1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947
|
from collections import defaultdict
import weakref
cimport cython
from cpython.pyport cimport PY_SSIZE_T_MAX
from cpython.slice cimport PySlice_GetIndicesEx
from cython cimport Py_ssize_t
import numpy as np
cimport numpy as cnp
from numpy cimport (
NPY_INTP,
int64_t,
intp_t,
ndarray,
)
cnp.import_array()
from pandas._libs.algos import ensure_int64
from pandas._libs.util cimport (
is_array,
is_integer_object,
)
@cython.final
@cython.freelist(32)
cdef class BlockPlacement:
cdef:
slice _as_slice
ndarray _as_array # Note: this still allows `None`; will be intp_t
bint _has_slice, _has_array, _is_known_slice_like
def __cinit__(self, val):
cdef:
slice slc
self._as_slice = None
self._as_array = None
self._has_slice = False
self._has_array = False
if is_integer_object(val):
slc = slice(val, val + 1, 1)
self._as_slice = slc
self._has_slice = True
elif isinstance(val, slice):
slc = slice_canonize(val)
if slc.start != slc.stop:
self._as_slice = slc
self._has_slice = True
else:
arr = np.empty(0, dtype=np.intp)
self._as_array = arr
self._has_array = True
else:
# Cython memoryview interface requires ndarray to be writeable.
if (
not is_array(val)
or not cnp.PyArray_ISWRITEABLE(val)
or (<ndarray>val).descr.type_num != cnp.NPY_INTP
):
arr = np.require(val, dtype=np.intp, requirements="W")
else:
arr = val
# Caller is responsible for ensuring arr.ndim == 1
self._as_array = arr
self._has_array = True
def __str__(self) -> str:
cdef:
slice s = self._ensure_has_slice()
if s is not None:
v = self._as_slice
else:
v = self._as_array
return f"{type(self).__name__}({v})"
def __repr__(self) -> str:
return str(self)
def __len__(self) -> int:
cdef:
slice s = self._ensure_has_slice()
if s is not None:
return slice_len(s)
else:
return len(self._as_array)
def __iter__(self):
cdef:
slice s = self._ensure_has_slice()
Py_ssize_t start, stop, step, _
if s is not None:
start, stop, step, _ = slice_get_indices_ex(s)
return iter(range(start, stop, step))
else:
return iter(self._as_array)
@property
def as_slice(self) -> slice:
cdef:
slice s = self._ensure_has_slice()
if s is not None:
return s
else:
raise TypeError("Not slice-like")
@property
def indexer(self):
cdef:
slice s = self._ensure_has_slice()
if s is not None:
return s
else:
return self._as_array
@property
def as_array(self) -> np.ndarray:
cdef:
Py_ssize_t start, stop, _
if not self._has_array:
start, stop, step, _ = slice_get_indices_ex(self._as_slice)
# NOTE: this is the C-optimized equivalent of
# `np.arange(start, stop, step, dtype=np.intp)`
self._as_array = cnp.PyArray_Arange(start, stop, step, NPY_INTP)
self._has_array = True
return self._as_array
@property
def is_slice_like(self) -> bool:
cdef:
slice s = self._ensure_has_slice()
return s is not None
def __getitem__(self, loc):
cdef:
slice s = self._ensure_has_slice()
if s is not None:
val = slice_getitem(s, loc)
else:
val = self._as_array[loc]
if not isinstance(val, slice) and val.ndim == 0:
return val
return BlockPlacement(val)
def delete(self, loc) -> BlockPlacement:
return BlockPlacement(np.delete(self.as_array, loc, axis=0))
def append(self, others) -> BlockPlacement:
if not len(others):
return self
return BlockPlacement(
np.concatenate([self.as_array] + [o.as_array for o in others])
)
cdef BlockPlacement iadd(self, other):
cdef:
slice s = self._ensure_has_slice()
Py_ssize_t other_int, start, stop, step
if is_integer_object(other) and s is not None:
other_int = <Py_ssize_t>other
if other_int == 0:
# BlockPlacement is treated as immutable
return self
start, stop, step, _ = slice_get_indices_ex(s)
start += other_int
stop += other_int
if (step > 0 and start < 0) or (step < 0 and stop < step):
raise ValueError("iadd causes length change")
if stop < 0:
val = slice(start, None, step)
else:
val = slice(start, stop, step)
return BlockPlacement(val)
else:
newarr = self.as_array + other
if (newarr < 0).any():
raise ValueError("iadd causes length change")
val = newarr
return BlockPlacement(val)
def add(self, other) -> BlockPlacement:
# We can get here with int or ndarray
return self.iadd(other)
cdef slice _ensure_has_slice(self):
if not self._has_slice:
self._as_slice = indexer_as_slice(self._as_array)
self._has_slice = True
return self._as_slice
cpdef BlockPlacement increment_above(self, Py_ssize_t loc):
"""
Increment any entries of 'loc' or above by one.
