1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508
|
"""
Template for each `dtype` helper function for hashtable
WARNING: DO NOT edit .pxi FILE directly, .pxi is generated from .pxi.in
"""
{{py:
# name
complex_types = ['complex64',
'complex128']
}}
{{for name in complex_types}}
cdef kh{{name}}_t to_kh{{name}}_t({{name}}_t val) noexcept nogil:
cdef kh{{name}}_t res
res.real = val.real
res.imag = val.imag
return res
{{endfor}}
{{py:
# name
c_types = ['khcomplex128_t',
'khcomplex64_t',
'float64_t',
'float32_t',
'int64_t',
'int32_t',
'int16_t',
'int8_t',
'uint64_t',
'uint32_t',
'uint16_t',
'uint8_t']
}}
{{for c_type in c_types}}
cdef bint is_nan_{{c_type}}({{c_type}} val) noexcept nogil:
{{if c_type in {'khcomplex128_t', 'khcomplex64_t'} }}
return val.real != val.real or val.imag != val.imag
{{elif c_type in {'float64_t', 'float32_t'} }}
return val != val
{{else}}
return False
{{endif}}
{{if c_type in {'khcomplex128_t', 'khcomplex64_t', 'float64_t', 'float32_t'} }}
# are_equivalent_{{c_type}} is cimported via khash.pxd
{{else}}
cdef bint are_equivalent_{{c_type}}({{c_type}} val1, {{c_type}} val2) noexcept nogil:
return val1 == val2
{{endif}}
{{endfor}}
{{py:
# name
cimported_types = ['complex64',
'complex128',
'float32',
'float64',
'int8',
'int16',
'int32',
'int64',
'pymap',
'str',
'strbox',
'uint8',
'uint16',
'uint32',
'uint64']
}}
{{for name in cimported_types}}
from pandas._libs.khash cimport (
kh_destroy_{{name}},
kh_exist_{{name}},
kh_get_{{name}},
kh_init_{{name}},
kh_put_{{name}},
kh_resize_{{name}},
)
{{endfor}}
# ----------------------------------------------------------------------
# VectorData
# ----------------------------------------------------------------------
from pandas._libs.tslibs.util cimport get_c_string
from pandas._libs.missing cimport C_NA
{{py:
# name, dtype, c_type
# the generated StringVector is not actually used
# but is included for completeness (rather ObjectVector is used
# for uniques in hashtables)
dtypes = [('Complex128', 'complex128', 'khcomplex128_t'),
('Complex64', 'complex64', 'khcomplex64_t'),
('Float64', 'float64', 'float64_t'),
('Float32', 'float32', 'float32_t'),
('Int64', 'int64', 'int64_t'),
('Int32', 'int32', 'int32_t'),
('Int16', 'int16', 'int16_t'),
('Int8', 'int8', 'int8_t'),
('String', 'string', 'char *'),
('UInt64', 'uint64', 'uint64_t'),
('UInt32', 'uint32', 'uint32_t'),
('UInt16', 'uint16', 'uint16_t'),
('UInt8', 'uint8', 'uint8_t')]
}}
{{for name, dtype, c_type in dtypes}}
{{if dtype != 'int64'}}
# Int64VectorData is defined in the .pxd file because it is needed (indirectly)
# by IntervalTree
ctypedef struct {{name}}VectorData:
{{c_type}} *data
Py_ssize_t n, m
{{endif}}
@cython.wraparound(False)
@cython.boundscheck(False)
cdef void append_data_{{dtype}}({{name}}VectorData *data,
{{c_type}} x) noexcept nogil:
data.data[data.n] = x
data.n += 1
{{endfor}}
ctypedef fused vector_data:
Int64VectorData
Int32VectorData
Int16VectorData
Int8VectorData
UInt64VectorData
UInt32VectorData
UInt16VectorData
UInt8VectorData
Float64VectorData
Float32VectorData
Complex128VectorData
Complex64VectorData
StringVectorData
cdef bint needs_resize(vector_data *data) noexcept nogil:
return data.n == data.m
# ----------------------------------------------------------------------
# Vector
# ----------------------------------------------------------------------
cdef class Vector:
# cdef readonly:
# bint external_view_exists
def __cinit__(self):
self.external_view_exists = False
{{py:
# name, dtype, c_type
dtypes = [('Complex128', 'complex128', 'khcomplex128_t'),
('Complex64', 'complex64', 'khcomplex64_t'),
('Float64', 'float64', 'float64_t'),
('UInt64', 'uint64', 'uint64_t'),
('Int64', 'int64', 'int64_t'),
('Float32', 'float32', 'float32_t'),
('UInt32', 'uint32', 'uint32_t'),
('Int32', 'int32', 'int32_t'),
('UInt16', 'uint16', 'uint16_t'),
('Int16', 'int16', 'int16_t'),
('UInt8', 'uint8', 'uint8_t'),
('Int8', 'int8', 'int8_t')]
}}
{{for name, dtype, c_type in dtypes}}
cdef class {{name}}Vector(Vector):
