1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522
|
#!/usr/bin/env python3
"""
Analyze docstrings to detect errors.
If no argument is provided, it does a quick check of docstrings and returns
a csv with all API functions and results of basic checks.
If a function or method is provided in the form "pandas.function",
"pandas.module.class.method", etc. a list of all errors in the docstring for
the specified function or method.
Usage::
$ ./validate_docstrings.py
$ ./validate_docstrings.py pandas.DataFrame.head
"""
from __future__ import annotations
import argparse
import doctest
import importlib
import io
import json
import os
import pathlib
import subprocess
import sys
import tempfile
import matplotlib
import matplotlib.pyplot as plt
import numpy
from numpydoc.docscrape import get_doc_object
from numpydoc.validate import (
Validator,
validate,
)
import pandas
# With template backend, matplotlib plots nothing
matplotlib.use("template")
# Styler methods are Jinja2 objects who's docstrings we don't own.
IGNORE_VALIDATION = {
"Styler.env",
"Styler.template_html",
"Styler.template_html_style",
"Styler.template_html_table",
"Styler.template_latex",
"Styler.template_string",
"Styler.loader",
"errors.InvalidComparison",
"errors.LossySetitemError",
"errors.NoBufferPresent",
"errors.IncompatibilityWarning",
"errors.PyperclipException",
"errors.PyperclipWindowsException",
}
PRIVATE_CLASSES = ["NDFrame", "IndexOpsMixin"]
ERROR_MSGS = {
"GL04": "Private classes ({mentioned_private_classes}) should not be "
"mentioned in public docstrings",
"GL05": "Use 'array-like' rather than 'array_like' in docstrings.",
"SA05": "{reference_name} in `See Also` section does not need `pandas` "
"prefix, use {right_reference} instead.",
"EX02": "Examples do not pass tests:\n{doctest_log}",
"EX03": "flake8 error: line {line_number}, col {col_number}: {error_code} "
"{error_message}",
"EX04": "Do not import {imported_library}, as it is imported "
"automatically for the examples (numpy as np, pandas as pd)",
}
def pandas_error(code, **kwargs):
"""
Copy of the numpydoc error function, since ERROR_MSGS can't be updated
with our custom errors yet.
"""
return (code, ERROR_MSGS[code].format(**kwargs))
def get_api_items(api_doc_fd):
"""
Yield information about all public API items.
Parse api.rst file from the documentation, and extract all the functions,
methods, classes, attributes... This should include all pandas public API.
Parameters
----------
api_doc_fd : file descriptor
A file descriptor of the API documentation page, containing the table
of contents with all the public API.
Yields
------
name : str
The name of the object (e.g. 'pandas.Series.str.upper).
func : function
The object itself. In most cases this will be a function or method,
but it can also be classes, properties, cython objects...
section : str
The name of the section in the API page where the object item is
located.
subsection : str
The name of the subsection in the API page where the object item is
located.
"""
current_module = "pandas"
previous_line = current_section = current_subsection = ""
position = None
for line in api_doc_fd:
line_stripped = line.strip()
if len(line_stripped) == len(previous_line):
if set(line_stripped) == set("-"):
current_section = previous_line
continue
if set(line_stripped) == set("~"):
current_subsection = previous_line
continue
if line_stripped.startswith(".. currentmodule::"):
current_module = line_stripped.replace(".. currentmodule::", "").strip()
continue
if line_stripped == ".. autosummary::":
position = "autosummary"
continue
if position == "autosummary":
if line_stripped == "":
position = "items"
continue
if position == "items":
if line_stripped == "":
position = None
continue
if line_stripped in IGNORE_VALIDATION:
continue
func = importlib.import_module(current_module)
for part in line_stripped.split("."):
func = getattr(func, part)
yield (
f"{current_module}.{line_stripped}",
func,
current_section,
current_subsection,
)
previous_line = line_stripped
class PandasDocstring(Validator):
def __init__(self, func_name: str, doc_obj=None) -> None:
self.func_name = func_name
if doc_obj is None:
doc_obj = get_doc_object(Validator._load_obj(func_name))
super().__init__(doc_obj)
@property
def name(self):
return self.func_name
@property
def mentioned_private_classes(self):
return [klass for klass in PRIVATE_CLASSES if klass in self.raw_doc]
@property
def examples_errors(self):
