set; it is still available to be accessed and mutated (:issue:`48943`)
- Removed unused ``*args`` and ``**kwargs`` in :class:`Rolling`, :class:`Expanding`, and :class:`ExponentialMovingWindow` ops (:issue:`47851`)
- Removed the deprecated argument ``line_terminator`` from :meth:`DataFrame.to_csv` (:issue:`45302`)
- Removed the deprecated argument ``label`` from :func:`lreshape` (:issue:`30219`)
- Arguments after ``expr`` in :meth:`DataFrame.eval` and :meth:`DataFrame.query` are keyword-only (:issue:`47587`)
- Removed :meth:`Index._get_attributes_dict` (:issue:`50648`)
- Removed :meth:`Series.__array_wrap__` (:issue:`50648`)
- Changed behavior of :meth:`.DataFrame.value_counts` to return a :class:`Series` with :class:`MultiIndex` for any list-like(one element or not) but an :class:`Index` for a single label (:issue:`50829`)
.. ---------------------------------------------------------------------------
.. _whatsnew_200.performance:
Performance improvements
~~~~~~~~~~~~~~~~~~~~~~~~
- Performance improvement in :meth:`.DataFrameGroupBy.median` and :meth:`.SeriesGroupBy.median` and :meth:`.DataFrameGroupBy.cumprod` for nullable dtypes (:issue:`37493`)
- Performance improvement in :meth:`.DataFrameGroupBy.all`, :meth:`.DataFrameGroupBy.any`, :meth:`.SeriesGroupBy.all`, and :meth:`.SeriesGroupBy.any` for object dtype (:issue:`50623`)
- Performance improvement in :meth:`MultiIndex.argsort` and :meth:`MultiIndex.sort_values` (:issue:`48406`)
- Performance improvement in :meth:`MultiIndex.size` (:issue:`48723`)
- Performance improvement in :meth:`MultiIndex.union` without missing values and without duplicates (:issue:`48505`, :issue:`48752`)
- Performance improvement in :meth:`MultiIndex.difference` (:issue:`48606`)
- Performance improvement in :class:`MultiIndex` set operations with sort=None (:issue:`49010`)
- Performance improvement in :meth:`.DataFrameGroupBy.mean`, :meth:`.SeriesGroupBy.mean`, :meth:`.DataFrameGroupBy.var`, and :meth:`.SeriesGroupBy.var` for extension array dtypes (:issue:`37493`)
- Performance improvement in :meth:`MultiIndex.isin` when ``level=None`` (:issue:`48622`, :issue:`49577`)
- Performance improvement in :meth:`MultiIndex.putmask` (:issue:`49830`)
- Performance improvement in :meth:`Index.union` and :meth:`MultiIndex.union` when index contains duplicates (:issue:`48900`)
- Performance improvement in :meth:`Series.rank` for pyarrow-backed dtypes (:issue:`50264`)
- Performance improvement in :meth:`Series.searchsorted` for pyarrow-backed dtypes (:issue:`50447`)
- Performance improvement in :meth:`Series.fillna` for extension array dtypes (:issue:`49722`, :issue:`50078`)
- Performance improvement in :meth:`Index.join`, :meth:`Index.intersection` and :meth:`Index.union` for masked and arrow dtypes when :class:`Index` is monotonic (:issue:`50310`, :issue:`51365`)
- Performance improvement for :meth:`Series.value_counts` with nullable dtype (:issue:`48338`)
- Performance improvement for :class:`Series` constructor passing integer numpy array with nullable dtype (:issue:`48338`)
- Performance improvement for :class:`DatetimeIndex` constructor passing a list (:issue:`48609`)
- Performance improvement in :func:`merge` and :meth:`DataFrame.join` when joining on a sorted :class:`MultiIndex` (:issue:`48504`)
- Performance improvement in :func:`to_datetime` when parsing strings with timezone offsets (:issue:`50107`)
- Performance improvement in :meth:`DataFrame.loc` and :meth:`Series.loc` for tuple-based indexing of a :class:`MultiIndex` (:issue:`48384`)
- Performance improvement for :meth:`Series.replace` with categorical dtype (:issue:`49404`)
- Performance improvement for :meth:`MultiIndex.unique` (:issue:`48335`)
- Performance improvement for indexing operations with nullable and arrow dtypes (:issue:`49420`, :issue:`51316`)
- Performance improvement for :func:`concat` with extension array backed indexes (:issue:`49128`, :issue:`49178`)
- Performance improvement for :func:`api.types.infer_dtype` (:issue:`51054`)
- Reduce memory usage of :meth:`DataFrame.to_pickle`/:meth:`Series.to_pickle` when using BZ2 or LZMA (:issue:`49068`)
- Performance improvement for :class:`~arrays.StringArray` constructor passing a numpy array with type ``np.str_`` (:issue:`49109`)
- Performance improvement in :meth:`~arrays.IntervalArray.from_tuples` (:issue:`50620`)
- Performance improvement in :meth:`~arrays.ArrowExtensionArray.factorize` (:issue:`49177`)
- Performance improvement in :meth:`~arrays.ArrowExtensionArray.__setitem__` (:issue:`50248`, :issue:`50632`)
- Performance improvement in :class:`~arrays.ArrowExtensionArray` comparison methods when array contains NA (:issue:`50524`)
- Performance improvement in :meth:`~arrays.ArrowExtensionArray.to_numpy` (:issue:`49973`, :issue:`51227`)
- Performance improvement when parsing strings to :class:`BooleanDtype` (:issue:`50613`)
- Performance improvement in :meth:`DataFrame.join` when joining on a subset of a :class:`MultiIndex` (:issue:`48611`)
- Performance improvement for :meth:`MultiIndex.intersection` (:issue:`48604`)
- Performance improvement in :meth:`DataFrame.__setitem__` (:issue:`46267`)
- Performance improvement in ``var`` and ``std`` for nullable dtypes (:issue:`48379`).
