File: hashtable_class_helper.pxi.in

package info (click to toggle)
pandas 2.2.3%2Bdfsg-9
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 66,784 kB
  • sloc: python: 422,228; ansic: 9,190; sh: 270; xml: 102; makefile: 83
file content (1508 lines) | stat: -rw-r--r-- 51,698 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
"""
Template for each `dtype` helper function for hashtable

WARNING: DO NOT edit .pxi FILE directly, .pxi is generated from .pxi.in
"""


{{py:

# name
complex_types = ['complex64',
                 'complex128']
}}

{{for name in complex_types}}
cdef kh{{name}}_t to_kh{{name}}_t({{name}}_t val) noexcept nogil:
    cdef kh{{name}}_t res
    res.real = val.real
    res.imag = val.imag
    return res

{{endfor}}


{{py:


# name
c_types = ['khcomplex128_t',
           'khcomplex64_t',
           'float64_t',
           'float32_t',
           'int64_t',
           'int32_t',
           'int16_t',
           'int8_t',
           'uint64_t',
           'uint32_t',
           'uint16_t',
           'uint8_t']
}}

{{for c_type in c_types}}

cdef bint is_nan_{{c_type}}({{c_type}} val) noexcept nogil:
    {{if c_type in {'khcomplex128_t', 'khcomplex64_t'} }}
    return val.real != val.real or val.imag != val.imag
    {{elif c_type in {'float64_t', 'float32_t'} }}
    return val != val
    {{else}}
    return False
    {{endif}}


{{if c_type in {'khcomplex128_t', 'khcomplex64_t', 'float64_t', 'float32_t'} }}
# are_equivalent_{{c_type}} is cimported via khash.pxd
{{else}}
cdef bint are_equivalent_{{c_type}}({{c_type}} val1, {{c_type}} val2) noexcept nogil:
    return val1 == val2
{{endif}}

{{endfor}}


{{py:

# name
cimported_types = ['complex64',
                   'complex128',
                   'float32',
                   'float64',
                   'int8',
                   'int16',
                   'int32',
                   'int64',
                   'pymap',
                   'str',
                   'strbox',
                   'uint8',
                   'uint16',
                   'uint32',
                   'uint64']
}}

{{for name in cimported_types}}
from pandas._libs.khash cimport (
    kh_destroy_{{name}},
    kh_exist_{{name}},
    kh_get_{{name}},
    kh_init_{{name}},
    kh_put_{{name}},
    kh_resize_{{name}},
)

{{endfor}}

# ----------------------------------------------------------------------
# VectorData
# ----------------------------------------------------------------------

from pandas._libs.tslibs.util cimport get_c_string
from pandas._libs.missing cimport C_NA


{{py:

# name, dtype, c_type
# the generated StringVector is not actually used
# but is included for completeness (rather ObjectVector is used
# for uniques in hashtables)

dtypes = [('Complex128', 'complex128', 'khcomplex128_t'),
          ('Complex64', 'complex64', 'khcomplex64_t'),
          ('Float64', 'float64', 'float64_t'),
          ('Float32', 'float32', 'float32_t'),
          ('Int64', 'int64', 'int64_t'),
          ('Int32', 'int32', 'int32_t'),
          ('Int16', 'int16', 'int16_t'),
          ('Int8', 'int8', 'int8_t'),
          ('String', 'string', 'char *'),
          ('UInt64', 'uint64', 'uint64_t'),
          ('UInt32', 'uint32', 'uint32_t'),
          ('UInt16', 'uint16', 'uint16_t'),
          ('UInt8', 'uint8', 'uint8_t')]
}}

{{for name, dtype, c_type in dtypes}}


{{if dtype != 'int64'}}
# Int64VectorData is defined in the .pxd file because it is needed (indirectly)
#  by IntervalTree

ctypedef struct {{name}}VectorData:
    {{c_type}} *data
    Py_ssize_t n, m

{{endif}}


@cython.wraparound(False)
@cython.boundscheck(False)
cdef void append_data_{{dtype}}({{name}}VectorData *data,
                                       {{c_type}} x) noexcept nogil:

    data.data[data.n] = x
    data.n += 1

{{endfor}}

ctypedef fused vector_data:
    Int64VectorData
    Int32VectorData
    Int16VectorData
    Int8VectorData
    UInt64VectorData
    UInt32VectorData
    UInt16VectorData
    UInt8VectorData
    Float64VectorData
    Float32VectorData
    Complex128VectorData
    Complex64VectorData
    StringVectorData

cdef bint needs_resize(vector_data *data) noexcept nogil:
    return data.n == data.m

# ----------------------------------------------------------------------
# Vector
# ----------------------------------------------------------------------

cdef class Vector:
    # cdef readonly:
    #    bint external_view_exists

    def __cinit__(self):
        self.external_view_exists = False


{{py:

# name, dtype, c_type
dtypes = [('Complex128', 'complex128', 'khcomplex128_t'),
          ('Complex64', 'complex64', 'khcomplex64_t'),
          ('Float64', 'float64', 'float64_t'),
          ('UInt64', 'uint64', 'uint64_t'),
          ('Int64', 'int64', 'int64_t'),
          ('Float32', 'float32', 'float32_t'),
          ('UInt32', 'uint32', 'uint32_t'),
          ('Int32', 'int32', 'int32_t'),
          ('UInt16', 'uint16', 'uint16_t'),
          ('Int16', 'int16', 'int16_t'),
          ('UInt8', 'uint8', 'uint8_t'),
          ('Int8', 'int8', 'int8_t')]

}}

{{for name, dtype, c_type in dtypes}}

cdef class {{name}}Vector(Vector):