"""
cdef:
slice nv, s = self._ensure_has_slice()
Py_ssize_t start, stop, step
ndarray[intp_t, ndim=1] newarr
if s is not None:
# see if we are either all-above or all-below, each of which
# have fastpaths available.
start, stop, step, _ = slice_get_indices_ex(s)
if start < loc and stop <= loc:
# We are entirely below, nothing to increment
return self
if start >= loc and stop >= loc:
# We are entirely above, we can efficiently increment out slice
nv = slice(start + 1, stop + 1, step)
return BlockPlacement(nv)
if loc == 0:
# fastpath where we know everything is >= 0
newarr = self.as_array + 1
return BlockPlacement(newarr)
newarr = self.as_array.copy()
newarr[newarr >= loc] += 1
return BlockPlacement(newarr)
def tile_for_unstack(self, factor: int) -> np.ndarray:
"""
Find the new mgr_locs for the un-stacked version of a Block.
"""
cdef:
slice slc = self._ensure_has_slice()
ndarray[intp_t, ndim=1] new_placement
if slc is not None and slc.step == 1:
new_slc = slice(slc.start * factor, slc.stop * factor, 1)
# equiv: np.arange(new_slc.start, new_slc.stop, dtype=np.intp)
new_placement = cnp.PyArray_Arange(new_slc.start, new_slc.stop, 1, NPY_INTP)
else:
# Note: test_pivot_table_empty_aggfunc gets here with `slc is not None`
mapped = [
# equiv: np.arange(x * factor, (x + 1) * factor, dtype=np.intp)
cnp.PyArray_Arange(x * factor, (x + 1) * factor, 1, NPY_INTP)
for x in self
]
new_placement = np.concatenate(mapped)
return new_placement
cdef slice slice_canonize(slice s):
"""
Convert slice to canonical bounded form.
"""
cdef:
Py_ssize_t start = 0, stop = 0, step = 1
if s.step is None:
step = 1
else:
step = <Py_ssize_t>s.step
if step == 0:
raise ValueError("slice step cannot be zero")
if step > 0:
if s.stop is None:
raise ValueError("unbounded slice")
stop = <Py_ssize_t>s.stop
if s.start is None:
start = 0
else:
start = <Py_ssize_t>s.start
if start > stop:
start = stop
elif step < 0:
if s.start is None:
raise ValueError("unbounded slice")
start = <Py_ssize_t>s.start
if s.stop is None:
stop = -1
else:
stop = <Py_ssize_t>s.stop
if stop > start:
stop = start
if start < 0 or (stop < 0 and s.stop is not None and step > 0):
raise ValueError("unbounded slice")
if stop < 0:
return slice(start, None, step)
else:
return slice(start, stop, step)
cpdef Py_ssize_t slice_len(slice slc, Py_ssize_t objlen=PY_SSIZE_T_MAX) except -1:
"""
Get length of a bounded slice.
The slice must not have any "open" bounds that would create dependency on
container size, i.e.:
- if ``s.step is None or s.step > 0``, ``s.stop`` is not ``None``
- if ``s.step < 0``, ``s.start`` is not ``None``
Otherwise, the result is unreliable.
"""
cdef:
Py_ssize_t start, stop, step, length
if slc is None:
raise TypeError("slc must be slice") # pragma: no cover
PySlice_GetIndicesEx(slc, objlen, &start, &stop, &step, &length)
return length
cdef (Py_ssize_t, Py_ssize_t, Py_ssize_t, Py_ssize_t) slice_get_indices_ex(
slice slc, Py_ssize_t objlen=PY_SSIZE_T_MAX
):
"""
Get (start, stop, step, length) tuple for a slice.
If `objlen` is not specified, slice must be bounded, otherwise the result
will be wrong.