- Performance improvement when iterating over pyarrow and nullable dtypes (:issue:`49825`, :issue:`49851`)
- Performance improvements to :func:`read_sas` (:issue:`47403`, :issue:`47405`, :issue:`47656`, :issue:`48502`)
- Memory improvement in :meth:`RangeIndex.sort_values` (:issue:`48801`)
- Performance improvement in :meth:`Series.to_numpy` if ``copy=True`` by avoiding copying twice (:issue:`24345`)
- Performance improvement in :meth:`Series.rename` with :class:`MultiIndex` (:issue:`21055`)
- Performance improvement in :class:`DataFrameGroupBy` and :class:`SeriesGroupBy` when ``by`` is a categorical type and ``sort=False`` (:issue:`48976`)
- Performance improvement in :class:`DataFrameGroupBy` and :class:`SeriesGroupBy` when ``by`` is a categorical type and ``observed=False`` (:issue:`49596`)
- Performance improvement in :func:`read_stata` with parameter ``index_col`` set to ``None`` (the default). Now the index will be a :class:`RangeIndex` instead of :class:`Int64Index` (:issue:`49745`)
- Performance improvement in :func:`merge` when not merging on the index - the new index will now be :class:`RangeIndex` instead of :class:`Int64Index` (:issue:`49478`)
- Performance improvement in :meth:`DataFrame.to_dict` and :meth:`Series.to_dict` when using any non-object dtypes (:issue:`46470`)
- Performance improvement in :func:`read_html` when there are multiple tables (:issue:`49929`)
- Performance improvement in :class:`Period` constructor when constructing from a string or integer (:issue:`38312`)
- Performance improvement in :func:`to_datetime` when using ``'%Y%m%d'`` format (:issue:`17410`)
- Performance improvement in :func:`to_datetime` when format is given or can be inferred (:issue:`50465`)
- Performance improvement in :meth:`Series.median` for nullable dtypes (:issue:`50838`)
- Performance improvement in :func:`read_csv` when passing :func:`to_datetime` lambda-function to ``date_parser`` and inputs have mixed timezone offsetes (:issue:`35296`)
- Performance improvement in :func:`isna` and :func:`isnull` (:issue:`50658`)
- Performance improvement in :meth:`.SeriesGroupBy.value_counts` with categorical dtype (:issue:`46202`)
- Fixed a reference leak in :func:`read_hdf` (:issue:`37441`)
- Fixed a memory leak in :meth:`DataFrame.to_json` and :meth:`Series.to_json` when serializing datetimes and timedeltas (:issue:`40443`)
- Decreased memory usage in many :class:`DataFrameGroupBy` methods (:issue:`51090`)
- Performance improvement in :meth:`DataFrame.round` for an integer ``decimal`` parameter (:issue:`17254`)
- Performance improvement in :meth:`DataFrame.replace` and :meth:`Series.replace` when using a large dict for ``to_replace`` (:issue:`6697`)
- Memory improvement in :class:`StataReader` when reading seekable files (:issue:`48922`)
.. ---------------------------------------------------------------------------
.. _whatsnew_200.bug_fixes:
Bug fixes
~~~~~~~~~
Categorical
^^^^^^^^^^^
- Bug in :meth:`Categorical.set_categories` losing dtype information (:issue:`48812`)
- Bug in :meth:`Series.replace` with categorical dtype when ``to_replace`` values overlap with new values (:issue:`49404`)
- Bug in :meth:`Series.replace` with categorical dtype losing nullable dtypes of underlying categories (:issue:`49404`)
- Bug in :meth:`DataFrame.groupby` and :meth:`Series.groupby` would reorder categories when used as a grouper (:issue:`48749`)
- Bug in :class:`Categorical` constructor when constructing from a :class:`Categorical` object and ``dtype="category"`` losing ordered-ness (:issue:`49309`)
- Bug in :meth:`.SeriesGroupBy.min`, :meth:`.SeriesGroupBy.max`, :meth:`.DataFrameGroupBy.min`, and :meth:`.DataFrameGroupBy.max` with unordered :class:`CategoricalDtype` with no groups failing to raise ``TypeError`` (:issue:`51034`)
Datetimelike
^^^^^^^^^^^^
- Bug in :func:`pandas.infer_freq`, raising ``TypeError`` when inferred on :class:`RangeIndex` (:issue:`47084`)
- Bug in :func:`to_datetime` incorrectly raising ``OverflowError`` with string arguments corresponding to large integers (:issue:`50533`)
- Bug in :func:`to_datetime` was raising on invalid offsets with ``errors='coerce'`` and ``infer_datetime_format=True`` (:issue:`48633`)
- Bug in :class:`DatetimeIndex` constructor failing to raise when ``tz=None`` is explicitly specified in conjunction with timezone-aware ``dtype`` or data (:issue:`48659`)