    # For int64 we have to put this declaration in the .pxd file;
    # Int64Vector is the only one we need exposed for other cython files.
    {{if dtype != 'int64'}}
    cdef:
        {{name}}VectorData *data
        ndarray ao
    {{endif}}

    def __cinit__(self):
        self.data = <{{name}}VectorData *>PyMem_Malloc(
            sizeof({{name}}VectorData))
        if not self.data:
            raise MemoryError()
        self.data.n = 0
        self.data.m = _INIT_VEC_CAP
        self.ao = np.empty(self.data.m, dtype=np.{{dtype}})
        self.data.data = <{{c_type}}*>self.ao.data

    cdef resize(self):
        self.data.m = max(self.data.m * 4, _INIT_VEC_CAP)
        self.ao.resize(self.data.m, refcheck=False)
        self.data.data = <{{c_type}}*>self.ao.data

    def __dealloc__(self):
        if self.data is not NULL:
            PyMem_Free(self.data)
            self.data = NULL

    def __len__(self) -> int:
        return self.data.n

    cpdef ndarray to_array(self):
        if self.data.m != self.data.n:
            if self.external_view_exists:
                # should never happen
                raise ValueError("should have raised on append()")
            self.ao.resize(self.data.n, refcheck=False)
            self.data.m = self.data.n
        self.external_view_exists = True
        return self.ao

    cdef void append(self, {{c_type}} x) noexcept:

        if needs_resize(self.data):
            if self.external_view_exists:
                raise ValueError("external reference but "
                                 "Vector.resize() needed")
            self.resize()

        append_data_{{dtype}}(self.data, x)

    cdef extend(self, const {{c_type}}[:] x):
        for i in range(len(x)):
            self.append(x[i])

{{endfor}}

cdef class StringVector(Vector):

    cdef:
        StringVectorData *data

    def __cinit__(self):
        self.data = <StringVectorData *>PyMem_Malloc(sizeof(StringVectorData))
        if not self.data:
            raise MemoryError()
        self.data.n = 0
        self.data.m = _INIT_VEC_CAP
        self.data.data = <char **>malloc(self.data.m * sizeof(char *))
        if not self.data.data:
            raise MemoryError()

    cdef resize(self):
        cdef:
            char **orig_data
            Py_ssize_t i, m

        m = self.data.m
        self.data.m = max(self.data.m * 4, _INIT_VEC_CAP)

        orig_data = self.data.data
        self.data.data = <char **>malloc(self.data.m * sizeof(char *))
        if not self.data.data:
            raise MemoryError()
        for i in range(m):
            self.data.data[i] = orig_data[i]

    def __dealloc__(self):
        if self.data is not NULL:
            if self.data.data is not NULL:
                free(self.data.data)
            PyMem_Free(self.data)
            self.data = NULL

    def __len__(self) -> int:
        return self.data.n

    cpdef ndarray[object, ndim=1] to_array(self):
        cdef:
            ndarray ao
            Py_ssize_t n
            object val

        ao = np.empty(self.data.n, dtype=object)
        for i in range(self.data.n):
            val = self.data.data[i]
            ao[i] = val
        self.external_view_exists = True
        self.data.m = self.data.n
        return ao

    cdef void append(self, char *x) noexcept:

        if needs_resize(self.data):
            self.resize()

        append_data_string(self.data, x)

    cdef extend(self, ndarray[object] x):
        for i in range(len(x)):
            self.append(x[i])


cdef class ObjectVector(Vector):

    cdef:
        PyObject **data
        Py_ssize_t n, m
        ndarray ao

    def __cinit__(self):
        self.n = 0
        self.m = _INIT_VEC_CAP
        self.ao = np.empty(_INIT_VEC_CAP, dtype=object)
        self.data = <PyObject**>self.ao.data

    def __len__(self) -> int:
        return self.n

    cdef append(self, object obj):
        if self.n == self.m:
            if self.external_view_exists:
                raise ValueError("external reference but "
                                 "Vector.resize() needed")
            self.m = max(self.m * 2, _INIT_VEC_CAP)
            self.ao.resize(self.m, refcheck=False)
            self.data = <PyObject**>self.ao.data

        Py_INCREF(obj)
        self.data[self.n] = <PyObject*>obj
        self.n += 1

    cpdef ndarray[object, ndim=1] to_array(self):
        if self.m != self.n:
            if self.external_view_exists:
                raise ValueError("should have raised on append()")
            self.ao.resize(self.n, refcheck=False)
            self.m = self.n
        self.external_view_exists = True
        return self.ao

    cdef extend(self, ndarray[object] x):
        for i in range(len(x)):
            self.append(x[i])

# ----------------------------------------------------------------------
# HashTable
# ----------------------------------------------------------------------


cdef class HashTable:

    pass

{{py:

# name, dtype, c_type, to_c_type
dtypes = [('Complex128', 'complex128', 'khcomplex128_t', 'to_khcomplex128_t'),
          ('Float64', 'float64', 'float64_t', ''),
          ('UInt64', 'uint64', 'uint64_t', ''),
          ('Int64', 'int64', 'int64_t', ''),
          ('Complex64', 'complex64', 'khcomplex64_t', 'to_khcomplex64_t'),
          ('Float32', 'float32', 'float32_t', ''),
          ('UInt32', 'uint32', 'uint32_t', ''),
          ('Int32', 'int32', 'int32_t', ''),
          ('UInt16', 'uint16', 'uint16_t', ''),
          ('Int16', 'int16', 'int16_t', ''),
          ('UInt8', 'uint8', 'uint8_t', ''),
          ('Int8', 'int8', 'int8_t', '')]