"""
cdef:
Py_ssize_t start, stop, step, length
if slc is None:
raise TypeError("slc should be a slice") # pragma: no cover
PySlice_GetIndicesEx(slc, objlen, &start, &stop, &step, &length)
return start, stop, step, length
cdef slice_getitem(slice slc, ind):
cdef:
Py_ssize_t s_start, s_stop, s_step, s_len
Py_ssize_t ind_start, ind_stop, ind_step, ind_len
s_start, s_stop, s_step, s_len = slice_get_indices_ex(slc)
if isinstance(ind, slice):
ind_start, ind_stop, ind_step, ind_len = slice_get_indices_ex(ind, s_len)
if ind_step > 0 and ind_len == s_len:
# short-cut for no-op slice
if ind_len == s_len:
return slc
if ind_step < 0:
s_start = s_stop - s_step
ind_step = -ind_step
s_step *= ind_step
s_stop = s_start + ind_stop * s_step
s_start = s_start + ind_start * s_step
if s_step < 0 and s_stop < 0:
return slice(s_start, None, s_step)
else:
return slice(s_start, s_stop, s_step)
else:
# NOTE:
# this is the C-optimized equivalent of
# `np.arange(s_start, s_stop, s_step, dtype=np.intp)[ind]`
return cnp.PyArray_Arange(s_start, s_stop, s_step, NPY_INTP)[ind]
@cython.boundscheck(False)
@cython.wraparound(False)
cdef slice indexer_as_slice(intp_t[:] vals):
cdef:
Py_ssize_t i, n, start, stop
int64_t d
if vals is None:
raise TypeError("vals must be ndarray") # pragma: no cover
n = vals.shape[0]
if n == 0 or vals[0] < 0:
return None
if n == 1:
return slice(vals[0], vals[0] + 1, 1)
if vals[1] < 0:
return None
# n > 2
d = vals[1] - vals[0]
if d == 0:
return None
for i in range(2, n):
if vals[i] < 0 or vals[i] - vals[i - 1] != d:
return None
start = vals[0]
stop = start + n * d
if stop < 0 and d < 0:
return slice(start, None, d)
else:
return slice(start, stop, d)
@cython.boundscheck(False)
@cython.wraparound(False)
def get_concat_blkno_indexers(list blknos_list not None):
"""
Given the mgr.blknos for a list of mgrs, break range(len(mgrs[0])) into
slices such that within each slice blknos_list[i] is constant for each i.
This is a multi-Manager analogue to get_blkno_indexers with group=False.
"""
# we have the blknos for each of several BlockManagers
# list[np.ndarray[int64_t]]
cdef:
Py_ssize_t i, j, k, start, ncols
cnp.npy_intp n_mgrs
ndarray[intp_t] blknos, cur_blknos, run_blknos
BlockPlacement bp
list result = []
n_mgrs = len(blknos_list)
cur_blknos = cnp.PyArray_EMPTY(1, &n_mgrs, cnp.NPY_INTP, 0)
blknos = blknos_list[0]
ncols = len(blknos)
if ncols == 0:
return []
start = 0
for i in range(n_mgrs):
blknos = blknos_list[i]
cur_blknos[i] = blknos[0]
assert len(blknos) == ncols
for i in range(1, ncols):
# For each column, we check if the Block it is part of (i.e. blknos[i])
# is the same the previous column (i.e. blknos[i-1]) *and* if this is
# the case for each blknos in blknos_list. If not, we start a new "run".
for k in range(n_mgrs):
blknos = blknos_list[k]
# assert cur_blknos[k] == blknos[i - 1]
if blknos[i] != blknos[i - 1]:
bp = BlockPlacement(slice(start, i))
run_blknos = cnp.PyArray_Copy(cur_blknos)
result.append((run_blknos, bp))
start = i
for j in range(n_mgrs):
blknos = blknos_list[j]
cur_blknos[j] = blknos[i]
break # break out of `for k in range(n_mgrs)` loop
if start != ncols:
bp = BlockPlacement(slice(start, ncols))
run_blknos = cnp.PyArray_Copy(cur_blknos)
result.append((run_blknos, bp))
return result
@cython.boundscheck(False)
@cython.wraparound(False)
def get_blkno_indexers(
int64_t[:] blknos, bint group=True
) -> list[tuple[int, slice | np.ndarray]]:
"""
Enumerate contiguous runs of integers in ndarray.