# For int64 we have to put this declaration in the .pxd file;
# Int64Vector is the only one we need exposed for other cython files.
{{if dtype != 'int64'}}
cdef:
{{name}}VectorData *data
ndarray ao
{{endif}}
def __cinit__(self):
self.data = <{{name}}VectorData *>PyMem_Malloc(
sizeof({{name}}VectorData))
if not self.data:
raise MemoryError()
self.data.n = 0
self.data.m = _INIT_VEC_CAP
self.ao = np.empty(self.data.m, dtype=np.{{dtype}})
self.data.data = <{{c_type}}*>self.ao.data
cdef resize(self):
self.data.m = max(self.data.m * 4, _INIT_VEC_CAP)
self.ao.resize(self.data.m, refcheck=False)
self.data.data = <{{c_type}}*>self.ao.data
def __dealloc__(self):
if self.data is not NULL:
PyMem_Free(self.data)
self.data = NULL
def __len__(self) -> int:
return self.data.n
cpdef ndarray to_array(self):
if self.data.m != self.data.n:
if self.external_view_exists:
# should never happen
raise ValueError("should have raised on append()")
self.ao.resize(self.data.n, refcheck=False)
self.data.m = self.data.n
self.external_view_exists = True
return self.ao
cdef void append(self, {{c_type}} x) noexcept:
if needs_resize(self.data):
if self.external_view_exists:
raise ValueError("external reference but "
"Vector.resize() needed")
self.resize()
append_data_{{dtype}}(self.data, x)
cdef extend(self, const {{c_type}}[:] x):
for i in range(len(x)):
self.append(x[i])
{{endfor}}
cdef class StringVector(Vector):
cdef:
StringVectorData *data
def __cinit__(self):
self.data = <StringVectorData *>PyMem_Malloc(sizeof(StringVectorData))
if not self.data:
raise MemoryError()
self.data.n = 0
self.data.m = _INIT_VEC_CAP
self.data.data = <char **>malloc(self.data.m * sizeof(char *))
if not self.data.data:
raise MemoryError()
cdef resize(self):
cdef:
char **orig_data
Py_ssize_t i, m
m = self.data.m
self.data.m = max(self.data.m * 4, _INIT_VEC_CAP)
orig_data = self.data.data
self.data.data = <char **>malloc(self.data.m * sizeof(char *))
if not self.data.data:
raise MemoryError()
for i in range(m):
self.data.data[i] = orig_data[i]
def __dealloc__(self):
if self.data is not NULL:
if self.data.data is not NULL:
free(self.data.data)
PyMem_Free(self.data)
self.data = NULL
def __len__(self) -> int:
return self.data.n
cpdef ndarray[object, ndim=1] to_array(self):
cdef:
ndarray ao
Py_ssize_t n
object val
ao = np.empty(self.data.n, dtype=object)
for i in range(self.data.n):
val = self.data.data[i]
ao[i] = val
self.external_view_exists = True
self.data.m = self.data.n
return ao
cdef void append(self, char *x) noexcept:
if needs_resize(self.data):
self.resize()
append_data_string(self.data, x)
cdef extend(self, ndarray[object] x):
for i in range(len(x)):
self.append(x[i])
cdef class ObjectVector(Vector):
cdef:
PyObject **data
Py_ssize_t n, m
ndarray ao
def __cinit__(self):
self.n = 0
self.m = _INIT_VEC_CAP
self.ao = np.empty(_INIT_VEC_CAP, dtype=object)
self.data = <PyObject**>self.ao.data
def __len__(self) -> int:
return self.n
cdef append(self, object obj):
if self.n == self.m:
if self.external_view_exists:
raise ValueError("external reference but "
"Vector.resize() needed")
self.m = max(self.m * 2, _INIT_VEC_CAP)
self.ao.resize(self.m, refcheck=False)
self.data = <PyObject**>self.ao.data
Py_INCREF(obj)
self.data[self.n] = <PyObject*>obj
self.n += 1
cpdef ndarray[object, ndim=1] to_array(self):
if self.m != self.n:
if self.external_view_exists:
raise ValueError("should have raised on append()")
self.ao.resize(self.n, refcheck=False)
self.m = self.n
self.external_view_exists = True
return self.ao
cdef extend(self, ndarray[object] x):
for i in range(len(x)):
self.append(x[i])
# ----------------------------------------------------------------------
# HashTable
# ----------------------------------------------------------------------
cdef class HashTable:
pass
{{py:
# name, dtype, c_type, to_c_type
dtypes = [('Complex128', 'complex128', 'khcomplex128_t', 'to_khcomplex128_t'),
('Float64', 'float64', 'float64_t', ''),
('UInt64', 'uint64', 'uint64_t', ''),
('Int64', 'int64', 'int64_t', ''),
('Complex64', 'complex64', 'khcomplex64_t', 'to_khcomplex64_t'),
('Float32', 'float32', 'float32_t', ''),
('UInt32', 'uint32', 'uint32_t', ''),
('Int32', 'int32', 'int32_t', ''),
('UInt16', 'uint16', 'uint16_t', ''),
('Int16', 'int16', 'int16_t', ''),
('UInt8', 'uint8', 'uint8_t', ''),
('Int8', 'int8', 'int8_t', '')]
}}
{{for name, dtype, c_type, to_c_type in dtypes}}
cdef class {{name}}HashTable(HashTable):
def __cinit__(self, int64_t size_hint=1, bint uses_mask=False):
self.table = kh_init_{{dtype}}()
size_hint = min(kh_needed_n_buckets(size_hint), SIZE_HINT_LIMIT)
kh_resize_{{dtype}}(self.table, size_hint)
self.uses_mask = uses_mask
self.na_position = -1
def __len__(self) -> int:
return self.table.size + (0 if self.na_position == -1 else 1)
def __dealloc__(self):
if self.table is not NULL:
kh_destroy_{{dtype}}(self.table)
self.table = NULL
def __contains__(self, object key) -> bool:
# The caller is responsible to check for compatible NA values in case
# of masked arrays.
cdef:
khiter_t k
{{c_type}} ckey
if self.uses_mask and checknull(key):
return -1 != self.na_position
ckey = {{to_c_type}}(key)
k = kh_get_{{dtype}}(self.table, ckey)
return k != self.table.n_buckets
def sizeof(self, deep: bool = False) -> int:
""" return the size of my table in bytes """
overhead = 4 * sizeof(uint32_t) + 3 * sizeof(uint32_t*)
for_flags = max(1, self.table.n_buckets >> 5) * sizeof(uint32_t)
for_pairs = self.table.n_buckets * (sizeof({{dtype}}_t) + # keys
sizeof(Py_ssize_t)) # vals
return overhead + for_flags + for_pairs
def get_state(self) -> dict[str, int]:
""" returns infos about the state of the hashtable"""
return {
'n_buckets' : self.table.n_buckets,
'size' : self.table.size,
'n_occupied' : self.table.n_occupied,
'upper_bound' : self.table.upper_bound,
}
cpdef get_item(self, {{dtype}}_t val):
"""Extracts the position of val from the hashtable.
Parameters
----------
val : Scalar
The value that is looked up in the hashtable
Returns
-------
The position of the requested integer.
"""
# Used in core.sorting, IndexEngine.get_loc
# Caller is responsible for checking for pd.NA
cdef:
khiter_t k
{{c_type}} cval
cval = {{to_c_type}}(val)
k = kh_get_{{dtype}}(self.table, cval)
if k != self.table.n_buckets:
return self.table.vals[k]
else:
raise KeyError(val)
cpdef get_na(self):
"""Extracts the position of na_value from the hashtable.
Returns
-------
The position of the last na value.
"""
if not self.uses_mask:
raise NotImplementedError
if self.na_position == -1:
raise KeyError("NA")
return self.na_position
cpdef set_item(self, {{dtype}}_t key, Py_ssize_t val):
# Used in libjoin
# Caller is responsible for checking for pd.NA
cdef:
khiter_t k
int ret = 0
{{c_type}} ckey
ckey = {{to_c_type}}(key)
k = kh_put_{{dtype}}(self.table, ckey, &ret)
if kh_exist_{{dtype}}(self.table, k):
self.table.vals[k] = val
else:
raise KeyError(key)
cpdef set_na(self, Py_ssize_t val):
# Caller is responsible for checking for pd.NA
cdef:
khiter_t k
int ret = 0
{{c_type}} ckey
if not self.uses_mask:
raise NotImplementedError
self.na_position = val
{{if dtype == "int64" }}
# We only use this for int64, can reduce build size and make .pyi
# more accurate by only implementing it for int64
@cython.boundscheck(False)
def map_keys_to_values(
self, const {{dtype}}_t[:] keys, const int64_t[:] values
) -> None:
cdef:
Py_ssize_t i, n = len(values)
int ret = 0
{{c_type}} key
khiter_t k
with nogil:
for i in range(n):
key = {{to_c_type}}(keys[i])
k = kh_put_{{dtype}}(self.table, key, &ret)
self.table.vals[k] = <Py_ssize_t>values[i]
{{endif}}
@cython.boundscheck(False)
def map_locations(self, const {{dtype}}_t[:] values, const uint8_t[:] mask = None) -> None:
# Used in libindex, safe_sort
cdef:
Py_ssize_t i, n = len(values)
int ret = 0
{{c_type}} val
khiter_t k
int8_t na_position = self.na_position
if self.uses_mask and mask is None:
raise NotImplementedError # pragma: no cover
with nogil:
if self.uses_mask:
for i in range(n):
if mask[i]:
na_position = i
else:
val= {{to_c_type}}(values[i])
k = kh_put_{{dtype}}(self.table, val, &ret)
self.table.vals[k] = i
else:
for i in range(n):
val= {{to_c_type}}(values[i])
k = kh_put_{{dtype}}(self.table, val, &ret)
self.table.vals[k] = i
self.na_position = na_position
@cython.boundscheck(False)
def lookup(self, const {{dtype}}_t[:] values, const uint8_t[:] mask = None) -> ndarray:
# -> np.ndarray[np.intp]
# Used in safe_sort, IndexEngine.get_indexer
cdef:
Py_ssize_t i, n = len(values)
int ret = 0
{{c_type}} val
khiter_t k
intp_t[::1] locs = np.empty(n, dtype=np.intp)
int8_t na_position = self.na_position
if self.uses_mask and mask is None:
raise NotImplementedError # pragma: no cover
with nogil:
for i in range(n):
if self.uses_mask and mask[i]:
locs[i] = na_position
else:
val = {{to_c_type}}(values[i])
k = kh_get_{{dtype}}(self.table, val)
if k != self.table.n_buckets:
locs[i] = self.table.vals[k]
else:
locs[i] = -1
return np.asarray(locs)
@cython.boundscheck(False)
@cython.wraparound(False)
def _unique(self, const {{dtype}}_t[:] values, {{name}}Vector uniques,
Py_ssize_t count_prior=0, Py_ssize_t na_sentinel=-1,
object na_value=None, bint ignore_na=False,
object mask=None, bint return_inverse=False, bint use_result_mask=False):
"""
Calculate unique values and labels (no sorting!)