}}


{{for name, dtype, c_type, to_c_type in dtypes}}

cdef class {{name}}HashTable(HashTable):

    def __cinit__(self, int64_t size_hint=1, bint uses_mask=False):
        self.table = kh_init_{{dtype}}()
        size_hint = min(kh_needed_n_buckets(size_hint), SIZE_HINT_LIMIT)
        kh_resize_{{dtype}}(self.table, size_hint)

        self.uses_mask = uses_mask
        self.na_position = -1

    def __len__(self) -> int:
        return self.table.size + (0 if self.na_position == -1 else 1)

    def __dealloc__(self):
        if self.table is not NULL:
            kh_destroy_{{dtype}}(self.table)
            self.table = NULL

    def __contains__(self, object key) -> bool:
        # The caller is responsible to check for compatible NA values in case
        # of masked arrays.
        cdef:
            khiter_t k
            {{c_type}} ckey

        if self.uses_mask and checknull(key):
            return -1 != self.na_position

        ckey = {{to_c_type}}(key)
        k = kh_get_{{dtype}}(self.table, ckey)
        return k != self.table.n_buckets

    def sizeof(self, deep: bool = False) -> int:
        """ return the size of my table in bytes """
        overhead = 4 * sizeof(uint32_t) + 3 * sizeof(uint32_t*)
        for_flags = max(1, self.table.n_buckets >> 5) * sizeof(uint32_t)
        for_pairs =  self.table.n_buckets * (sizeof({{dtype}}_t) + # keys
                                             sizeof(Py_ssize_t))   # vals
        return overhead + for_flags + for_pairs

    def get_state(self) -> dict[str, int]:
        """ returns infos about the state of the hashtable"""
        return {
            'n_buckets' : self.table.n_buckets,
            'size' : self.table.size,
            'n_occupied' : self.table.n_occupied,
            'upper_bound' : self.table.upper_bound,
        }

    cpdef get_item(self, {{dtype}}_t val):
        """Extracts the position of val from the hashtable.

        Parameters
        ----------
        val : Scalar
            The value that is looked up in the hashtable

        Returns
        -------
        The position of the requested integer.
        """

        # Used in core.sorting, IndexEngine.get_loc
        # Caller is responsible for checking for pd.NA
        cdef:
            khiter_t k
            {{c_type}} cval

        cval = {{to_c_type}}(val)
        k = kh_get_{{dtype}}(self.table, cval)
        if k != self.table.n_buckets:
            return self.table.vals[k]
        else:
            raise KeyError(val)

    cpdef get_na(self):
        """Extracts the position of na_value from the hashtable.

        Returns
        -------
        The position of the last na value.
        """

        if not self.uses_mask:
            raise NotImplementedError

        if self.na_position == -1:
            raise KeyError("NA")
        return self.na_position

    cpdef set_item(self, {{dtype}}_t key, Py_ssize_t val):
        # Used in libjoin
        # Caller is responsible for checking for pd.NA
        cdef:
            khiter_t k
            int ret = 0
            {{c_type}} ckey

        ckey = {{to_c_type}}(key)
        k = kh_put_{{dtype}}(self.table, ckey, &ret)
        if kh_exist_{{dtype}}(self.table, k):
            self.table.vals[k] = val
        else:
            raise KeyError(key)

    cpdef set_na(self, Py_ssize_t val):
        # Caller is responsible for checking for pd.NA
        cdef:
            khiter_t k
            int ret = 0
            {{c_type}} ckey

        if not self.uses_mask:
            raise NotImplementedError

        self.na_position = val

    {{if dtype == "int64" }}
    # We only use this for int64, can reduce build size and make .pyi
    #  more accurate by only implementing it for int64
    @cython.boundscheck(False)
    def map_keys_to_values(
        self, const {{dtype}}_t[:] keys, const int64_t[:] values
    ) -> None:
        cdef:
            Py_ssize_t i, n = len(values)
            int ret = 0
            {{c_type}} key
            khiter_t k

        with nogil:
            for i in range(n):
                key = {{to_c_type}}(keys[i])
                k = kh_put_{{dtype}}(self.table, key, &ret)
                self.table.vals[k] = <Py_ssize_t>values[i]
    {{endif}}

    @cython.boundscheck(False)
    def map_locations(self, const {{dtype}}_t[:] values, const uint8_t[:] mask = None) -> None:
        # Used in libindex, safe_sort
        cdef:
            Py_ssize_t i, n = len(values)
            int ret = 0
            {{c_type}} val
            khiter_t k
            int8_t na_position = self.na_position

        if self.uses_mask and mask is None:
            raise NotImplementedError  # pragma: no cover

        with nogil:
            if self.uses_mask:
                for i in range(n):
                    if mask[i]:
                        na_position = i
                    else:
                        val= {{to_c_type}}(values[i])
                        k = kh_put_{{dtype}}(self.table, val, &ret)
                        self.table.vals[k] = i
            else:
                for i in range(n):
                    val= {{to_c_type}}(values[i])
                    k = kh_put_{{dtype}}(self.table, val, &ret)
                    self.table.vals[k] = i
        self.na_position = na_position

    @cython.boundscheck(False)
    def lookup(self, const {{dtype}}_t[:] values, const uint8_t[:] mask = None) -> ndarray:
        # -> np.ndarray[np.intp]
        # Used in safe_sort, IndexEngine.get_indexer
        cdef:
            Py_ssize_t i, n = len(values)
            int ret = 0
            {{c_type}} val
            khiter_t k
            intp_t[::1] locs = np.empty(n, dtype=np.intp)
            int8_t na_position = self.na_position

        if self.uses_mask and mask is None:
            raise NotImplementedError  # pragma: no cover

        with nogil:
            for i in range(n):
                if self.uses_mask and mask[i]:
                    locs[i] = na_position
                else:
                    val = {{to_c_type}}(values[i])
                    k = kh_get_{{dtype}}(self.table, val)
                    if k != self.table.n_buckets:
                        locs[i] = self.table.vals[k]
                    else:
                        locs[i] = -1

        return np.asarray(locs)

    @cython.boundscheck(False)
    @cython.wraparound(False)
    def _unique(self, const {{dtype}}_t[:] values, {{name}}Vector uniques,
                Py_ssize_t count_prior=0, Py_ssize_t na_sentinel=-1,
                object na_value=None, bint ignore_na=False,
                object mask=None, bint return_inverse=False, bint use_result_mask=False):
        """
        Calculate unique values and labels (no sorting!)