Iterate over elements of `blknos` yielding ``(blkno, slice(start, stop))``
pairs for each contiguous run found.
If `group` is True and there is more than one run for a certain blkno,
``(blkno, array)`` with an array containing positions of all elements equal
to blkno.
Returns
-------
list[tuple[int, slice | np.ndarray]]
"""
# There's blkno in this function's name because it's used in block &
# blockno handling.
cdef:
int64_t cur_blkno
Py_ssize_t i, start, stop, n, diff
cnp.npy_intp tot_len
int64_t blkno
object group_dict = defaultdict(list)
ndarray[int64_t, ndim=1] arr
n = blknos.shape[0]
result = list()
if n == 0:
return result
start = 0
cur_blkno = blknos[start]
if group is False:
for i in range(1, n):
if blknos[i] != cur_blkno:
result.append((cur_blkno, slice(start, i)))
start = i
cur_blkno = blknos[i]
result.append((cur_blkno, slice(start, n)))
else:
for i in range(1, n):
if blknos[i] != cur_blkno:
group_dict[cur_blkno].append((start, i))
start = i
cur_blkno = blknos[i]
group_dict[cur_blkno].append((start, n))
for blkno, slices in group_dict.items():
if len(slices) == 1:
result.append((blkno, slice(slices[0][0], slices[0][1])))
else:
tot_len = sum(stop - start for start, stop in slices)
# equiv np.empty(tot_len, dtype=np.int64)
arr = cnp.PyArray_EMPTY(1, &tot_len, cnp.NPY_INT64, 0)
i = 0
for start, stop in slices:
for diff in range(start, stop):
arr[i] = diff
i += 1
result.append((blkno, arr))
return result
def get_blkno_placements(blknos, group: bool = True):
"""
Parameters
----------
blknos : np.ndarray[int64]
group : bool, default True
Returns
-------
iterator
yield (blkno, BlockPlacement)
"""
blknos = ensure_int64(blknos)
for blkno, indexer in get_blkno_indexers(blknos, group):
yield blkno, BlockPlacement(indexer)
@cython.boundscheck(False)
@cython.wraparound(False)
cpdef update_blklocs_and_blknos(
ndarray[intp_t, ndim=1] blklocs,
ndarray[intp_t, ndim=1] blknos,
Py_ssize_t loc,
intp_t nblocks,
):
"""
Update blklocs and blknos when a new column is inserted at 'loc'.
"""
cdef:
Py_ssize_t i
cnp.npy_intp length = blklocs.shape[0] + 1
ndarray[intp_t, ndim=1] new_blklocs, new_blknos
# equiv: new_blklocs = np.empty(length, dtype=np.intp)
new_blklocs = cnp.PyArray_EMPTY(1, &length, cnp.NPY_INTP, 0)
new_blknos = cnp.PyArray_EMPTY(1, &length, cnp.NPY_INTP, 0)
for i in range(loc):
new_blklocs[i] = blklocs[i]
new_blknos[i] = blknos[i]
new_blklocs[loc] = 0
new_blknos[loc] = nblocks
for i in range(loc, length - 1):
new_blklocs[i + 1] = blklocs[i]
new_blknos[i + 1] = blknos[i]
return new_blklocs, new_blknos
def _unpickle_block(values, placement, ndim):
# We have to do some gymnastics b/c "ndim" is keyword-only
from pandas.core.internals.blocks import (
maybe_coerce_values,
new_block,
)
values = maybe_coerce_values(values)
if not isinstance(placement, BlockPlacement):
placement = BlockPlacement(placement)
return new_block(values, placement, ndim=ndim)
@cython.freelist(64)
cdef class Block:
"""
Defining __init__ in a cython class significantly improves performance.
"""
cdef:
public BlockPlacement _mgr_locs
public BlockValuesRefs refs
readonly int ndim
# 2023-08-15 no apparent performance improvement from declaring values
# as ndarray in a type-special subclass (similar for NDArrayBacked).
# This might change if slice_block_rows can be optimized with something
# like https://github.com/numpy/numpy/issues/23934
public object values
def __cinit__(
self,
values,
placement: BlockPlacement,
ndim: int,
refs: BlockValuesRefs | None = None,
):
"""
Parameters
----------
values : np.ndarray or ExtensionArray
We assume maybe_coerce_values has already been called.
placement : BlockPlacement
ndim : int
1 for SingleBlockManager/Series, 2 for BlockManager/DataFrame
refs: BlockValuesRefs, optional
Ref tracking object or None if block does not have any refs.