flags = doctest.NORMALIZE_WHITESPACE | doctest.IGNORE_EXCEPTION_DETAIL
finder = doctest.DocTestFinder()
runner = doctest.DocTestRunner(optionflags=flags)
context = {"np": numpy, "pd": pandas}
error_msgs = ""
current_dir = set(os.listdir())
for test in finder.find(self.raw_doc, self.name, globs=context):
f = io.StringIO()
runner.run(test, out=f.write)
error_msgs += f.getvalue()
leftovers = set(os.listdir()).difference(current_dir)
if leftovers:
for leftover in leftovers:
path = pathlib.Path(leftover).resolve()
if path.is_dir():
path.rmdir()
elif path.is_file():
path.unlink(missing_ok=True)
raise Exception(
f"The following files were leftover from the doctest: "
f"{leftovers}. Please use # doctest: +SKIP"
)
return error_msgs
@property
def examples_source_code(self):
lines = doctest.DocTestParser().get_examples(self.raw_doc)
return [line.source for line in lines]
def validate_pep8(self):
if not self.examples:
return
# F401 is needed to not generate flake8 errors in examples
# that do not user numpy or pandas
content = "".join(
(
"import numpy as np # noqa: F401\n",
"import pandas as pd # noqa: F401\n",
*self.examples_source_code,
)
)
error_messages = []
file = tempfile.NamedTemporaryFile(mode="w", encoding="utf-8", delete=False)
try:
file.write(content)
file.flush()
cmd = [
"python",
"-m",
"flake8",
"--format=%(row)d\t%(col)d\t%(code)s\t%(text)s",
"--max-line-length=88",
"--ignore=E203,E3,W503,W504,E402,E731",
file.name,
]
response = subprocess.run(cmd, capture_output=True, check=False, text=True)
for output in ("stdout", "stderr"):
out = getattr(response, output)
out = out.replace(file.name, "")
messages = out.strip("\n").splitlines()
if messages:
error_messages.extend(messages)
finally:
file.close()
os.unlink(file.name)
for error_message in error_messages:
line_number, col_number, error_code, message = error_message.split(
"\t", maxsplit=3
)
# Note: we subtract 2 from the line number because
# 'import numpy as np\nimport pandas as pd\n'
# is prepended to the docstrings.
yield error_code, message, int(line_number) - 2, int(col_number)
def non_hyphenated_array_like(self):
return "array_like" in self.raw_doc
def pandas_validate(func_name: str):
"""
Call the numpydoc validation, and add the errors specific to pandas.
Parameters
----------
func_name : str
Name of the object of the docstring to validate.
Returns
-------
dict
Information about the docstring and the errors found.
"""
func_obj = Validator._load_obj(func_name)
# Some objects are instances, e.g. IndexSlice, which numpydoc can't validate
doc_obj = get_doc_object(func_obj, doc=func_obj.__doc__)
doc = PandasDocstring(func_name, doc_obj)
result = validate(doc_obj)
mentioned_errs = doc.mentioned_private_classes
if mentioned_errs:
result["errors"].append(
pandas_error("GL04", mentioned_private_classes=", ".join(mentioned_errs))
)
if doc.see_also:
result["errors"].extend(
pandas_error(
"SA05",
reference_name=rel_name,
right_reference=rel_name[len("pandas.") :],
)
for rel_name in doc.see_also
if rel_name.startswith("pandas.")
)
result["examples_errs"] = ""
if doc.examples:
result["examples_errs"] = doc.examples_errors
if result["examples_errs"]:
result["errors"].append(
pandas_error("EX02", doctest_log=result["examples_errs"])
)
for error_code, error_message, line_number, col_number in doc.validate_pep8():
result["errors"].append(
pandas_error(
"EX03",
error_code=error_code,
error_message=error_message,
line_number=line_number,
col_number=col_number,
)
)
examples_source_code = "".join(doc.examples_source_code)
result["errors"].extend(
pandas_error("EX04", imported_library=wrong_import)
for wrong_import in ("numpy", "pandas")
if f"import {wrong_import}" in examples_source_code
)
if doc.non_hyphenated_array_like():
result["errors"].append(pandas_error("GL05"))
plt.close("all")
return result
def validate_all(prefix, ignore_deprecated=False, ignore_functions=None):
"""
Execute the validation of all docstrings, and return a dict with the
results.
Parameters
----------
prefix : str or None
If provided, only the docstrings that start with this pattern will be
validated. If None, all docstrings will be validated.
ignore_deprecated: bool, default False
If True, deprecated objects are ignored when validating docstrings.
ignore_functions: list of str or None, default None
If not None, contains a list of function to ignore
Returns
-------
dict
A dictionary with an item for every function/method... containing
all the validation information.