        Parameters
        ----------
        values : ndarray[{{dtype}}]
            Array of values of which unique will be calculated
        uniques : {{name}}Vector
            Vector into which uniques will be written
        count_prior : Py_ssize_t, default 0
            Number of existing entries in uniques
        na_sentinel : Py_ssize_t, default -1
            Sentinel value used for all NA-values in inverse
        na_value : object, default None
            Value to identify as missing. If na_value is None, then
            any value "val" satisfying val != val is considered missing.
            If na_value is not None, then _additionally_, any value "val"
            satisfying val == na_value is considered missing.
        ignore_na : bool, default False
            Whether NA-values should be ignored for calculating the uniques. If
            True, the labels corresponding to missing values will be set to
            na_sentinel.
        mask : ndarray[bool], optional
            If not None, the mask is used as indicator for missing values
            (True = missing, False = valid) instead of `na_value` or
            condition "val != val".
        return_inverse : bool, default False
            Whether the mapping of the original array values to their location
            in the vector of uniques should be returned.
        use_result_mask: bool, default False
            Whether to create a result mask for the unique values. Not supported
            with return_inverse=True.

        Returns
        -------
        uniques : ndarray[{{dtype}}]
            Unique values of input, not sorted
        labels : ndarray[intp_t] (if return_inverse=True)
            The labels from values to uniques
        result_mask: ndarray[bool], if use_result_mask is true
            The mask for the result values.
        """
        cdef:
            Py_ssize_t i, idx, count = count_prior, n = len(values)
            intp_t[::1] labels
            int ret = 0
            {{c_type}} val, na_value2
            khiter_t k
            {{name}}VectorData *ud
            UInt8Vector result_mask
            UInt8VectorData *rmd
            bint use_na_value, use_mask, seen_na = False
            const uint8_t[:] mask_values

        if return_inverse:
            labels = np.empty(n, dtype=np.intp)
        ud = uniques.data
        use_na_value = na_value is not None
        use_mask = mask is not None
        if not use_mask and use_result_mask:
            raise NotImplementedError  # pragma: no cover

        if use_result_mask and return_inverse:
            raise NotImplementedError  # pragma: no cover

        result_mask = UInt8Vector()
        rmd = result_mask.data

        if use_mask:
            mask_values = mask.view("uint8")

        if use_na_value:
            # We need this na_value2 because we want to allow users
            # to *optionally* specify an NA sentinel *of the correct* type.
            # We use None, to make it optional, which requires `object` type
            # for the parameter. To please the compiler, we use na_value2,
            # which is only used if it's *specified*.
            na_value2 = {{to_c_type}}(na_value)
        else:
            na_value2 = {{to_c_type}}(0)

        with nogil:
            for i in range(n):
                val = {{to_c_type}}(values[i])

                if ignore_na and use_mask:
                    if mask_values[i]:
                        labels[i] = na_sentinel
                        continue
                elif ignore_na and (
                   is_nan_{{c_type}}(val) or
                   (use_na_value and are_equivalent_{{c_type}}(val, na_value2))
                ):
                    # if missing values do not count as unique values (i.e. if
                    # ignore_na is True), skip the hashtable entry for them,
                    # and replace the corresponding label with na_sentinel
                    labels[i] = na_sentinel
                    continue
                elif not ignore_na and use_result_mask:
                    if mask_values[i]:
                        if seen_na:
                            continue

                        seen_na = True
                        if needs_resize(ud):
                            with gil:
                                if uniques.external_view_exists:
                                    raise ValueError("external reference to "
                                                     "uniques held, but "
                                                     "Vector.resize() needed")
                                uniques.resize()
                                if result_mask.external_view_exists:
                                    raise ValueError("external reference to "
                                                     "result_mask held, but "
                                                     "Vector.resize() needed")
                                result_mask.resize()
                        append_data_{{dtype}}(ud, val)
                        append_data_uint8(rmd, 1)
                        continue

                k = kh_get_{{dtype}}(self.table, val)

                if k == self.table.n_buckets:
                    # k hasn't been seen yet
                    k = kh_put_{{dtype}}(self.table, val, &ret)

                    if needs_resize(ud):
                        with gil:
                            if uniques.external_view_exists:
                                raise ValueError("external reference to "
                                                 "uniques held, but "
                                                 "Vector.resize() needed")
                            uniques.resize()
                            if use_result_mask:
                                if result_mask.external_view_exists:
                                    raise ValueError("external reference to "
                                                     "result_mask held, but "
                                                     "Vector.resize() needed")
                                result_mask.resize()
                    append_data_{{dtype}}(ud, val)
                    if use_result_mask:
                        append_data_uint8(rmd, 0)

                    if return_inverse:
                        self.table.vals[k] = count
                        labels[i] = count
                        count += 1
                elif return_inverse:
                    # k falls into a previous bucket
                    # only relevant in case we need to construct the inverse
                    idx = self.table.vals[k]
                    labels[i] = idx

        if return_inverse:
            return uniques.to_array(), labels.base  # .base -> underlying ndarray
        if use_result_mask:
            return uniques.to_array(), result_mask.to_array()
        return uniques.to_array()

    def unique(self, const {{dtype}}_t[:] values, bint return_inverse=False, object mask=None):
        """
        Calculate unique values and labels (no sorting!)