Parameters
----------
values : ndarray[{{dtype}}]
Array of values of which unique will be calculated
uniques : {{name}}Vector
Vector into which uniques will be written
count_prior : Py_ssize_t, default 0
Number of existing entries in uniques
na_sentinel : Py_ssize_t, default -1
Sentinel value used for all NA-values in inverse
na_value : object, default None
Value to identify as missing. If na_value is None, then
any value "val" satisfying val != val is considered missing.
If na_value is not None, then _additionally_, any value "val"
satisfying val == na_value is considered missing.
ignore_na : bool, default False
Whether NA-values should be ignored for calculating the uniques. If
True, the labels corresponding to missing values will be set to
na_sentinel.
mask : ndarray[bool], optional
If not None, the mask is used as indicator for missing values
(True = missing, False = valid) instead of `na_value` or
condition "val != val".
return_inverse : bool, default False
Whether the mapping of the original array values to their location
in the vector of uniques should be returned.
use_result_mask: bool, default False
Whether to create a result mask for the unique values. Not supported
with return_inverse=True.
Returns
-------
uniques : ndarray[{{dtype}}]
Unique values of input, not sorted
labels : ndarray[intp_t] (if return_inverse=True)
The labels from values to uniques
result_mask: ndarray[bool], if use_result_mask is true
The mask for the result values.
"""
cdef:
Py_ssize_t i, idx, count = count_prior, n = len(values)
intp_t[::1] labels
int ret = 0
{{c_type}} val, na_value2
khiter_t k
{{name}}VectorData *ud
UInt8Vector result_mask
UInt8VectorData *rmd
bint use_na_value, use_mask, seen_na = False
const uint8_t[:] mask_values
if return_inverse:
labels = np.empty(n, dtype=np.intp)
ud = uniques.data
use_na_value = na_value is not None
use_mask = mask is not None
if not use_mask and use_result_mask:
raise NotImplementedError # pragma: no cover
if use_result_mask and return_inverse:
raise NotImplementedError # pragma: no cover
result_mask = UInt8Vector()
rmd = result_mask.data
if use_mask:
mask_values = mask.view("uint8")
if use_na_value:
# We need this na_value2 because we want to allow users
# to *optionally* specify an NA sentinel *of the correct* type.
# We use None, to make it optional, which requires `object` type
# for the parameter. To please the compiler, we use na_value2,
# which is only used if it's *specified*.
na_value2 = {{to_c_type}}(na_value)
else:
na_value2 = {{to_c_type}}(0)
with nogil:
for i in range(n):
val = {{to_c_type}}(values[i])
if ignore_na and use_mask:
if mask_values[i]:
labels[i] = na_sentinel
continue
elif ignore_na and (
is_nan_{{c_type}}(val) or
(use_na_value and are_equivalent_{{c_type}}(val, na_value2))
):
# if missing values do not count as unique values (i.e. if
# ignore_na is True), skip the hashtable entry for them,
# and replace the corresponding label with na_sentinel
labels[i] = na_sentinel
continue
elif not ignore_na and use_result_mask:
if mask_values[i]:
if seen_na:
continue
seen_na = True
if needs_resize(ud):
with gil:
if uniques.external_view_exists:
raise ValueError("external reference to "
"uniques held, but "
"Vector.resize() needed")
uniques.resize()
if result_mask.external_view_exists:
raise ValueError("external reference to "
"result_mask held, but "
"Vector.resize() needed")
result_mask.resize()
append_data_{{dtype}}(ud, val)
append_data_uint8(rmd, 1)
continue
k = kh_get_{{dtype}}(self.table, val)
if k == self.table.n_buckets:
# k hasn't been seen yet
k = kh_put_{{dtype}}(self.table, val, &ret)
if needs_resize(ud):
with gil:
if uniques.external_view_exists:
raise ValueError("external reference to "
"uniques held, but "
"Vector.resize() needed")
uniques.resize()
if use_result_mask:
if result_mask.external_view_exists:
raise ValueError("external reference to "
"result_mask held, but "
"Vector.resize() needed")
result_mask.resize()
append_data_{{dtype}}(ud, val)
if use_result_mask:
append_data_uint8(rmd, 0)
if return_inverse:
self.table.vals[k] = count
labels[i] = count
count += 1
elif return_inverse:
# k falls into a previous bucket
# only relevant in case we need to construct the inverse
idx = self.table.vals[k]
labels[i] = idx
if return_inverse:
return uniques.to_array(), labels.base # .base -> underlying ndarray
if use_result_mask:
return uniques.to_array(), result_mask.to_array()
return uniques.to_array()
def unique(self, const {{dtype}}_t[:] values, bint return_inverse=False, object mask=None):
"""
Calculate unique values and labels (no sorting!)
Parameters
----------
values : ndarray[{{dtype}}]
Array of values of which unique will be calculated
return_inverse : bool, default False
Whether the mapping of the original array values to their location
in the vector of uniques should be returned.
mask : ndarray[bool], optional
If not None, the mask is used as indicator for missing values
(True = missing, False = valid) instead of `na_value` or
Returns
-------
uniques : ndarray[{{dtype}}]
Unique values of input, not sorted
labels : ndarray[intp_t] (if return_inverse)
The labels from values to uniques
result_mask: ndarray[bool], if mask is given as input
The mask for the result values.