- Bug in subtracting a ``datetime`` scalar from :class:`DatetimeIndex` failing to retain the original ``freq`` attribute (:issue:`48818`)
- Bug in ``pandas.tseries.holiday.Holiday`` where a half-open date interval causes inconsistent return types from :meth:`USFederalHolidayCalendar.holidays` (:issue:`49075`)
- Bug in rendering :class:`DatetimeIndex` and :class:`Series` and :class:`DataFrame` with timezone-aware dtypes with ``dateutil`` or ``zoneinfo`` timezones near daylight-savings transitions (:issue:`49684`)
- Bug in :func:`to_datetime` was raising ``ValueError`` when parsing :class:`Timestamp`, ``datetime.datetime``, ``datetime.date``, or ``np.datetime64`` objects when non-ISO8601 ``format`` was passed (:issue:`49298`, :issue:`50036`)
- Bug in :func:`to_datetime` was raising ``ValueError`` when parsing empty string and non-ISO8601 format was passed. Now, empty strings will be parsed as :class:`NaT`, for compatibility with how is done for ISO8601 formats (:issue:`50251`)
- Bug in :class:`Timestamp` was showing ``UserWarning``, which was not actionable by users, when parsing non-ISO8601 delimited date strings (:issue:`50232`)
- Bug in :func:`to_datetime` was showing misleading ``ValueError`` when parsing dates with format containing ISO week directive and ISO weekday directive (:issue:`50308`)
- Bug in :meth:`Timestamp.round` when the ``freq`` argument has zero-duration (e.g. "0ns") returning incorrect results instead of raising (:issue:`49737`)
- Bug in :func:`to_datetime` was not raising ``ValueError`` when invalid format was passed and ``errors`` was ``'ignore'`` or ``'coerce'`` (:issue:`50266`)
- Bug in :class:`DateOffset` was throwing ``TypeError`` when constructing with milliseconds and another super-daily argument (:issue:`49897`)
- Bug in :func:`to_datetime` was not raising ``ValueError`` when parsing string with decimal date with format ``'%Y%m%d'`` (:issue:`50051`)
- Bug in :func:`to_datetime` was not converting ``None`` to ``NaT`` when parsing mixed-offset date strings with ISO8601 format (:issue:`50071`)
- Bug in :func:`to_datetime` was not returning input when parsing out-of-bounds date string with ``errors='ignore'`` and ``format='%Y%m%d'`` (:issue:`14487`)
- Bug in :func:`to_datetime` was converting timezone-naive ``datetime.datetime`` to timezone-aware when parsing with timezone-aware strings, ISO8601 format, and ``utc=False`` (:issue:`50254`)
- Bug in :func:`to_datetime` was throwing ``ValueError`` when parsing dates with ISO8601 format where some values were not zero-padded (:issue:`21422`)
- Bug in :func:`to_datetime` was giving incorrect results when using ``format='%Y%m%d'`` and ``errors='ignore'`` (:issue:`26493`)
- Bug in :func:`to_datetime` was failing to parse date strings ``'today'`` and ``'now'`` if ``format`` was not ISO8601 (:issue:`50359`)
- Bug in :func:`Timestamp.utctimetuple` raising a ``TypeError`` (:issue:`32174`)
- Bug in :func:`to_datetime` was raising ``ValueError`` when parsing mixed-offset :class:`Timestamp` with ``errors='ignore'`` (:issue:`50585`)
- Bug in :func:`to_datetime` was incorrectly handling floating-point inputs within 1 ``unit`` of the overflow boundaries (:issue:`50183`)
- Bug in :func:`to_datetime` with unit of "Y" or "M" giving incorrect results, not matching pointwise :class:`Timestamp` results (:issue:`50870`)
- Bug in :meth:`Series.interpolate` and :meth:`DataFrame.interpolate` with datetime or timedelta dtypes incorrectly raising ``ValueError`` (:issue:`11312`)
- Bug in :func:`to_datetime` was not returning input with ``errors='ignore'`` when input was out-of-bounds (:issue:`50587`)
- Bug in :func:`DataFrame.from_records` when given a :class:`DataFrame` input with timezone-aware datetime64 columns incorrectly dropping the timezone-awareness (:issue:`51162`)
- Bug in :func:`to_datetime` was raising ``decimal.InvalidOperation`` when parsing date strings with ``errors='coerce'`` (:issue:`51084`)
- Bug in :func:`to_datetime` with both ``unit`` and ``origin`` specified returning incorrect results (:issue:`42624`)
- Bug in :meth:`Series.astype` and :meth:`DataFrame.astype` when converting an object-dtype object containing timezone-aware datetimes or strings to ``datetime64[ns]`` incorrectly localizing as UTC instead of raising ``TypeError`` (:issue:`50140`)
- Bug in :meth:`.DataFrameGroupBy.quantile` and :meth:`.SeriesGroupBy.quantile` with datetime or timedelta dtypes giving incorrect results for groups containing ``NaT`` (:issue:`51373`)