        Parameters
        ----------
        values : ndarray[{{dtype}}]
            Array of values of which unique will be calculated
        return_inverse : bool, default False
            Whether the mapping of the original array values to their location
            in the vector of uniques should be returned.
        mask : ndarray[bool], optional
            If not None, the mask is used as indicator for missing values
            (True = missing, False = valid) instead of `na_value` or

        Returns
        -------
        uniques : ndarray[{{dtype}}]
            Unique values of input, not sorted
        labels : ndarray[intp_t] (if return_inverse)
            The labels from values to uniques
        result_mask: ndarray[bool], if mask is given as input
            The mask for the result values.
        """
        uniques = {{name}}Vector()
        use_result_mask = True if mask is not None else False
        return self._unique(values, uniques, ignore_na=False,
                            return_inverse=return_inverse, mask=mask, use_result_mask=use_result_mask)

    def factorize(self, const {{dtype}}_t[:] values, Py_ssize_t na_sentinel=-1,
                  object na_value=None, object mask=None, ignore_na=True):
        """
        Calculate unique values and labels (no sorting!)

        Missing values are not included in the "uniques" for this method.
        The labels for any missing values will be set to "na_sentinel"

        Parameters
        ----------
        values : ndarray[{{dtype}}]
            Array of values of which unique will be calculated
        na_sentinel : Py_ssize_t, default -1
            Sentinel value used for all NA-values in inverse
        na_value : object, default None
            Value to identify as missing. If na_value is None, then
            any value "val" satisfying val != val is considered missing.
            If na_value is not None, then _additionally_, any value "val"
            satisfying val == na_value is considered missing.
        mask : ndarray[bool], optional
            If not None, the mask is used as indicator for missing values
            (True = missing, False = valid) instead of `na_value` or
            condition "val != val".

        Returns
        -------
        uniques : ndarray[{{dtype}}]
            Unique values of input, not sorted
        labels : ndarray[intp_t]
            The labels from values to uniques
        """
        uniques_vector = {{name}}Vector()
        return self._unique(values, uniques_vector, na_sentinel=na_sentinel,
                            na_value=na_value, ignore_na=ignore_na, mask=mask,
                            return_inverse=True)

    def get_labels(self, const {{dtype}}_t[:] values, {{name}}Vector uniques,
                   Py_ssize_t count_prior=0, Py_ssize_t na_sentinel=-1,
                   object na_value=None, object mask=None):
        # -> np.ndarray[np.intp]
        _, labels = self._unique(values, uniques, count_prior=count_prior,
                                 na_sentinel=na_sentinel, na_value=na_value,
                                 ignore_na=True, return_inverse=True, mask=mask)
        return labels

    {{if dtype == 'int64'}}
    @cython.boundscheck(False)
    def get_labels_groupby(
        self, const {{dtype}}_t[:] values
    ) -> tuple[ndarray, ndarray]:
        # tuple[np.ndarray[np.intp], np.ndarray[{{dtype}}]]
        cdef:
            Py_ssize_t i, n = len(values)
            intp_t[::1] labels
            Py_ssize_t idx, count = 0
            int ret = 0
            {{c_type}} val
            khiter_t k
            {{name}}Vector uniques = {{name}}Vector()
            {{name}}VectorData *ud

        labels = np.empty(n, dtype=np.intp)
        ud = uniques.data

        with nogil:
            for i in range(n):
                val = {{to_c_type}}(values[i])

                # specific for groupby
                if val < 0:
                    labels[i] = -1
                    continue

                k = kh_get_{{dtype}}(self.table, val)
                if k != self.table.n_buckets:
                    idx = self.table.vals[k]
                    labels[i] = idx
                else:
                    k = kh_put_{{dtype}}(self.table, val, &ret)
                    self.table.vals[k] = count

                    if needs_resize(ud):
                        with gil:
                            uniques.resize()
                    append_data_{{dtype}}(ud, val)
                    labels[i] = count
                    count += 1

        arr_uniques = uniques.to_array()

        return np.asarray(labels), arr_uniques
    {{endif}}


cdef class {{name}}Factorizer(Factorizer):
    cdef public:
        {{name}}HashTable table
        {{name}}Vector uniques

    def __cinit__(self, size_hint: int):
        self.table = {{name}}HashTable(size_hint)
        self.uniques = {{name}}Vector()

    def factorize(self, const {{c_type}}[:] values,
                  na_sentinel=-1, na_value=None, object mask=None) -> np.ndarray:
        """
        Returns
        -------
        ndarray[intp_t]

        Examples
        --------
        Factorize values with nans replaced by na_sentinel

        >>> fac = {{name}}Factorizer(3)
        >>> fac.factorize(np.array([1,2,3], dtype="{{dtype}}"), na_sentinel=20)
        array([0, 1, 2])
        """
        cdef:
            ndarray[intp_t] labels

        if self.uniques.external_view_exists:
            uniques = {{name}}Vector()
            uniques.extend(self.uniques.to_array())
            self.uniques = uniques
        labels = self.table.get_labels(values, self.uniques,
                                       self.count, na_sentinel,
                                       na_value=na_value, mask=mask)
        self.count = len(self.uniques)
        return labels

{{endfor}}


cdef class StringHashTable(HashTable):
    # these by-definition *must* be strings
    # or a sentinel np.nan / None missing value
    na_string_sentinel = '__nan__'

    def __init__(self, int64_t size_hint=1):
        self.table = kh_init_str()
        size_hint = min(kh_needed_n_buckets(size_hint), SIZE_HINT_LIMIT)
        kh_resize_str(self.table, size_hint)

    def __dealloc__(self):
        if self.table is not NULL:
            kh_destroy_str(self.table)
            self.table = NULL

    def sizeof(self, deep: bool = False) -> int:
        overhead = 4 * sizeof(uint32_t) + 3 * sizeof(uint32_t*)
        for_flags = max(1, self.table.n_buckets >> 5) * sizeof(uint32_t)
        for_pairs =  self.table.n_buckets * (sizeof(char *) +      # keys
                                             sizeof(Py_ssize_t))   # vals
        return overhead + for_flags + for_pairs