"""
uniques = {{name}}Vector()
use_result_mask = True if mask is not None else False
return self._unique(values, uniques, ignore_na=False,
return_inverse=return_inverse, mask=mask, use_result_mask=use_result_mask)
def factorize(self, const {{dtype}}_t[:] values, Py_ssize_t na_sentinel=-1,
object na_value=None, object mask=None, ignore_na=True):
"""
Calculate unique values and labels (no sorting!)
Missing values are not included in the "uniques" for this method.
The labels for any missing values will be set to "na_sentinel"
Parameters
----------
values : ndarray[{{dtype}}]
Array of values of which unique will be calculated
na_sentinel : Py_ssize_t, default -1
Sentinel value used for all NA-values in inverse
na_value : object, default None
Value to identify as missing. If na_value is None, then
any value "val" satisfying val != val is considered missing.
If na_value is not None, then _additionally_, any value "val"
satisfying val == na_value is considered missing.
mask : ndarray[bool], optional
If not None, the mask is used as indicator for missing values
(True = missing, False = valid) instead of `na_value` or
condition "val != val".
Returns
-------
uniques : ndarray[{{dtype}}]
Unique values of input, not sorted
labels : ndarray[intp_t]
The labels from values to uniques
"""
uniques_vector = {{name}}Vector()
return self._unique(values, uniques_vector, na_sentinel=na_sentinel,
na_value=na_value, ignore_na=ignore_na, mask=mask,
return_inverse=True)
def get_labels(self, const {{dtype}}_t[:] values, {{name}}Vector uniques,
Py_ssize_t count_prior=0, Py_ssize_t na_sentinel=-1,
object na_value=None, object mask=None):
# -> np.ndarray[np.intp]
_, labels = self._unique(values, uniques, count_prior=count_prior,
na_sentinel=na_sentinel, na_value=na_value,
ignore_na=True, return_inverse=True, mask=mask)
return labels
{{if dtype == 'int64'}}
@cython.boundscheck(False)
def get_labels_groupby(
self, const {{dtype}}_t[:] values
) -> tuple[ndarray, ndarray]:
# tuple[np.ndarray[np.intp], np.ndarray[{{dtype}}]]
cdef:
Py_ssize_t i, n = len(values)
intp_t[::1] labels
Py_ssize_t idx, count = 0
int ret = 0
{{c_type}} val
khiter_t k
{{name}}Vector uniques = {{name}}Vector()
{{name}}VectorData *ud
labels = np.empty(n, dtype=np.intp)
ud = uniques.data
with nogil:
for i in range(n):
val = {{to_c_type}}(values[i])
# specific for groupby
if val < 0:
labels[i] = -1
continue
k = kh_get_{{dtype}}(self.table, val)
if k != self.table.n_buckets:
idx = self.table.vals[k]
labels[i] = idx
else:
k = kh_put_{{dtype}}(self.table, val, &ret)
self.table.vals[k] = count
if needs_resize(ud):
with gil:
uniques.resize()
append_data_{{dtype}}(ud, val)
labels[i] = count
count += 1
arr_uniques = uniques.to_array()
return np.asarray(labels), arr_uniques
{{endif}}
cdef class {{name}}Factorizer(Factorizer):
cdef public:
{{name}}HashTable table
{{name}}Vector uniques
def __cinit__(self, size_hint: int):
self.table = {{name}}HashTable(size_hint)
self.uniques = {{name}}Vector()
def factorize(self, const {{c_type}}[:] values,
na_sentinel=-1, na_value=None, object mask=None) -> np.ndarray:
"""
Returns
-------
ndarray[intp_t]
Examples
--------
Factorize values with nans replaced by na_sentinel
>>> fac = {{name}}Factorizer(3)
>>> fac.factorize(np.array([1,2,3], dtype="{{dtype}}"), na_sentinel=20)
array([0, 1, 2])
"""
cdef:
ndarray[intp_t] labels
if self.uniques.external_view_exists:
uniques = {{name}}Vector()
uniques.extend(self.uniques.to_array())
self.uniques = uniques
labels = self.table.get_labels(values, self.uniques,
self.count, na_sentinel,
na_value=na_value, mask=mask)
self.count = len(self.uniques)
return labels
{{endfor}}
cdef class StringHashTable(HashTable):
# these by-definition *must* be strings
# or a sentinel np.nan / None missing value
na_string_sentinel = '__nan__'
def __init__(self, int64_t size_hint=1):
self.table = kh_init_str()
size_hint = min(kh_needed_n_buckets(size_hint), SIZE_HINT_LIMIT)
kh_resize_str(self.table, size_hint)
def __dealloc__(self):
if self.table is not NULL:
kh_destroy_str(self.table)
self.table = NULL
def sizeof(self, deep: bool = False) -> int:
overhead = 4 * sizeof(uint32_t) + 3 * sizeof(uint32_t*)
for_flags = max(1, self.table.n_buckets >> 5) * sizeof(uint32_t)
for_pairs = self.table.n_buckets * (sizeof(char *) + # keys
sizeof(Py_ssize_t)) # vals
return overhead + for_flags + for_pairs
def get_state(self) -> dict[str, int]:
""" returns infos about the state of the hashtable"""
return {
'n_buckets' : self.table.n_buckets,
'size' : self.table.size,
'n_occupied' : self.table.n_occupied,
'upper_bound' : self.table.upper_bound,
}