- Bug in :meth:`.DataFrameGroupBy.quantile` and :meth:`.SeriesGroupBy.quantile` incorrectly raising with :class:`PeriodDtype` or :class:`DatetimeTZDtype` (:issue:`51373`)
Timedelta
^^^^^^^^^
- Bug in :func:`to_timedelta` raising error when input has nullable dtype ``Float64`` (:issue:`48796`)
- Bug in :class:`Timedelta` constructor incorrectly raising instead of returning ``NaT`` when given a ``np.timedelta64("nat")`` (:issue:`48898`)
- Bug in :class:`Timedelta` constructor failing to raise when passed both a :class:`Timedelta` object and keywords (e.g. days, seconds) (:issue:`48898`)
- Bug in :class:`Timedelta` comparisons with very large ``datetime.timedelta`` objects incorrect raising ``OutOfBoundsTimedelta`` (:issue:`49021`)
Timezones
^^^^^^^^^
- Bug in :meth:`Series.astype` and :meth:`DataFrame.astype` with object-dtype containing multiple timezone-aware ``datetime`` objects with heterogeneous timezones to a :class:`DatetimeTZDtype` incorrectly raising (:issue:`32581`)
- Bug in :func:`to_datetime` was failing to parse date strings with timezone name when ``format`` was specified with ``%Z`` (:issue:`49748`)
- Better error message when passing invalid values to ``ambiguous`` parameter in :meth:`Timestamp.tz_localize` (:issue:`49565`)
- Bug in string parsing incorrectly allowing a :class:`Timestamp` to be constructed with an invalid timezone, which would raise when trying to print (:issue:`50668`)
- Corrected TypeError message in :func:`objects_to_datetime64ns` to inform that DatetimeIndex has mixed timezones (:issue:`50974`)
Numeric
^^^^^^^
- Bug in :meth:`DataFrame.add` cannot apply ufunc when inputs contain mixed DataFrame type and Series type (:issue:`39853`)
- Bug in arithmetic operations on :class:`Series` not propagating mask when combining masked dtypes and numpy dtypes (:issue:`45810`, :issue:`42630`)
- Bug in :meth:`DataFrame.sem` and :meth:`Series.sem` where an erroneous ``TypeError`` would always raise when using data backed by an :class:`ArrowDtype` (:issue:`49759`)
- Bug in :meth:`Series.__add__` casting to object for list and masked :class:`Series` (:issue:`22962`)
- Bug in :meth:`~arrays.ArrowExtensionArray.mode` where ``dropna=False`` was not respected when there was ``NA`` values (:issue:`50982`)
- Bug in :meth:`DataFrame.query` with ``engine="numexpr"`` and column names are ``min`` or ``max`` would raise a ``TypeError`` (:issue:`50937`)
- Bug in :meth:`DataFrame.min` and :meth:`DataFrame.max` with tz-aware data containing ``pd.NaT`` and ``axis=1`` would return incorrect results (:issue:`51242`)
Conversion
^^^^^^^^^^
- Bug in constructing :class:`Series` with ``int64`` dtype from a string list raising instead of casting (:issue:`44923`)
- Bug in constructing :class:`Series` with masked dtype and boolean values with ``NA`` raising (:issue:`42137`)
- Bug in :meth:`DataFrame.eval` incorrectly raising an ``AttributeError`` when there are negative values in function call (:issue:`46471`)
- Bug in :meth:`Series.convert_dtypes` not converting dtype to nullable dtype when :class:`Series` contains ``NA`` and has dtype ``object`` (:issue:`48791`)
- Bug where any :class:`ExtensionDtype` subclass with ``kind="M"`` would be interpreted as a timezone type (:issue:`34986`)
- Bug in :class:`.arrays.ArrowExtensionArray` that would raise ``NotImplementedError`` when passed a sequence of strings or binary (:issue:`49172`)
- Bug in :meth:`Series.astype` raising ``pyarrow.ArrowInvalid`` when converting from a non-pyarrow string dtype to a pyarrow numeric type (:issue:`50430`)
- Bug in :meth:`DataFrame.astype` modifying input array inplace when converting to ``string`` and ``copy=False`` (:issue:`51073`)
- Bug in :meth:`Series.to_numpy` converting to NumPy array before applying ``na_value`` (:issue:`48951`)
- Bug in :meth:`DataFrame.astype` not copying data when converting to pyarrow dtype (:issue:`50984`)
- Bug in :func:`to_datetime` was not respecting ``exact`` argument when ``format`` was an ISO8601 format (:issue:`12649`)
- Bug in :meth:`TimedeltaArray.astype` raising ``TypeError`` when converting to a pyarrow duration type (:issue:`49795`)
- Bug in :meth:`DataFrame.eval` and :meth:`DataFrame.query` raising for extension array dtypes (:issue:`29618`, :issue:`50261`, :issue:`31913`)
- Bug in :meth:`Series` not copying data when created from :class:`Index` and ``dtype`` is equal to ``dtype`` from :class:`Index` (:issue:`52008`)