"""
result = {}
seen = {}
ignore_functions = set(ignore_functions or [])
for func_name, _, section, subsection in get_all_api_items():
if func_name in ignore_functions:
continue
if prefix and not func_name.startswith(prefix):
continue
doc_info = pandas_validate(func_name)
if ignore_deprecated and doc_info["deprecated"]:
continue
result[func_name] = doc_info
shared_code_key = doc_info["file"], doc_info["file_line"]
shared_code = seen.get(shared_code_key, "")
result[func_name].update(
{
"in_api": True,
"section": section,
"subsection": subsection,
"shared_code_with": shared_code,
}
)
seen[shared_code_key] = func_name
return result
def get_all_api_items():
base_path = pathlib.Path(__file__).parent.parent
api_doc_fnames = pathlib.Path(base_path, "doc", "source", "reference")
for api_doc_fname in api_doc_fnames.glob("*.rst"):
with open(api_doc_fname, encoding="utf-8") as f:
yield from get_api_items(f)
def print_validate_all_results(
prefix: str,
errors: list[str] | None,
output_format: str,
ignore_deprecated: bool,
ignore_functions: list[str] | None,
):
if output_format not in ("default", "json", "actions"):
raise ValueError(f'Unknown output_format "{output_format}"')
result = validate_all(prefix, ignore_deprecated, ignore_functions)
if output_format == "json":
sys.stdout.write(json.dumps(result))
return 0
prefix = "##[error]" if output_format == "actions" else ""
exit_status = 0
for name, res in result.items():
for err_code, err_desc in res["errors"]:
if errors and err_code not in errors:
continue
sys.stdout.write(
f'{prefix}{res["file"]}:{res["file_line"]}:'
f"{err_code}:{name}:{err_desc}\n"
)
exit_status += 1
return exit_status
def print_validate_one_results(func_name: str) -> None:
def header(title, width=80, char="#") -> str:
full_line = char * width
side_len = (width - len(title) - 2) // 2
adj = "" if len(title) % 2 == 0 else " "
title_line = f"{char * side_len} {title}{adj} {char * side_len}"
return f"\n{full_line}\n{title_line}\n{full_line}\n\n"
result = pandas_validate(func_name)
sys.stderr.write(header(f"Docstring ({func_name})"))
sys.stderr.write(f"{result['docstring']}\n")
sys.stderr.write(header("Validation"))
if result["errors"]:
sys.stderr.write(f'{len(result["errors"])} Errors found for `{func_name}`:\n')
for err_code, err_desc in result["errors"]:
if err_code == "EX02": # Failing examples are printed at the end
sys.stderr.write("\tExamples do not pass tests\n")
continue
sys.stderr.write(f"\t{err_desc}\n")
else:
sys.stderr.write(f'Docstring for "{func_name}" correct. :)\n')
if result["examples_errs"]:
sys.stderr.write(header("Doctests"))
sys.stderr.write(result["examples_errs"])
def main(func_name, prefix, errors, output_format, ignore_deprecated, ignore_functions):
"""
Main entry point. Call the validation for one or for all docstrings.
"""
if func_name is None:
return print_validate_all_results(
prefix,
errors,
output_format,
ignore_deprecated,
ignore_functions,
)
else:
print_validate_one_results(func_name)
return 0
if __name__ == "__main__":
format_opts = "default", "json", "actions"
func_help = (
"function or method to validate (e.g. pandas.DataFrame.head) "
"if not provided, all docstrings are validated and returned "
"as JSON"
)
argparser = argparse.ArgumentParser(description="validate pandas docstrings")
argparser.add_argument("function", nargs="?", default=None, help=func_help)
argparser.add_argument(
"--format",
default="default",
choices=format_opts,
help="format of the output when validating "
"multiple docstrings (ignored when validating one). "
"It can be {str(format_opts)[1:-1]}",
)
argparser.add_argument(
"--prefix",
default=None,
help="pattern for the "
"docstring names, in order to decide which ones "
'will be validated. A prefix "pandas.Series.str."'
"will make the script validate all the docstrings "
"of methods starting by this pattern. It is "
"ignored if parameter function is provided",
)
argparser.add_argument(
"--errors",
default=None,
help="comma separated "
"list of error codes to validate. By default it "
"validates all errors (ignored when validating "
"a single docstring)",
)
argparser.add_argument(
"--ignore_deprecated",
default=False,
action="store_true",
help="if this flag is set, "
"deprecated objects are ignored when validating "
"all docstrings",
)
argparser.add_argument(
"--ignore_functions",
nargs="*",
help="function or method to not validate "
"(e.g. pandas.DataFrame.head). "
"Inverse of the `function` argument.",
)
args = argparser.parse_args()
sys.exit(
main(
args.function,
args.prefix,
args.errors.split(",") if args.errors else None,
args.format,
args.ignore_deprecated,
args.ignore_functions,
)
)
|