cpdef get_item(self, str val):
cdef:
khiter_t k
const char *v
v = get_c_string(val)
k = kh_get_str(self.table, v)
if k != self.table.n_buckets:
return self.table.vals[k]
else:
raise KeyError(val)
cpdef set_item(self, str key, Py_ssize_t val):
cdef:
khiter_t k
int ret = 0
const char *v
v = get_c_string(key)
k = kh_put_str(self.table, v, &ret)
if kh_exist_str(self.table, k):
self.table.vals[k] = val
else:
raise KeyError(key)
@cython.boundscheck(False)
def get_indexer(self, ndarray[object] values) -> ndarray:
# -> np.ndarray[np.intp]
cdef:
Py_ssize_t i, n = len(values)
ndarray[intp_t] labels = np.empty(n, dtype=np.intp)
intp_t *resbuf = <intp_t*>labels.data
khiter_t k
kh_str_t *table = self.table
const char *v
const char **vecs
vecs = <const char **>malloc(n * sizeof(char *))
for i in range(n):
val = values[i]
v = get_c_string(val)
vecs[i] = v
with nogil:
for i in range(n):
k = kh_get_str(table, vecs[i])
if k != table.n_buckets:
resbuf[i] = table.vals[k]
else:
resbuf[i] = -1
free(vecs)
return labels
@cython.boundscheck(False)
def lookup(self, ndarray[object] values, object mask = None) -> ndarray:
# -> np.ndarray[np.intp]
# mask not yet implemented
cdef:
Py_ssize_t i, n = len(values)
int ret = 0
object val
const char *v
khiter_t k
intp_t[::1] locs = np.empty(n, dtype=np.intp)
# these by-definition *must* be strings
vecs = <const char **>malloc(n * sizeof(char *))
for i in range(n):
val = values[i]
if isinstance(val, str):
# GH#31499 if we have a np.str_ get_c_string won't recognize
# it as a str, even though isinstance does.
v = get_c_string(<str>val)
else:
v = get_c_string(self.na_string_sentinel)
vecs[i] = v
with nogil:
for i in range(n):
v = vecs[i]
k = kh_get_str(self.table, v)
if k != self.table.n_buckets:
locs[i] = self.table.vals[k]
else:
locs[i] = -1
free(vecs)
return np.asarray(locs)
@cython.boundscheck(False)
def map_locations(self, ndarray[object] values, object mask = None) -> None:
# mask not yet implemented
cdef:
Py_ssize_t i, n = len(values)
int ret = 0
object val
const char *v
const char **vecs
khiter_t k
# these by-definition *must* be strings
vecs = <const char **>malloc(n * sizeof(char *))
for i in range(n):
val = values[i]
if isinstance(val, str):
# GH#31499 if we have a np.str_ get_c_string won't recognize
# it as a str, even though isinstance does.
v = get_c_string(<str>val)
else:
v = get_c_string(self.na_string_sentinel)
vecs[i] = v
with nogil:
for i in range(n):
v = vecs[i]
k = kh_put_str(self.table, v, &ret)
self.table.vals[k] = i
free(vecs)
@cython.boundscheck(False)
@cython.wraparound(False)
def _unique(self, ndarray[object] values, ObjectVector uniques,
Py_ssize_t count_prior=0, Py_ssize_t na_sentinel=-1,
object na_value=None, bint ignore_na=False,
bint return_inverse=False):
"""
Calculate unique values and labels (no sorting!)
Parameters
----------
values : ndarray[object]
Array of values of which unique will be calculated
uniques : ObjectVector
Vector into which uniques will be written
count_prior : Py_ssize_t, default 0
Number of existing entries in uniques
na_sentinel : Py_ssize_t, default -1
Sentinel value used for all NA-values in inverse
na_value : object, default None
Value to identify as missing. If na_value is None, then any value
that is not a string is considered missing. If na_value is
not None, then _additionally_ any value "val" satisfying
val == na_value is considered missing.
ignore_na : bool, default False
Whether NA-values should be ignored for calculating the uniques. If
True, the labels corresponding to missing values will be set to
na_sentinel.
return_inverse : bool, default False
Whether the mapping of the original array values to their location
in the vector of uniques should be returned.
Returns
-------
uniques : ndarray[object]
Unique values of input, not sorted
labels : ndarray[intp_t] (if return_inverse=True)
The labels from values to uniques
"""
cdef:
Py_ssize_t i, idx, count = count_prior, n = len(values)
intp_t[::1] labels
int64_t[::1] uindexer
int ret = 0
object val
const char *v
const char **vecs
khiter_t k
bint use_na_value
if return_inverse:
labels = np.zeros(n, dtype=np.intp)
uindexer = np.empty(n, dtype=np.int64)
use_na_value = na_value is not None
# assign pointers and pre-filter out missing (if ignore_na)
vecs = <const char **>malloc(n * sizeof(char *))
for i in range(n):
val = values[i]
if (ignore_na
and (not isinstance(val, str)
or (use_na_value and val == na_value))):
# if missing values do not count as unique values (i.e. if
# ignore_na is True), we can skip the actual value, and
# replace the label with na_sentinel directly
labels[i] = na_sentinel
else:
# if ignore_na is False, we also stringify NaN/None/etc.
try:
v = get_c_string(<str>val)
except UnicodeEncodeError:
v = get_c_string(<str>repr(val))
vecs[i] = v
# compute
with nogil:
for i in range(n):
if ignore_na and labels[i] == na_sentinel:
# skip entries for ignored missing values (see above)
continue
v = vecs[i]
k = kh_get_str(self.table, v)
if k == self.table.n_buckets:
# k hasn't been seen yet
k = kh_put_str(self.table, v, &ret)
uindexer[count] = i
if return_inverse:
self.table.vals[k] = count
labels[i] = count
count += 1
elif return_inverse:
# k falls into a previous bucket
# only relevant in case we need to construct the inverse
idx = self.table.vals[k]
labels[i] = idx
free(vecs)
# uniques
for i in range(count):
uniques.append(values[uindexer[i]])
if return_inverse:
return uniques.to_array(), labels.base # .base -> underlying ndarray
return uniques.to_array()
def unique(self, ndarray[object] values, bint return_inverse=False, object mask=None):
"""
Calculate unique values and labels (no sorting!)
Parameters
----------
values : ndarray[object]
Array of values of which unique will be calculated
return_inverse : bool, default False
Whether the mapping of the original array values to their location
in the vector of uniques should be returned.
mask : ndarray[bool], optional
Not yet implemented for StringHashTable
Returns
-------
uniques : ndarray[object]
Unique values of input, not sorted
labels : ndarray[intp_t] (if return_inverse)
The labels from values to uniques
"""
uniques = ObjectVector()
return self._unique(values, uniques, ignore_na=False,
return_inverse=return_inverse)
def factorize(self, ndarray[object] values, Py_ssize_t na_sentinel=-1,
object na_value=None, object mask=None, ignore_na=True):
"""
Calculate unique values and labels (no sorting!)
Missing values are not included in the "uniques" for this method.
The labels for any missing values will be set to "na_sentinel"
Parameters
----------
values : ndarray[object]
Array of values of which unique will be calculated
na_sentinel : Py_ssize_t, default -1
Sentinel value used for all NA-values in inverse
na_value : object, default None
Value to identify as missing. If na_value is None, then any value
that is not a string is considered missing. If na_value is
not None, then _additionally_ any value "val" satisfying
val == na_value is considered missing.
mask : ndarray[bool], optional
Not yet implemented for StringHashTable.
Returns
-------
uniques : ndarray[object]
Unique values of input, not sorted
labels : ndarray[intp]
The labels from values to uniques
"""
uniques_vector = ObjectVector()
return self._unique(values, uniques_vector, na_sentinel=na_sentinel,
na_value=na_value, ignore_na=ignore_na,
return_inverse=True)
# Add unused mask parameter for compat with other signatures
def get_labels(self, ndarray[object] values, ObjectVector uniques,
Py_ssize_t count_prior=0, Py_ssize_t na_sentinel=-1,
object na_value=None, object mask=None):
# -> np.ndarray[np.intp]
_, labels = self._unique(values, uniques, count_prior=count_prior,
na_sentinel=na_sentinel, na_value=na_value,
ignore_na=True, return_inverse=True)
return labels
cdef class PyObjectHashTable(HashTable):
def __init__(self, int64_t size_hint=1):
self.table = kh_init_pymap()
size_hint = min(kh_needed_n_buckets(size_hint), SIZE_HINT_LIMIT)
kh_resize_pymap(self.table, size_hint)
def __dealloc__(self):
if self.table is not NULL:
kh_destroy_pymap(self.table)
self.table = NULL
def __len__(self) -> int:
return self.table.size
def __contains__(self, object key) -> bool:
cdef:
khiter_t k
hash(key)
k = kh_get_pymap(self.table, <PyObject*>key)
return k != self.table.n_buckets
def sizeof(self, deep: bool = False) -> int:
""" return the size of my table in bytes """
overhead = 4 * sizeof(uint32_t) + 3 * sizeof(uint32_t*)
for_flags = max(1, self.table.n_buckets >> 5) * sizeof(uint32_t)
for_pairs = self.table.n_buckets * (sizeof(PyObject *) + # keys
sizeof(Py_ssize_t)) # vals
return overhead + for_flags + for_pairs
def get_state(self) -> dict[str, int]:
"""
returns infos about the current state of the hashtable like size,
number of buckets and so on.