"""
self.values = values
self._mgr_locs = placement
self.ndim = ndim
if refs is None:
# if no refs are passed, that means we are creating a Block from
# new values that it uniquely owns -> start a new BlockValuesRefs
# object that only references this block
self.refs = BlockValuesRefs(self)
else:
# if refs are passed, this is the BlockValuesRefs object that is shared
# with the parent blocks which share the values, and a reference to this
# new block is added
refs.add_reference(self)
self.refs = refs
cpdef __reduce__(self):
args = (self.values, self.mgr_locs.indexer, self.ndim)
return _unpickle_block, args
cpdef __setstate__(self, state):
from pandas.core.construction import extract_array
self.mgr_locs = BlockPlacement(state[0])
self.values = extract_array(state[1], extract_numpy=True)
if len(state) > 2:
# we stored ndim
self.ndim = state[2]
else:
# older pickle
from pandas.core.internals.api import maybe_infer_ndim
ndim = maybe_infer_ndim(self.values, self.mgr_locs)
self.ndim = ndim
cpdef Block slice_block_rows(self, slice slicer):
"""
Perform __getitem__-like specialized to slicing along index.
Assumes self.ndim == 2
"""
new_values = self.values[..., slicer]
return type(self)(new_values, self._mgr_locs, ndim=self.ndim, refs=self.refs)
@cython.freelist(64)
cdef class BlockManager:
cdef:
public tuple blocks
public list axes
public bint _known_consolidated, _is_consolidated
public ndarray _blknos, _blklocs
def __cinit__(
self,
blocks=None,
axes=None,
verify_integrity=True,
):
# None as defaults for unpickling GH#42345
if blocks is None:
# This adds 1-2 microseconds to DataFrame(np.array([]))
return
if isinstance(blocks, list):
# Backward compat for e.g. pyarrow
blocks = tuple(blocks)
self.blocks = blocks
self.axes = axes.copy() # copy to make sure we are not remotely-mutable
# Populate known_consolidate, blknos, and blklocs lazily
self._known_consolidated = False
self._is_consolidated = False
self._blknos = None
self._blklocs = None
# -------------------------------------------------------------------
# Block Placement
def _rebuild_blknos_and_blklocs(self) -> None:
"""
Update mgr._blknos / mgr._blklocs.
"""
cdef:
intp_t blkno, i, j
cnp.npy_intp length = self.shape[0]
Block blk
BlockPlacement bp
ndarray[intp_t, ndim=1] new_blknos, new_blklocs
# equiv: np.empty(length, dtype=np.intp)
new_blknos = cnp.PyArray_EMPTY(1, &length, cnp.NPY_INTP, 0)
new_blklocs = cnp.PyArray_EMPTY(1, &length, cnp.NPY_INTP, 0)
# equiv: new_blknos.fill(-1)
cnp.PyArray_FILLWBYTE(new_blknos, -1)
cnp.PyArray_FILLWBYTE(new_blklocs, -1)
for blkno, blk in enumerate(self.blocks):
bp = blk._mgr_locs
# Iterating over `bp` is a faster equivalent to
# new_blknos[bp.indexer] = blkno
# new_blklocs[bp.indexer] = np.arange(len(bp))
for i, j in enumerate(bp):
new_blknos[j] = blkno
new_blklocs[j] = i
for i in range(length):
# faster than `for blkno in new_blknos`
# https://github.com/cython/cython/issues/4393
blkno = new_blknos[i]