    def get_state(self) -> dict[str, int]:
        """ returns infos about the state of the hashtable"""
        return {
            'n_buckets' : self.table.n_buckets,
            'size' : self.table.size,
            'n_occupied' : self.table.n_occupied,
            'upper_bound' : self.table.upper_bound,
        }

    cpdef get_item(self, str val):
        cdef:
            khiter_t k
            const char *v
        v = get_c_string(val)

        k = kh_get_str(self.table, v)
        if k != self.table.n_buckets:
            return self.table.vals[k]
        else:
            raise KeyError(val)

    cpdef set_item(self, str key, Py_ssize_t val):
        cdef:
            khiter_t k
            int ret = 0
            const char *v

        v = get_c_string(key)

        k = kh_put_str(self.table, v, &ret)
        if kh_exist_str(self.table, k):
            self.table.vals[k] = val
        else:
            raise KeyError(key)

    @cython.boundscheck(False)
    def get_indexer(self, ndarray[object] values) -> ndarray:
        # -> np.ndarray[np.intp]
        cdef:
            Py_ssize_t i, n = len(values)
            ndarray[intp_t] labels = np.empty(n, dtype=np.intp)
            intp_t *resbuf = <intp_t*>labels.data
            khiter_t k
            kh_str_t *table = self.table
            const char *v
            const char **vecs

        vecs = <const char **>malloc(n * sizeof(char *))
        for i in range(n):
            val = values[i]
            v = get_c_string(val)
            vecs[i] = v

        with nogil:
            for i in range(n):
                k = kh_get_str(table, vecs[i])
                if k != table.n_buckets:
                    resbuf[i] = table.vals[k]
                else:
                    resbuf[i] = -1

        free(vecs)
        return labels

    @cython.boundscheck(False)
    def lookup(self, ndarray[object] values, object mask = None) -> ndarray:
        # -> np.ndarray[np.intp]
        # mask not yet implemented
        cdef:
            Py_ssize_t i, n = len(values)
            int ret = 0
            object val
            const char *v
            khiter_t k
            intp_t[::1] locs = np.empty(n, dtype=np.intp)

        # these by-definition *must* be strings
        vecs = <const char **>malloc(n * sizeof(char *))
        for i in range(n):
            val = values[i]

            if isinstance(val, str):
                # GH#31499 if we have a np.str_ get_c_string won't recognize
                #  it as a str, even though isinstance does.
                v = get_c_string(<str>val)
            else:
                v = get_c_string(self.na_string_sentinel)
            vecs[i] = v

        with nogil:
            for i in range(n):
                v = vecs[i]
                k = kh_get_str(self.table, v)
                if k != self.table.n_buckets:
                    locs[i] = self.table.vals[k]
                else:
                    locs[i] = -1

        free(vecs)
        return np.asarray(locs)

    @cython.boundscheck(False)
    def map_locations(self, ndarray[object] values, object mask = None) -> None:
        # mask not yet implemented
        cdef:
            Py_ssize_t i, n = len(values)
            int ret = 0
            object val
            const char *v
            const char **vecs
            khiter_t k

        # these by-definition *must* be strings
        vecs = <const char **>malloc(n * sizeof(char *))
        for i in range(n):
            val = values[i]

            if isinstance(val, str):
                # GH#31499 if we have a np.str_ get_c_string won't recognize
                #  it as a str, even though isinstance does.
                v = get_c_string(<str>val)
            else:
                v = get_c_string(self.na_string_sentinel)
            vecs[i] = v

        with nogil:
            for i in range(n):
                v = vecs[i]
                k = kh_put_str(self.table, v, &ret)
                self.table.vals[k] = i
        free(vecs)

    @cython.boundscheck(False)
    @cython.wraparound(False)
    def _unique(self, ndarray[object] values, ObjectVector uniques,
                Py_ssize_t count_prior=0, Py_ssize_t na_sentinel=-1,
                object na_value=None, bint ignore_na=False,
                bint return_inverse=False):
        """
        Calculate unique values and labels (no sorting!)

        Parameters
        ----------
        values : ndarray[object]
            Array of values of which unique will be calculated
        uniques : ObjectVector
            Vector into which uniques will be written
        count_prior : Py_ssize_t, default 0
            Number of existing entries in uniques
        na_sentinel : Py_ssize_t, default -1
            Sentinel value used for all NA-values in inverse
        na_value : object, default None
            Value to identify as missing. If na_value is None, then any value
            that is not a string is considered missing. If na_value is
            not None, then _additionally_ any value "val" satisfying
            val == na_value is considered missing.
        ignore_na : bool, default False
            Whether NA-values should be ignored for calculating the uniques. If
            True, the labels corresponding to missing values will be set to
            na_sentinel.
        return_inverse : bool, default False
            Whether the mapping of the original array values to their location
            in the vector of uniques should be returned.

        Returns
        -------
        uniques : ndarray[object]
            Unique values of input, not sorted
        labels : ndarray[intp_t] (if return_inverse=True)
            The labels from values to uniques
        """
        cdef:
            Py_ssize_t i, idx, count = count_prior, n = len(values)
            intp_t[::1] labels
            int64_t[::1] uindexer
            int ret = 0
            object val
            const char *v
            const char **vecs
            khiter_t k
            bint use_na_value

        if return_inverse:
            labels = np.zeros(n, dtype=np.intp)
        uindexer = np.empty(n, dtype=np.int64)
        use_na_value = na_value is not None

        # assign pointers and pre-filter out missing (if ignore_na)
        vecs = <const char **>malloc(n * sizeof(char *))
        for i in range(n):
            val = values[i]

            if (ignore_na
                and (not isinstance(val, str)
                     or (use_na_value and val == na_value))):
                # if missing values do not count as unique values (i.e. if
                # ignore_na is True), we can skip the actual value, and
                # replace the label with na_sentinel directly
                labels[i] = na_sentinel
            else:
                # if ignore_na is False, we also stringify NaN/None/etc.
                try:
                    v = get_c_string(<str>val)
                except UnicodeEncodeError:
                    v = get_c_string(<str>repr(val))
                vecs[i] = v