"""
return {
'n_buckets' : self.table.n_buckets,
'size' : self.table.size,
'n_occupied' : self.table.n_occupied,
'upper_bound' : self.table.upper_bound,
}
cpdef get_item(self, object val):
cdef:
khiter_t k
k = kh_get_pymap(self.table, <PyObject*>val)
if k != self.table.n_buckets:
return self.table.vals[k]
else:
raise KeyError(val)
cpdef set_item(self, object key, Py_ssize_t val):
cdef:
khiter_t k
int ret = 0
char* buf
hash(key)
k = kh_put_pymap(self.table, <PyObject*>key, &ret)
if kh_exist_pymap(self.table, k):
self.table.vals[k] = val
else:
raise KeyError(key)
def map_locations(self, ndarray[object] values, object mask = None) -> None:
# mask not yet implemented
cdef:
Py_ssize_t i, n = len(values)
int ret = 0
object val
khiter_t k
for i in range(n):
val = values[i]
hash(val)
k = kh_put_pymap(self.table, <PyObject*>val, &ret)
self.table.vals[k] = i
def lookup(self, ndarray[object] values, object mask = None) -> ndarray:
# -> np.ndarray[np.intp]
# mask not yet implemented
cdef:
Py_ssize_t i, n = len(values)
int ret = 0
object val
khiter_t k
intp_t[::1] locs = np.empty(n, dtype=np.intp)
for i in range(n):
val = values[i]
hash(val)
k = kh_get_pymap(self.table, <PyObject*>val)
if k != self.table.n_buckets:
locs[i] = self.table.vals[k]
else:
locs[i] = -1
return np.asarray(locs)
@cython.boundscheck(False)
@cython.wraparound(False)
def _unique(self, ndarray[object] values, ObjectVector uniques,
Py_ssize_t count_prior=0, Py_ssize_t na_sentinel=-1,
object na_value=None, bint ignore_na=False,
bint return_inverse=False):
"""
Calculate unique values and labels (no sorting!)
Parameters
----------
values : ndarray[object]
Array of values of which unique will be calculated
uniques : ObjectVector
Vector into which uniques will be written
count_prior : Py_ssize_t, default 0
Number of existing entries in uniques
na_sentinel : Py_ssize_t, default -1
Sentinel value used for all NA-values in inverse
na_value : object, default None
Value to identify as missing. If na_value is None, then None _plus_
any value "val" satisfying val != val is considered missing.
If na_value is not None, then _additionally_, any value "val"
satisfying val == na_value is considered missing.
ignore_na : bool, default False
Whether NA-values should be ignored for calculating the uniques. If
True, the labels corresponding to missing values will be set to
na_sentinel.
return_inverse : bool, default False
Whether the mapping of the original array values to their location
in the vector of uniques should be returned.
Returns
-------
uniques : ndarray[object]
Unique values of input, not sorted
labels : ndarray[intp_t] (if return_inverse=True)
The labels from values to uniques
"""
cdef:
Py_ssize_t i, idx, count = count_prior, n = len(values)
intp_t[::1] labels
int ret = 0
object val
khiter_t k
bint use_na_value
if return_inverse:
labels = np.empty(n, dtype=np.intp)
use_na_value = na_value is not None
for i in range(n):
val = values[i]
hash(val)
if ignore_na and (
checknull(val)
or (use_na_value and val == na_value)
):
# if missing values do not count as unique values (i.e. if
# ignore_na is True), skip the hashtable entry for them, and
# replace the corresponding label with na_sentinel
labels[i] = na_sentinel
continue
k = kh_get_pymap(self.table, <PyObject*>val)
if k == self.table.n_buckets:
# k hasn't been seen yet
k = kh_put_pymap(self.table, <PyObject*>val, &ret)
uniques.append(val)
if return_inverse:
self.table.vals[k] = count
labels[i] = count
count += 1
elif return_inverse:
# k falls into a previous bucket
# only relevant in case we need to construct the inverse
idx = self.table.vals[k]
labels[i] = idx
if return_inverse:
return uniques.to_array(), labels.base # .base -> underlying ndarray
return uniques.to_array()
def unique(self, ndarray[object] values, bint return_inverse=False, object mask=None):
"""
Calculate unique values and labels (no sorting!)
Parameters
----------
values : ndarray[object]
Array of values of which unique will be calculated
return_inverse : bool, default False
Whether the mapping of the original array values to their location
in the vector of uniques should be returned.
mask : ndarray[bool], optional
Not yet implemented for PyObjectHashTable
Returns
-------
uniques : ndarray[object]
Unique values of input, not sorted
labels : ndarray[intp_t] (if return_inverse)
The labels from values to uniques
"""
uniques = ObjectVector()
return self._unique(values, uniques, ignore_na=False,
return_inverse=return_inverse)
def factorize(self, ndarray[object] values, Py_ssize_t na_sentinel=-1,
object na_value=None, object mask=None, ignore_na=True):
"""
Calculate unique values and labels (no sorting!)
Missing values are not included in the "uniques" for this method.
The labels for any missing values will be set to "na_sentinel"
Parameters
----------
values : ndarray[object]
Array of values of which unique will be calculated
na_sentinel : Py_ssize_t, default -1
Sentinel value used for all NA-values in inverse
na_value : object, default None
Value to identify as missing. If na_value is None, then None _plus_
any value "val" satisfying val != val is considered missing.
If na_value is not None, then _additionally_, any value "val"
satisfying val == na_value is considered missing.
mask : ndarray[bool], optional
Not yet implemented for PyObjectHashTable.
Returns
-------
uniques : ndarray[object]
Unique values of input, not sorted
labels : ndarray[intp_t]
The labels from values to uniques
"""
uniques_vector = ObjectVector()
return self._unique(values, uniques_vector, na_sentinel=na_sentinel,
na_value=na_value, ignore_na=ignore_na,
return_inverse=True)
# Add unused mask parameter for compat with other signatures
def get_labels(self, ndarray[object] values, ObjectVector uniques,
Py_ssize_t count_prior=0, Py_ssize_t na_sentinel=-1,
object na_value=None, object mask=None):
# -> np.ndarray[np.intp]
_, labels = self._unique(values, uniques, count_prior=count_prior,
na_sentinel=na_sentinel, na_value=na_value,
ignore_na=True, return_inverse=True)
return labels
|