Strings
^^^^^^^
- Bug in :func:`pandas.api.types.is_string_dtype` that would not return ``True`` for :class:`StringDtype` or :class:`ArrowDtype` with ``pyarrow.string()`` (:issue:`15585`)
- Bug in converting string dtypes to "datetime64[ns]" or "timedelta64[ns]" incorrectly raising ``TypeError`` (:issue:`36153`)
- Bug in setting values in a string-dtype column with an array, mutating the array as side effect when it contains missing values (:issue:`51299`)
Interval
^^^^^^^^
- Bug in :meth:`IntervalIndex.is_overlapping` incorrect output if interval has duplicate left boundaries (:issue:`49581`)
- Bug in :meth:`Series.infer_objects` failing to infer :class:`IntervalDtype` for an object series of :class:`Interval` objects (:issue:`50090`)
- Bug in :meth:`Series.shift` with :class:`IntervalDtype` and invalid null ``fill_value`` failing to raise ``TypeError`` (:issue:`51258`)
Indexing
^^^^^^^^
- Bug in :meth:`DataFrame.__setitem__` raising when indexer is a :class:`DataFrame` with ``boolean`` dtype (:issue:`47125`)
- Bug in :meth:`DataFrame.reindex` filling with wrong values when indexing columns and index for ``uint`` dtypes (:issue:`48184`)
- Bug in :meth:`DataFrame.loc` when setting :class:`DataFrame` with different dtypes coercing values to single dtype (:issue:`50467`)
- Bug in :meth:`DataFrame.sort_values` where ``None`` was not returned when ``by`` is empty list and ``inplace=True`` (:issue:`50643`)
- Bug in :meth:`DataFrame.loc` coercing dtypes when setting values with a list indexer (:issue:`49159`)
- Bug in :meth:`Series.loc` raising error for out of bounds end of slice indexer (:issue:`50161`)
- Bug in :meth:`DataFrame.loc` raising ``ValueError`` with all ``False`` ``bool`` indexer and empty object (:issue:`51450`)
- Bug in :meth:`DataFrame.loc` raising ``ValueError`` with ``bool`` indexer and :class:`MultiIndex` (:issue:`47687`)
- Bug in :meth:`DataFrame.loc` raising ``IndexError`` when setting values for a pyarrow-backed column with a non-scalar indexer (:issue:`50085`)
- Bug in :meth:`DataFrame.__getitem__`, :meth:`Series.__getitem__`, :meth:`DataFrame.__setitem__` and :meth:`Series.__setitem__`
when indexing on indexes with extension float dtypes (:class:`Float64` & :class:`Float64`) or complex dtypes using integers (:issue:`51053`)
- Bug in :meth:`DataFrame.loc` modifying object when setting incompatible value with an empty indexer (:issue:`45981`)
- Bug in :meth:`DataFrame.__setitem__` raising ``ValueError`` when right hand side is :class:`DataFrame` with :class:`MultiIndex` columns (:issue:`49121`)
- Bug in :meth:`DataFrame.reindex` casting dtype to ``object`` when :class:`DataFrame` has single extension array column when re-indexing ``columns`` and ``index`` (:issue:`48190`)
- Bug in :meth:`DataFrame.iloc` raising ``IndexError`` when indexer is a :class:`Series` with numeric extension array dtype (:issue:`49521`)
- Bug in :func:`~DataFrame.describe` when formatting percentiles in the resulting index showed more decimals than needed (:issue:`46362`)
- Bug in :meth:`DataFrame.compare` does not recognize differences when comparing ``NA`` with value in nullable dtypes (:issue:`48939`)
- Bug in :meth:`Series.rename` with :class:`MultiIndex` losing extension array dtypes (:issue:`21055`)
- Bug in :meth:`DataFrame.isetitem` coercing extension array dtypes in :class:`DataFrame` to object (:issue:`49922`)
- Bug in :meth:`Series.__getitem__` returning corrupt object when selecting from an empty pyarrow backed object (:issue:`51734`)
- Bug in :class:`BusinessHour` would cause creation of :class:`DatetimeIndex` to fail when no opening hour was included in the index (:issue:`49835`)
Missing
^^^^^^^
- Bug in :meth:`Index.equals` raising ``TypeError`` when :class:`Index` consists of tuples that contain ``NA`` (:issue:`48446`)
- Bug in :meth:`Series.map` caused incorrect result when data has NaNs and defaultdict mapping was used (:issue:`48813`)
- Bug in :class:`NA` raising a ``TypeError`` instead of return :class:`NA` when performing a binary operation with a ``bytes`` object (:issue:`49108`)
- Bug in :meth:`DataFrame.update` with ``overwrite=False`` raising ``TypeError`` when ``self`` has column with ``NaT`` values and column not present in ``other`` (:issue:`16713`)
- Bug in :meth:`Series.replace` raising ``RecursionError`` when replacing value in object-dtype :class:`Series` containing ``NA`` (:issue:`47480`)