        # compute
        with nogil:
            for i in range(n):
                if ignore_na and labels[i] == na_sentinel:
                    # skip entries for ignored missing values (see above)
                    continue

                v = vecs[i]
                k = kh_get_str(self.table, v)
                if k == self.table.n_buckets:
                    # k hasn't been seen yet
                    k = kh_put_str(self.table, v, &ret)
                    uindexer[count] = i
                    if return_inverse:
                        self.table.vals[k] = count
                        labels[i] = count
                    count += 1
                elif return_inverse:
                    # k falls into a previous bucket
                    # only relevant in case we need to construct the inverse
                    idx = self.table.vals[k]
                    labels[i] = idx

        free(vecs)

        # uniques
        for i in range(count):
            uniques.append(values[uindexer[i]])

        if return_inverse:
            return uniques.to_array(), labels.base  # .base -> underlying ndarray
        return uniques.to_array()

    def unique(self, ndarray[object] values, bint return_inverse=False, object mask=None):
        """
        Calculate unique values and labels (no sorting!)

        Parameters
        ----------
        values : ndarray[object]
            Array of values of which unique will be calculated
        return_inverse : bool, default False
            Whether the mapping of the original array values to their location
            in the vector of uniques should be returned.
        mask : ndarray[bool], optional
            Not yet implemented for StringHashTable

        Returns
        -------
        uniques : ndarray[object]
            Unique values of input, not sorted
        labels : ndarray[intp_t] (if return_inverse)
            The labels from values to uniques
        """
        uniques = ObjectVector()
        return self._unique(values, uniques, ignore_na=False,
                            return_inverse=return_inverse)

    def factorize(self, ndarray[object] values, Py_ssize_t na_sentinel=-1,
                  object na_value=None, object mask=None, ignore_na=True):
        """
        Calculate unique values and labels (no sorting!)

        Missing values are not included in the "uniques" for this method.
        The labels for any missing values will be set to "na_sentinel"

        Parameters
        ----------
        values : ndarray[object]
            Array of values of which unique will be calculated
        na_sentinel : Py_ssize_t, default -1
            Sentinel value used for all NA-values in inverse
        na_value : object, default None
            Value to identify as missing. If na_value is None, then any value
            that is not a string is considered missing. If na_value is
            not None, then _additionally_ any value "val" satisfying
            val == na_value is considered missing.
        mask : ndarray[bool], optional
            Not yet implemented for StringHashTable.

        Returns
        -------
        uniques : ndarray[object]
            Unique values of input, not sorted
        labels : ndarray[intp]
            The labels from values to uniques
        """
        uniques_vector = ObjectVector()
        return self._unique(values, uniques_vector, na_sentinel=na_sentinel,
                            na_value=na_value, ignore_na=ignore_na,
                            return_inverse=True)

    # Add unused mask parameter for compat with other signatures
    def get_labels(self, ndarray[object] values, ObjectVector uniques,
                   Py_ssize_t count_prior=0, Py_ssize_t na_sentinel=-1,
                   object na_value=None, object mask=None):
        # -> np.ndarray[np.intp]
        _, labels = self._unique(values, uniques, count_prior=count_prior,
                                 na_sentinel=na_sentinel, na_value=na_value,
                                 ignore_na=True, return_inverse=True)
        return labels


cdef class PyObjectHashTable(HashTable):

    def __init__(self, int64_t size_hint=1):
        self.table = kh_init_pymap()
        size_hint = min(kh_needed_n_buckets(size_hint), SIZE_HINT_LIMIT)
        kh_resize_pymap(self.table, size_hint)

    def __dealloc__(self):
        if self.table is not NULL:
            kh_destroy_pymap(self.table)
            self.table = NULL

    def __len__(self) -> int:
        return self.table.size

    def __contains__(self, object key) -> bool:
        cdef:
            khiter_t k
        hash(key)

        k = kh_get_pymap(self.table, <PyObject*>key)
        return k != self.table.n_buckets

    def sizeof(self, deep: bool = False) -> int:
        """ return the size of my table in bytes """
        overhead = 4 * sizeof(uint32_t) + 3 * sizeof(uint32_t*)
        for_flags = max(1, self.table.n_buckets >> 5) * sizeof(uint32_t)
        for_pairs =  self.table.n_buckets * (sizeof(PyObject *) +  # keys
                                             sizeof(Py_ssize_t))   # vals
        return overhead + for_flags + for_pairs

    def get_state(self) -> dict[str, int]:
        """
        returns infos about the current state of the hashtable like size,
        number of buckets and so on.
        """
        return {
            'n_buckets' : self.table.n_buckets,
            'size' : self.table.size,
            'n_occupied' : self.table.n_occupied,
            'upper_bound' : self.table.upper_bound,
        }

    cpdef get_item(self, object val):
        cdef:
            khiter_t k

        k = kh_get_pymap(self.table, <PyObject*>val)
        if k != self.table.n_buckets:
            return self.table.vals[k]
        else:
            raise KeyError(val)

    cpdef set_item(self, object key, Py_ssize_t val):
        cdef:
            khiter_t k
            int ret = 0
            char* buf

        hash(key)

        k = kh_put_pymap(self.table, <PyObject*>key, &ret)
        if kh_exist_pymap(self.table, k):
            self.table.vals[k] = val
        else:
            raise KeyError(key)

    def map_locations(self, ndarray[object] values, object mask = None) -> None:
        # mask not yet implemented
        cdef:
            Py_ssize_t i, n = len(values)
            int ret = 0
            object val
            khiter_t k

        for i in range(n):
            val = values[i]
            hash(val)

            k = kh_put_pymap(self.table, <PyObject*>val, &ret)
            self.table.vals[k] = i

    def lookup(self, ndarray[object] values, object mask = None) -> ndarray:
        # -> np.ndarray[np.intp]
        # mask not yet implemented
        cdef:
            Py_ssize_t i, n = len(values)
            int ret = 0
            object val
            khiter_t k
            intp_t[::1] locs = np.empty(n, dtype=np.intp)

        for i in range(n):
            val = values[i]
            hash(val)

            k = kh_get_pymap(self.table, <PyObject*>val)
            if k != self.table.n_buckets:
                locs[i] = self.table.vals[k]
            else:
                locs[i] = -1

        return np.asarray(locs)