# If there are any -1s remaining, this indicates that our mgr_locs
# are invalid.
if blkno == -1:
raise AssertionError("Gaps in blk ref_locs")
self._blknos = new_blknos
self._blklocs = new_blklocs
# -------------------------------------------------------------------
# Pickle
cpdef __reduce__(self):
if len(self.axes) == 1:
# SingleBlockManager, __init__ expects Block, axis
args = (self.blocks[0], self.axes[0])
else:
args = (self.blocks, self.axes)
return type(self), args
cpdef __setstate__(self, state):
from pandas.core.construction import extract_array
from pandas.core.internals.blocks import (
ensure_block_shape,
maybe_coerce_values,
new_block,
)
from pandas.core.internals.managers import ensure_index
if isinstance(state, tuple) and len(state) >= 4 and "0.14.1" in state[3]:
state = state[3]["0.14.1"]
axes = [ensure_index(ax) for ax in state["axes"]]
ndim = len(axes)
for blk in state["blocks"]:
vals = blk["values"]
# older versions may hold e.g. DatetimeIndex instead of DTA
vals = extract_array(vals, extract_numpy=True)
blk["values"] = maybe_coerce_values(ensure_block_shape(vals, ndim=ndim))
if not isinstance(blk["mgr_locs"], BlockPlacement):
blk["mgr_locs"] = BlockPlacement(blk["mgr_locs"])
nbs = [
new_block(blk["values"], blk["mgr_locs"], ndim=ndim)
for blk in state["blocks"]
]
blocks = tuple(nbs)
self.blocks = blocks
self.axes = axes
else: # pragma: no cover
raise NotImplementedError("pre-0.14.1 pickles are no longer supported")
self._post_setstate()
def _post_setstate(self) -> None:
self._is_consolidated = False
self._known_consolidated = False
self._rebuild_blknos_and_blklocs()
# -------------------------------------------------------------------
# Indexing
cdef BlockManager _slice_mgr_rows(self, slice slobj):
cdef:
Block blk, nb
BlockManager mgr
ndarray blknos, blklocs
nbs = []
for blk in self.blocks:
nb = blk.slice_block_rows(slobj)
nbs.append(nb)
new_axes = [self.axes[0], self.axes[1]._getitem_slice(slobj)]
mgr = type(self)(tuple(nbs), new_axes, verify_integrity=False)
# We can avoid having to rebuild blklocs/blknos
blklocs = self._blklocs
blknos = self._blknos
if blknos is not None:
mgr._blknos = blknos.copy()
mgr._blklocs = blklocs.copy()
return mgr
def get_slice(self, slobj: slice, axis: int = 0) -> BlockManager:
if axis == 0:
new_blocks = self._slice_take_blocks_ax0(slobj)
elif axis == 1:
return self._slice_mgr_rows(slobj)
else:
raise IndexError("Requested axis not found in manager")
new_axes = list(self.axes)
new_axes[axis] = new_axes[axis]._getitem_slice(slobj)
return type(self)(tuple(new_blocks), new_axes, verify_integrity=False)
cdef class BlockValuesRefs:
"""Tracks all references to a given array.
Keeps track of all blocks (through weak references) that reference the same
data.
"""
cdef:
public list referenced_blocks
public int clear_counter
def __cinit__(self, blk: Block | None = None) -> None:
if blk is not None:
self.referenced_blocks = [weakref.ref(blk)]
else:
self.referenced_blocks = []
self.clear_counter = 500 # set reasonably high
def _clear_dead_references(self, force=False) -> None:
# Use exponential backoff to decide when we want to clear references
# if force=False. Clearing for every insertion causes slowdowns if
# all these objects stay alive, e.g. df.items() for wide DataFrames
# see GH#55245 and GH#55008
if force or len(self.referenced_blocks) > self.clear_counter:
self.referenced_blocks = [
ref for ref in self.referenced_blocks if ref() is not None
]
nr_of_refs = len(self.referenced_blocks)
if nr_of_refs < self.clear_counter // 2:
self.clear_counter = max(self.clear_counter // 2, 500)
elif nr_of_refs > self.clear_counter:
self.clear_counter = max(self.clear_counter * 2, nr_of_refs)
def add_reference(self, blk: Block) -> None:
"""Adds a new reference to our reference collection.
Parameters
----------
blk : Block
The block that the new references should point to.
"""
self._clear_dead_references()
self.referenced_blocks.append(weakref.ref(blk))
def add_index_reference(self, index: object) -> None:
"""Adds a new reference to our reference collection when creating an index.
Parameters
----------
index : Index
The index that the new reference should point to.
"""
self._clear_dead_references()
self.referenced_blocks.append(weakref.ref(index))
def has_reference(self) -> bool:
"""Checks if block has foreign references.
A reference is only relevant if it is still alive. The reference to
ourselves does not count.
Returns
-------
bool
"""
self._clear_dead_references(force=True)
# Checking for more references than block pointing to itself
return len(self.referenced_blocks) > 1
|