- Bug in :meth:`Series.replace` raising ``RecursionError`` when replacing value in numeric :class:`Series` with ``NA`` (:issue:`50758`)
MultiIndex
^^^^^^^^^^
- Bug in :meth:`MultiIndex.get_indexer` not matching ``NaN`` values (:issue:`29252`, :issue:`37222`, :issue:`38623`, :issue:`42883`, :issue:`43222`, :issue:`46173`, :issue:`48905`)
- Bug in :meth:`MultiIndex.argsort` raising ``TypeError`` when index contains :attr:`NA` (:issue:`48495`)
- Bug in :meth:`MultiIndex.difference` losing extension array dtype (:issue:`48606`)
- Bug in :class:`MultiIndex.set_levels` raising ``IndexError`` when setting empty level (:issue:`48636`)
- Bug in :meth:`MultiIndex.unique` losing extension array dtype (:issue:`48335`)
- Bug in :meth:`MultiIndex.intersection` losing extension array (:issue:`48604`)
- Bug in :meth:`MultiIndex.union` losing extension array (:issue:`48498`, :issue:`48505`, :issue:`48900`)
- Bug in :meth:`MultiIndex.union` not sorting when sort=None and index contains missing values (:issue:`49010`)
- Bug in :meth:`MultiIndex.append` not checking names for equality (:issue:`48288`)
- Bug in :meth:`MultiIndex.symmetric_difference` losing extension array (:issue:`48607`)
- Bug in :meth:`MultiIndex.join` losing dtypes when :class:`MultiIndex` has duplicates (:issue:`49830`)
- Bug in :meth:`MultiIndex.putmask` losing extension array (:issue:`49830`)
- Bug in :meth:`MultiIndex.value_counts` returning a :class:`Series` indexed by flat index of tuples instead of a :class:`MultiIndex` (:issue:`49558`)
I/O
^^^
- Bug in :func:`read_sas` caused fragmentation of :class:`DataFrame` and raised :class:`.errors.PerformanceWarning` (:issue:`48595`)
- Improved error message in :func:`read_excel` by including the offending sheet name when an exception is raised while reading a file (:issue:`48706`)
- Bug when a pickling a subset PyArrow-backed data that would serialize the entire data instead of the subset (:issue:`42600`)
- Bug in :func:`read_sql_query` ignoring ``dtype`` argument when ``chunksize`` is specified and result is empty (:issue:`50245`)
- Bug in :func:`read_csv` for a single-line csv with fewer columns than ``names`` raised :class:`.errors.ParserError` with ``engine="c"`` (:issue:`47566`)
- Bug in :func:`read_json` raising with ``orient="table"`` and ``NA`` value (:issue:`40255`)
- Bug in displaying ``string`` dtypes not showing storage option (:issue:`50099`)
- Bug in :meth:`DataFrame.to_string` with ``header=False`` that printed the index name on the same line as the first row of the data (:issue:`49230`)
- Bug in :meth:`DataFrame.to_string` ignoring float formatter for extension arrays (:issue:`39336`)
- Fixed memory leak which stemmed from the initialization of the internal JSON module (:issue:`49222`)
- Fixed issue where :func:`json_normalize` would incorrectly remove leading characters from column names that matched the ``sep`` argument (:issue:`49861`)
- Bug in :func:`read_csv` unnecessarily overflowing for extension array dtype when containing ``NA`` (:issue:`32134`)
- Bug in :meth:`DataFrame.to_dict` not converting ``NA`` to ``None`` (:issue:`50795`)
- Bug in :meth:`DataFrame.to_json` where it would segfault when failing to encode a string (:issue:`50307`)
- Bug in :meth:`DataFrame.to_html` with ``na_rep`` set when the :class:`DataFrame` contains non-scalar data (:issue:`47103`)
- Bug in :func:`read_xml` where file-like objects failed when iterparse is used (:issue:`50641`)
- Bug in :func:`read_csv` when ``engine="pyarrow"`` where ``encoding`` parameter was not handled correctly (:issue:`51302`)
- Bug in :func:`read_xml` ignored repeated elements when iterparse is used (:issue:`51183`)
- Bug in :class:`ExcelWriter` leaving file handles open if an exception occurred during instantiation (:issue:`51443`)
- Bug in :meth:`DataFrame.to_parquet` where non-string index or columns were raising a ``ValueError`` when ``engine="pyarrow"`` (:issue:`52036`)
Period
^^^^^^
- Bug in :meth:`Period.strftime` and :meth:`PeriodIndex.strftime`, raising ``UnicodeDecodeError`` when a locale-specific directive was passed (:issue:`46319`)
- Bug in adding a :class:`Period` object to an array of :class:`DateOffset` objects incorrectly raising ``TypeError`` (:issue:`50162`)
- Bug in :class:`Period` where passing a string with finer resolution than nanosecond would result in a ``KeyError`` instead of dropping the extra precision (:issue:`50417`)