    @cython.boundscheck(False)
    @cython.wraparound(False)
    def _unique(self, ndarray[object] values, ObjectVector uniques,
                Py_ssize_t count_prior=0, Py_ssize_t na_sentinel=-1,
                object na_value=None, bint ignore_na=False,
                bint return_inverse=False):
        """
        Calculate unique values and labels (no sorting!)

        Parameters
        ----------
        values : ndarray[object]
            Array of values of which unique will be calculated
        uniques : ObjectVector
            Vector into which uniques will be written
        count_prior : Py_ssize_t, default 0
            Number of existing entries in uniques
        na_sentinel : Py_ssize_t, default -1
            Sentinel value used for all NA-values in inverse
        na_value : object, default None
            Value to identify as missing. If na_value is None, then None _plus_
            any value "val" satisfying val != val is considered missing.
            If na_value is not None, then _additionally_, any value "val"
            satisfying val == na_value is considered missing.
        ignore_na : bool, default False
            Whether NA-values should be ignored for calculating the uniques. If
            True, the labels corresponding to missing values will be set to
            na_sentinel.
        return_inverse : bool, default False
            Whether the mapping of the original array values to their location
            in the vector of uniques should be returned.

        Returns
        -------
        uniques : ndarray[object]
            Unique values of input, not sorted
        labels : ndarray[intp_t] (if return_inverse=True)
            The labels from values to uniques
        """
        cdef:
            Py_ssize_t i, idx, count = count_prior, n = len(values)
            intp_t[::1] labels
            int ret = 0
            object val
            khiter_t k
            bint use_na_value

        if return_inverse:
            labels = np.empty(n, dtype=np.intp)
        use_na_value = na_value is not None

        for i in range(n):
            val = values[i]
            hash(val)

            if ignore_na and (
                checknull(val)
                or (use_na_value and val == na_value)
            ):
                # if missing values do not count as unique values (i.e. if
                # ignore_na is True), skip the hashtable entry for them, and
                # replace the corresponding label with na_sentinel
                labels[i] = na_sentinel
                continue

            k = kh_get_pymap(self.table, <PyObject*>val)
            if k == self.table.n_buckets:
                # k hasn't been seen yet
                k = kh_put_pymap(self.table, <PyObject*>val, &ret)
                uniques.append(val)
                if return_inverse:
                    self.table.vals[k] = count
                    labels[i] = count
                    count += 1
            elif return_inverse:
                # k falls into a previous bucket
                # only relevant in case we need to construct the inverse
                idx = self.table.vals[k]
                labels[i] = idx

        if return_inverse:
            return uniques.to_array(), labels.base  # .base -> underlying ndarray
        return uniques.to_array()

    def unique(self, ndarray[object] values, bint return_inverse=False, object mask=None):
        """
        Calculate unique values and labels (no sorting!)

        Parameters
        ----------
        values : ndarray[object]
            Array of values of which unique will be calculated
        return_inverse : bool, default False
            Whether the mapping of the original array values to their location
            in the vector of uniques should be returned.
        mask : ndarray[bool], optional
            Not yet implemented for PyObjectHashTable

        Returns
        -------
        uniques : ndarray[object]
            Unique values of input, not sorted
        labels : ndarray[intp_t] (if return_inverse)
            The labels from values to uniques
        """
        uniques = ObjectVector()
        return self._unique(values, uniques, ignore_na=False,
                            return_inverse=return_inverse)

    def factorize(self, ndarray[object] values, Py_ssize_t na_sentinel=-1,
                  object na_value=None, object mask=None, ignore_na=True):
        """
        Calculate unique values and labels (no sorting!)

        Missing values are not included in the "uniques" for this method.
        The labels for any missing values will be set to "na_sentinel"

        Parameters
        ----------
        values : ndarray[object]
            Array of values of which unique will be calculated
        na_sentinel : Py_ssize_t, default -1
            Sentinel value used for all NA-values in inverse
        na_value : object, default None
            Value to identify as missing. If na_value is None, then None _plus_
            any value "val" satisfying val != val is considered missing.
            If na_value is not None, then _additionally_, any value "val"
            satisfying val == na_value is considered missing.
        mask : ndarray[bool], optional
            Not yet implemented for PyObjectHashTable.

        Returns
        -------
        uniques : ndarray[object]
            Unique values of input, not sorted
        labels : ndarray[intp_t]
            The labels from values to uniques
        """
        uniques_vector = ObjectVector()
        return self._unique(values, uniques_vector, na_sentinel=na_sentinel,
                            na_value=na_value, ignore_na=ignore_na,
                            return_inverse=True)

    # Add unused mask parameter for compat with other signatures
    def get_labels(self, ndarray[object] values, ObjectVector uniques,
                   Py_ssize_t count_prior=0, Py_ssize_t na_sentinel=-1,
                   object na_value=None, object mask=None):
        # -> np.ndarray[np.intp]
        _, labels = self._unique(values, uniques, count_prior=count_prior,
                                 na_sentinel=na_sentinel, na_value=na_value,
                                 ignore_na=True, return_inverse=True)
        return labels