- Bug in parsing strings representing Week-periods e.g. "2017-01-23/2017-01-29" as minute-frequency instead of week-frequency (:issue:`50803`)
- Bug in :meth:`.DataFrameGroupBy.sum`, :meth:`.DataFrameGroupByGroupBy.cumsum`, :meth:`.DataFrameGroupByGroupBy.prod`, :meth:`.DataFrameGroupByGroupBy.cumprod` with :class:`PeriodDtype` failing to raise ``TypeError`` (:issue:`51040`)
- Bug in parsing empty string with :class:`Period` incorrectly raising ``ValueError`` instead of returning ``NaT`` (:issue:`51349`)
Plotting
^^^^^^^^
- Bug in :meth:`DataFrame.plot.hist`, not dropping elements of ``weights`` corresponding to ``NaN`` values in ``data`` (:issue:`48884`)
- ``ax.set_xlim`` was sometimes raising ``UserWarning`` which users couldn't address due to ``set_xlim`` not accepting parsing arguments - the converter now uses :func:`Timestamp` instead (:issue:`49148`)
Groupby/resample/rolling
^^^^^^^^^^^^^^^^^^^^^^^^
- Bug in :class:`.ExponentialMovingWindow` with ``online`` not raising a ``NotImplementedError`` for unsupported operations (:issue:`48834`)
- Bug in :meth:`.DataFrameGroupBy.sample` raises ``ValueError`` when the object is empty (:issue:`48459`)
- Bug in :meth:`Series.groupby` raises ``ValueError`` when an entry of the index is equal to the name of the index (:issue:`48567`)
- Bug in :meth:`.DataFrameGroupBy.resample` produces inconsistent results when passing empty DataFrame (:issue:`47705`)
- Bug in :class:`.DataFrameGroupBy` and :class:`.SeriesGroupBy` would not include unobserved categories in result when grouping by categorical indexes (:issue:`49354`)
- Bug in :class:`.DataFrameGroupBy` and :class:`.SeriesGroupBy` would change result order depending on the input index when grouping by categoricals (:issue:`49223`)
- Bug in :class:`.DataFrameGroupBy` and :class:`.SeriesGroupBy` when grouping on categorical data would sort result values even when used with ``sort=False`` (:issue:`42482`)
- Bug in :meth:`.DataFrameGroupBy.apply` and :class:`.SeriesGroupBy.apply` with ``as_index=False`` would not attempt the computation without using the grouping keys when using them failed with a ``TypeError`` (:issue:`49256`)
- Bug in :meth:`.DataFrameGroupBy.describe` would describe the group keys (:issue:`49256`)
- Bug in :meth:`.SeriesGroupBy.describe` with ``as_index=False`` would have the incorrect shape (:issue:`49256`)
- Bug in :class:`.DataFrameGroupBy` and :class:`.SeriesGroupBy` with ``dropna=False`` would drop NA values when the grouper was categorical (:issue:`36327`)
- Bug in :meth:`.SeriesGroupBy.nunique` would incorrectly raise when the grouper was an empty categorical and ``observed=True`` (:issue:`21334`)
- Bug in :meth:`.SeriesGroupBy.nth` would raise when grouper contained NA values after subsetting from a :class:`DataFrameGroupBy` (:issue:`26454`)
- Bug in :meth:`DataFrame.groupby` would not include a :class:`.Grouper` specified by ``key`` in the result when ``as_index=False`` (:issue:`50413`)
- Bug in :meth:`.DataFrameGroupBy.value_counts` would raise when used with a :class:`.TimeGrouper` (:issue:`50486`)
- Bug in :meth:`.Resampler.size` caused a wide :class:`DataFrame` to be returned instead of a :class:`Series` with :class:`MultiIndex` (:issue:`46826`)
- Bug in :meth:`.DataFrameGroupBy.transform` and :meth:`.SeriesGroupBy.transform` would raise incorrectly when grouper had ``axis=1`` for ``"idxmin"`` and ``"idxmax"`` arguments (:issue:`45986`)
- Bug in :class:`.DataFrameGroupBy` would raise when used with an empty DataFrame, categorical grouper, and ``dropna=False`` (:issue:`50634`)
- Bug in :meth:`.SeriesGroupBy.value_counts` did not respect ``sort=False`` (:issue:`50482`)
- Bug in :meth:`.DataFrameGroupBy.resample` raises ``KeyError`` when getting the result from a key list when resampling on time index (:issue:`50840`)
- Bug in :meth:`.DataFrameGroupBy.transform` and :meth:`.SeriesGroupBy.transform` would raise incorrectly when grouper had ``axis=1`` for ``"ngroup"`` argument (:issue:`45986`)
- Bug in :meth:`.DataFrameGroupBy.describe` produced incorrect results when data had duplicate columns (:issue:`50806`)
- Bug in :meth:`.DataFrameGroupBy.agg` with ``engine="numba"`` failing to respect ``as_index=False`` (:issue:`51228`)
- Bug in :meth:`.DataFrameGroupBy.agg`, :meth:`.SeriesGroupBy.agg`, and :meth:`.Resampler.agg` would ignore arguments when passed a list of functions (:issue:`50863`)
- Bug in :meth:`.DataFrameGroupBy.ohlc` ignoring ``as_index=False`` (:issue:`51413`)
- Bug in :meth:`DataFrameGroupBy.agg` after subsetting columns (e.g. ``.groupby(...)[["a", "b"]]``) would not include groupings in the result (:issue:`51186`)
Reshaping
^^^^^^^^^
- Bug in :meth:`DataFrame.pivot_table` raising ``TypeError`` for nullable dtype and ``margins=True`` (:issue:`48681`)
- Bug in :meth:`DataFrame.unstack` and :meth:`Series.unstack` unstacking wrong level of :class:`MultiIndex` when :class:`MultiIndex` has mixed names (:issue:`48763`)
- Bug in :meth:`DataFrame.melt` losing extension array dtype (:issue:`41570`)
- Bug in :meth:`DataFrame.pivot` not respecting ``None`` as column name (:issue:`48293`)
- Bug in :meth:`DataFrame.join` when ``left_on`` or ``right_on`` is or includes a :class:`CategoricalIndex` incorrectly raising ``AttributeError`` (:issue:`48464`)
- Bug in :meth:`DataFrame.pivot_table` raising ``ValueError`` with parameter ``margins=True`` when result is an empty :class:`DataFrame` (:issue:`49240`)
- Clarified error message in :func:`merge` when passing invalid ``validate`` option (:issue:`49417`)
- Bug in :meth:`DataFrame.explode` raising ``ValueError`` on multiple columns with ``NaN`` values or empty lists (:issue:`46084`)
- Bug in :meth:`DataFrame.transpose` with ``IntervalDtype`` column with ``timedelta64[ns]`` endpoints (:issue:`44917`)
- Bug in :meth:`DataFrame.agg` and :meth:`Series.agg` would ignore arguments when passed a list of functions (:issue:`50863`)
Sparse
^^^^^^
- Bug in :meth:`Series.astype` when converting a ``SparseDtype`` with ``datetime64[ns]`` subtype to ``int64`` dtype raising, inconsistent with the non-sparse behavior (:issue:`49631`,:issue:`50087`)
- Bug in :meth:`Series.astype` when converting a from ``datetime64[ns]`` to ``Sparse[datetime64[ns]]`` incorrectly raising (:issue:`50082`)
- Bug in :meth:`Series.sparse.to_coo` raising ``SystemError`` when :class:`MultiIndex` contains a ``ExtensionArray`` (:issue:`50996`)
ExtensionArray
^^^^^^^^^^^^^^
- Bug in :meth:`Series.mean` overflowing unnecessarily with nullable integers (:issue:`48378`)
- Bug in :meth:`Series.tolist` for nullable dtypes returning numpy scalars instead of python scalars (:issue:`49890`)
- Bug in :meth:`Series.round` for pyarrow-backed dtypes raising ``AttributeError`` (:issue:`50437`)
- Bug when concatenating an empty DataFrame with an ExtensionDtype to another DataFrame with the same ExtensionDtype, the resulting dtype turned into object (:issue:`48510`)
- Bug in :meth:`array.PandasArray.to_numpy` raising with ``NA`` value when ``na_value`` is specified (:issue:`40638`)
- Bug in :meth:`api.types.is_numeric_dtype` where a custom :class:`ExtensionDtype` would not return ``True`` if ``_is_numeric`` returned ``True`` (:issue:`50563`)
- Bug in :meth:`api.types.is_integer_dtype`, :meth:`api.types.is_unsigned_integer_dtype`, :meth:`api.types.is_signed_integer_dtype`, :meth:`api.types.is_float_dtype` where a custom :class:`ExtensionDtype` would not return ``True`` if ``kind`` returned the corresponding NumPy type (:issue:`50667`)
- Bug in :class:`Series` constructor unnecessarily overflowing for nullable unsigned integer dtypes (:issue:`38798`, :issue:`25880`)
- Bug in setting non-string value into ``StringArray`` raising ``ValueError`` instead of ``TypeError`` (:issue:`49632`)
- Bug in :meth:`DataFrame.reindex` not honoring the default ``copy=True`` keyword in case of columns with ExtensionDtype (and as a result also selecting multiple columns with getitem (``[]``) didn't correctly result in a copy) (:issue:`51197`)
- Bug in :class:`~arrays.ArrowExtensionArray` logical operations ``&`` and ``|`` raising ``KeyError`` (:issue:`51688`)
Styler
^^^^^^
- Fix :meth:`~pandas.io.formats.style.Styler.background_gradient` for nullable dtype :class:`Series` with ``NA`` values (:issue:`50712`)
Metadata
^^^^^^^^
- Fixed metadata propagation in :meth:`DataFrame.corr` and :meth:`DataFrame.cov` (:issue:`28283`)
Other
^^^^^
- Bug in incorrectly accepting dtype strings containing "[pyarrow]" more than once (:issue:`51548`)
- Bug in :meth:`Series.searchsorted` inconsistent behavior when accepting :class:`DataFrame` as parameter ``value`` (:issue:`49620`)
- Bug in :func:`array` failing to raise on :class:`DataFrame` inputs (:issue:`51167`)
.. ---------------------------------------------------------------------------
.. _whatsnew_200.contributors:
Contributors
~~~~~~~~~~~~
.. contributors:: v1.5.0rc0..v2.0.0
|